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Abstract

Over Antarctica, aerosol particles originate almost entirely from marine areas, with
minor contribution from long-range transported dust or anthropogenic material. The
Antarctic continent itself, unlike all other continental areas, has been thought to be
practically free of aerosol sources. Here we present evidence of local aerosol produc-5

tion associated with melt-water ponds in the continental Antarctica. We show that in
air masses passing such ponds, new aerosol particles are efficiently formed and these
particles grow up to sizes where they may act as cloud condensation nuclei (CCN).
The precursor vapours responsible for aerosol formation and growth originate very
likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of10

local ponds. This is the first time when freshwater vegetation has been identified as an
aerosol precursor source. The influence of the new source on clouds and climate may
increase in future Antarctica, and possibly elsewhere undergoing accelerating summer
melting of semi-permanent snow cover.

1 Introduction15

Antarctica is experiencing dramatic changes especially in the Peninsula and west-
ern part but also in the coastal areas around the whole continent (Chen et al., 2009;
Pritchard et al., 2009). These are also the areas with most of the continents exposed
ground and high mountains. Especially the spring temperatures have been increasing
in these areas (Steig et al., 2009; Schneider et al., 2012) followed by increasing ice20

mass loss (Pritchard et al., 2009) and ice shelf collapses (Rignot et al., 2004). In spring
and summer, intense solar radiation melts snow and ice around the mountains as well
as areas with exposed ground and blue ice into ponds and lakes. The increasing tem-
perature decreases the overall surface albedo in these areas by enhancing the snow
and ice melt (Hall, 2004).25
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The Antarctic climate system is coupled tightly with aerosol particles via global warm-
ing and associated feedback processes involving aerosol-cloud interactions. The most
studied aerosol type in this respect is the natural sulphate aerosol originating from
oceanic dimethyl sulphide (DMS) emissions affected mainly by ocean biochemistry
and wind speed (Korhonen et al., 2008). Another prominent aerosol type over Antarc-5

tica is sea salt (Shaw, 1988; Hara et al., 2011; Weller et al., 2011), the concentration
and properties of which are influenced by the sea ice extent, wind speed and probably
also by the sea water temperature (Struthers et al., 2011). In addition to these two nat-
ural aerosol types, small amounts of dust and anthropogenic pollution-derived particles
are occasionally long-range transported to Antarctica (Shaw, 1988; Fiebig et al., 2009).10

The Antarctic continent has been thought to be a weak source of primary aerosol par-
ticles, mainly dust as well as pollen and bacteria (Gonzáles-Toril et al., 2009), and
a negligible source of precursors for secondary aerosol particles.

Here, we investigate secondary aerosol formation observed during the FINNARP
2009 expedition at the Finnish Antarctic Research Station Aboa. Previous studies15

have shown that secondary Antarctic aerosols originate from oceanic DMS emissions
(O’Dowd et al., 1997; Davis et al., 1998; Asmi et al., 2010; Yu and Luo, 2010), long-
range transport (Ito, 1993; Fiebig et al., 2009; Hara et al., 2011), or from intrusion of
upper tropospheric air into the boundary layer (Virkkula et al., 2009). Also local an-
thropogenic sources have been linked with new particle formation (NPF) in continental20

Antarctica (Park et al., 2004). At Aboa, the particle formation takes mostly place in
airmasses coming along the coastline (Koponen et al., 2003) or intruding from higher
altitude (Virkkula et al., 2009). Observations of growth of the smallest cluster ions sug-
gest that the nucleation can occur even in the boundary layer (Asmi et al., 2010). It has
also been suggested that secondary organic matter, having a significant contribution in25

the Aitken and accumulation modes, could contribute to the growth of aerosol particles
(Virkkula et al., 2006, 2009). However, observations of nanometer-sized secondary
organic aerosols have not been made over Antarctica.
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Our principal goal in this paper is to find out the origin of secondary aerosol particles
and their precursors in the summer continental Antarctic atmosphere. In addition to
this, we aim to explore which vapours make the newly-formed particles to grow in
size, and whether Antarctic secondary aerosol formation is capable of producing cloud
condensing nuclei.5

2 Materials and methods

2.1 Description of the site and measurements

The aerosol and atmospheric composition measurements discussed here were car-
ried out between 5 December 2009 and 23 January 2010 at the Finnish Antarctic Re-
search Station, Aboa (location is shown in Asmi et al., 2010), in Queen Maud Land,10

during the FINNARP 2009 expedition. The station is built on a nunatak Basen, ap-
proximately 500 m a.s.l. and some 130 km away from the open ocean in summer. Dur-
ing the summer, snow and ice on top of Basen melts into biologically active, shallow
ponds. The most abundant macroscopic organism in these ponds is cyanobacteria
Nostoc commune (Vaucher). The majority of the ponds during FINNARP 2009 expe-15

dition were approximately 2 km from the measurement site. The measurement site is
located 200 m upwind from the main building. Since winds blow most of the time from
the north-east, contamination by the station and vehicles that are used at the main
station is minimal. We measured aerosols continuously at about 3 m a.g.l. The total
particle number size distribution in the diameter range 10–500 nm was measured using20

a Differential Mobility Particle Sizer (DMPS), and the size distributions of positively and
negatively charged particles in the diameter range 0.8–42 nm were measured using an
Air Ion Spectrometer (AIS). In order to get information on the aerosol chemical com-
position, particles were collected on quartz filters and the filters were changed three
times a week. Methanolic extracts obtained from the filter samples after ultrasound-25

assisted extraction were analyzed later in Finland using a comprehensive two dimen-
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sional gas chromatography–time-of–flight mass spectrometer (GCxGC-TOF-MS). In
addition, samples from the cyanobacterial mats and water were taken and analysed.

2.2 Measurement set-up and equipment

The measurements of neutral and charged particle size distributions, ozone concentra-
tion and chemical filter samples were carried out during the Finnish Antarctic Research5

Program (FINNARP) 2009 expedition. All the devices were kept inside a small con-
tainer, about 200 m upwind from the main station, as described by Virkkula et al. (2007)
and Asmi et al. (2010). The inlets were approximately 3 m above the ground. For the
DMPS and the filter sampling, a 25-mm inlet with flow splitter with no sector-control
was used. A separate, 35-mm copper inlet was used for the AIS and for the ozone10

monitor, a 6-mm-wide teflon tube was used as an inlet.

2.2.1 Air-ion spectrometer

Measuring the ion concentration and charge distribution of aerosol particles offers an
effective method to study particle formation mechanisms. In this campaign the ion
spectrometer was the only instrument able to measure directly the early stages of15

atmospheric nucleation and subsequent growth. New particle formation event analy-
sis, including event classification and formation- and growth rate calculations for ion
spectrometer data has already well-defined guidelines (Hirsikko et al., 2005; Manninen
et al., 2010; Kulmala et al., 2012). The Air Ion Spectrometer (AIS) (Mirme et al., 2007)
measures the mobility distributions of both negative and positive air ions simultane-20

ously in the range between 3.2 and 0.0013 cm2 V−1 s−1, which corresponds to a mo-
bility diameter range of 0.8–42 nm. The mobility diameter, i.e. the Millikan diameter, is
applied when converting the measured mobility to the particle diameter (Mäkelä et al.,
2006). The AIS consist of two parallel cylindrical DMAs, one for classifying negative
ions and the other for positive ions. The ions are simultaneously classified according25

to their electrical mobility with differential radial electric field and collected to 21 electri-
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cally isolated sections. Each section has its own electrometer to measure the currents
carried by the ions. The total flow into the AIS is 60 Lmin−1, whereas the sample and
the sheath flows of the DMAs are 30 and 60 Lmin−1, respectively.

2.2.2 Differential Mobility Particle Sizer

The Differential Mobility Particle Sizer (DMPS) (Aalto et al., 2001) setup measures at-5

mospheric aerosol particle number size distribution between 10 and 700 nm in diame-
ter. The DMPS consists of Hauke-type DMA (28.0 cm long), CPC (TSI 3772) as a par-
ticle detector, closed loop sheath flow arrangement and radioactive Carbon-14 beta
neutralizer. The sample flow rate is 1 Lmin−1 and the sheath flow rate is 10 Lmin−1;
both were checked regularly with a bubble flowmeter. The complete size distribution10

is obtained in a 6-min time resolution by changing the classifying voltage of the DMA.
The total aerosol number concentration is calculated from the measured number size
distribution.

2.2.3 Filter sampling

The filter sampling was taken from the same sampling line as for the DMPS. The filters15

that were used were quartz, 47 mm in diameter (Whatman International, Kent, UK).
The flow rate was first 50 Lmin−1 but later (7 January 2010 onwards) it was changed
into 25 Lmin−1. No cut-off was used in the inlet. Filters were stored in petri slides under
a laminar flow hood inside the measurement container in room temperature.

2.2.4 Ozone analyzer20

A continuous ozone analyzer O342M by Environnement S.A was used to monitor the
ozone concentrations. The analyzer was calibrated before the campaign at an accred-
ited calibration laboratory at the Finnish Meteorological Institute (FMI). The ozone con-
centration is detected by the difference in ultraviolet absorption between ambient air
and ozone-cleaned sample. One measurement cycle takes approximately 10 s.25
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2.2.5 Cyanobacterial mat and water samples

Samples from the ponds and cyanobacterial mats were taken on 3 January 2010. Two
50 mL bottles were cleaned thoroughly with ethanol. One bottle was filled with water
taken from the pond and another one with the water-Nostoc commune mixture. The
samples were taken from the same pond on the top of Basen.The size of the pond was5

approximately 40 m2 and it was 10–20 cm deep. Many similar ponds were found from
the nunatak, the largest one being more than 100 m2 in area. The bottles were stored
in a freezer and transported to Finland in frozen container.

2.3 Analysis of aerosol size distribution measurement

NPF events can be visually classified based on the shape of the particle size distribu-10

tion into different types (Dal Maso et al., 2005; Yli-Juuti et al., 2009; Manninen et al.,
2010; Kulmala et al., 2012). The different types of events are signatures of NPF hap-
pening on different spatial and temporal scales and their shape is caused by the Eule-
rian way of measuring the air mass. Traditional “banana”-events are typically observed
when NPF happens over geographically large area, whereas other types (e.g. “apple”,15

“bump” and “wind-induced” all of which were observed at Aboa during FINNARP 2009
expedition) represent more local NPF.

The rate at which the newly-formed aerosol population grows (i.e. particle growth
rate, GR) can be determined from the measured number size distributions by follow-
ing the geometric mean size of the nucleation mode particles (Dal Maso et al., 2005;20

Yli-Juuti et al., 2011; Kulmala et al., 2012). The GR can be reliably determined only
for “banana”-type events. Size-distribution – dependent particle losses can be charac-
terized by condensation and coagulation sinks (CS and CoagS, respectively) (Kulmala
et al., 2001, 2012; Dal Maso et al., 2002). The CS is a value of how rapidly vapour
molecules will condense onto pre-existing aerosol whereas CoagS determines how25

rapidly aerosol particles are removed trough coagulation scavenging.
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The formation rate of particles of certain size (J) is calculated by taking into account
the time evolution of the particle number concentration and the losses due to coagula-
tion scavenging to the larger pre-existing particles as well as the growth out of the size
range (Manninen et al., 2010; Kulmala et al., 2012). For charged particles, the losses
due to ion-ion recombination and sources due to charging of the particles needs to be5

also addressed (Manninen et al., 2010).

2.4 Chemical analysis

2.4.1 Filter samples: elucidication of the aerosol particle components

A comprehensive two dimensional gas chromatograph-time-of-flight mass spectrom-
eter (GCxGC-TOF-MS) from LECO (LECO Instrument Ltd., Stockport, Chesire, Eng-10

land) was used for the elucidation of volatile and semivolatile organic compounds in
aerosol particles. The methodology used for the extraction, derivatisation, individual
isolation and identification of the compounds was similar to that reported earlier (Ruiz-
Jimenez et al., 2011a, b). Briefly, the compounds were extracted from the filters by
sonication assisted extraction. Samples with and without derivatisation were analysed15

in triplicate. The derivatisation step was necessary to increase the volatility of the
semivolatile and low-volatile compounds. 50 ng of 2,4-dichlorobenzoic acid, used as
internal standard (IS) for the derivatisation step, was added to the sample before the
derivatisation. Sample solvent was then evaporated with a gentle stream of nitrogen.
A mixture of 20 µl of BSTFA containing TMCS (1 %) and 20 µl of pyridine was used20

as a derivatisation reagent. The reaction was accelerated by the application of ultra-
sound for 30 min at 35 ◦C. Before GCxGC-TOF-MS analysis, 5 ng of 1-1′-binaphthyl,
used as IS for the injection, was added. In a third step, the most compounds present
in the extract were individually isolated and detected using the GCxGC-TOF-MS. The
identification was based on the comparison of the spectral information obtained from25

the detector and the retention indexes calculated using authentic standards with the
information provided by National Institute of Standards and Technology and the Golm
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databases. Identified compounds were classified into seven groups according to their
chemical composition: hydrocarbons, halogenated compounds, nitrogen compounds,
sulphur compounds, carboxyl, carbonyl and hydroxyl compounds.

The high number of identified compounds in GCxGC-TOF-MS made the quantitation
a challenging task. The semiquantitation of the identified compounds was achieved in5

this research using the normalized response factor (NRF), calculated as follows:

NRF =
∑

NRFi =
∑ ACi

AIS
, (1)

where ACi is the peak area of the different analytes and AIS is the peak area obtained
for 1-1′-binaphthyl, used as the internal standard for the injection.10

An average of 261 compounds per sample was identified using the proposed
methodology. The classification of these compounds into the different chemical groups
(Fig. 1) revealed that hydrocarbons, carboxyl and hydroxyl compounds are the families
which contain most of the compounds. In comparison with the results provided in the
literature for aerosol particles collected at the SMEAR II station (Ruiz-Jimenez et al.,15

2011b), the total number of identified compounds in the Aboa samples was smaller,
but the relative composition of the particles in terms of number of compounds was the
same.

2.4.2 Samples from water and Nostoc commune

Samples 1 (only water) and 2 (water with small piece of cyanobacteria) were taken20

from the freezer 20 min before the extraction. 5 mL of sample was subjected two times
to liquid-liquid extraction (LLE) with 5 mL dichloromethane as such (a) or after pH ad-
justment (100 µL of 1 M HCl) (b). Zero samples were made from distilled water (same
treatment as real samples). Sample 3 (piece of cyanobacteria, 142.7 mg fresh weight)
was extracted by static ultrasound assisted extraction with 10 mL of acetone (30 min)25

as a solvent (Kallio et al., 2006) and filtered through 0.45 µ m syringe filter. Volume of
all samples was reduced to 5 mL by evaporation with gentle stream of nitrogen without
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heating. Two aliquots of 1.5 mL were taken from each sample for the further analysis.
The sample preparation before the injection to GCxGC-TOF-MS was identical with that
used in the case of the filter samples. In total, 135 and 227 compounds were identified
from water (sample 1 and 2) and algae (sample 3) samples, respectively.

3 Results and discussion5

During the campaign, three new particle formation (NPF) event periods were observed
(Fig. 2, upper panel). In first event period, 9 to 11 December 2009, the intensity of NPF
was however very low, and occurred during an intrusion of air from higher altitudes.
This could be seen as an increase in the ozone concentration at the measurement
site, but also in the HYSPLIT back-trajectories. The next two NPF periods were much10

more intense compared to the first event period. In the following discussion we will
focus on these two periods.

The total particle concentration (contamination not taken into account) during the
campaign was on average few hundreds of particles per cm3, while during the event
periods it increased to several thousands of particles per cm3 (Fig. 2, second panel).15

The highest concentrations were observed during the second event period (1 to 3 Jan-
uary 2010).

From Fig. 2 one can see that the normalized response factor (NRF) of Group 2
(organic compounds that were enhanced during all event periods) compounds was
increased during all NPF periods, whereas Group 1 (organic compounds that were20

present only during the second event period) compounds were observed only during
the NPF period 1 to 3 January 2010. Also the relative fraction of Group 2 compounds
was greatest during this period.
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3.1 Overview of the observed nucleation events

During the event periods 1 to 3 January 2010 and 17 to 20 January 2010 apple- and
bump-type as well as banana-type new particle formation was observed. These differ-
ent types of events are signatures of NPF occurring on different spatial scales (Manni-
nen et al., 2010; Kulmala et al., 2012) Apple-type new particle formation is commonly5

considered to be a signature of particle formation on a local scale, with formation occur-
ring fairly close to the observation point (O’Dowd et al., 2002; Manninen et al., 2010).
Due to the proximity of the observation point and the fresh particle source area, there
is insufficient time for observable particle growth to occur. During each local NPF event
the local wind direction was from the pond-sector. Banana-type new particle formation10

is considered to represent particle formation and growth on a regional scale (Dal Maso
et al., 2007; Manninen et al., 2010). In this type of observation, the air mass during the
event is considered to be fairly homogeneous, with particle formation and subsequent
growth occurring throughout the advecting air mass for the duration of the observed
event.15

3.1.1 Event period 1 to 3 January 2010

During the event period 1 to 3 January 2010, four local and three regional NPF events
were observed (Fig. 3). The period started with rapid increase in both wind speed and
temperature in the early hours of New Year Day. The air mass change is very clear
from the surface plot (second panel, Fig. 3), as a new mode appeared rapidly around20

02:00 UTC. During the period, solar radiation was always available and the wind blew
almost all the time stably from the direction of the ponds. According to the HYSPLIT
(Draxler and Rolph, 2012) back-trajectories, the air was arriving at the station following
the coastline, about 100–200 km inland, over the margin of sheet and shelf ice as well
as over the mountain ranges Gjelsvikfjella and Mühlig-Hofmannfjella.25

The local NPF events (I–IV) started directly from the cluster mode, which is a clear
indication that the new particle formation took place close by. Three of these events
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were apple type (I,III and IV) and one hump type (II). During the event IV the wind
direction was slightly varying, causing discontinuities in the size distribution (Fig. 3).

Due to the shape of the number size distribution during local events, the growth
rate (GR) of newly-formed particles could not be calculated. The formation rates of
1.6 nm sized negative clusters varied from 0.02 to 4.2 cm−3 s−1, the highest value being5

obtained during the event III.
At the same time with the local events, also regional events (1.–3.) were observed.

These events started from particles larger than 10 nm and the formed particles were
seen to grow over several hours. The growth rates for the regional events varied be-
tween 0.9 and 5.6 nmh−1 and the formation rates of 10 nm particles (J10) varied from10

0.08 to 0.3 cm−3 s−1 (Table 1).

3.1.2 Event period 17 to 20 January 2010

During the event period 17 to 20 January 2010, three local and two regional events
were observed (Fig. 4). Two of the local events were apple-type (I and III) and one
bump-type (II). In these events J1.6− varied from 8×10−3 to 0.33 cm−3 s−1, the highest15

value being during the event II. The GR and J10 for the regional events varied from 1.8
to 8.8 nmh−1 and 3×10−3 to 0.3 cm−3 s−1, respectively (Table 1).

The period started with a simultaneous observation of local and regional event. Dur-
ing this time, the wind speed was fairly low and the airmass was also rather stagnant
(Fig. 5). The measured air mass was staying over the land, close to Basen 24 h be-20

fore arriving at the station. Even if the trajectory seemed to come from the direction of
the ocean, the sea ice edge on January 2010 was some hundreds of kilometres from
the shelf ice edge according to the National Snow and Ice Data Center. A few hours
later, a cloud covered the station, and the cloud overpass continued from the evening
of 17 January until noon 18 January.25

During the local event II, airmasses arriving at the station were coming from mountain
range Vestfjella, to which Basen also belongs (Fig. 5). According to the wind direction
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observed at Aboa, the airmasses passed the near-by mountain Plogen, where meltwa-
ter was also observed during the campaign. The local wind speed at Aboa increased to
approximately 15 ms−1. At the end of the period, the airmasses were stagnant again,
staying over the surrounding area (Fig. 5). The intensity of the particle formation during
local event III was quite weak, yet measurable.5

3.1.3 Wind-induced events

In addition to the event periods, we observed five days during which we saw NPF
events that did not grow above the detection limit of DMPS, but were visible in AIS
(Fig. 6). All the events were observed during higher-than-average wind speeds. The
median wind speed for the whole measurement campaign was 4.6 ms−1, whereas10

during wind-induced events on 11, 17, 23–24 and 28 December it was 12.1 ms−1,
8.1 ms−1, 9.3 ms−1 and 8.4 ms−1, respectively. The events did not start directly from
the cluster mode, as was the case for the events that were linked with meltwater produc-
tion, but the formed ions were at the intermediate size. It has been previously seen at
Aboa that high winds lead to the formation of <10 nm intermediate size ions (Virkkula15

et al., 2007).

3.2 Origin of the formed particles

We hypothesize that the local particle production observed during the event periods
was linked with emissions from the near-by Nostoc commune (Vaucher)-filled meltwa-
ter ponds, and that the regional particle formation was, to a large extent, associated20

with emissions from blue-ice areas as well as mountainous areas in Dronning Maud
Land. We next search for evidence for this hypothesis and explore potential alternative
explanations.

The colonial cyanobacterium Nostoc commune (Vaucher) is a cosmopolitan gen-
eralist, which exists in freshwater (Vincent and Howard-Williams, 1986, 1989; Moor-25

head et al., 1997) and terrestrial (Novis et al., 2007) environment and is widely spread
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around Antarctica from the surrounding islands (Broady, 1989) and Antarctic Peninsula
to mountains (Broady, 1996), ponds (Holm-Hansen, 1964; Wharton Jr. et al., 1983)
and dry valleys (Novis et al., 2007) in coastal and continental sites. It is also widely
spread in the High Arctic (Sheath et al., 1996; Liengen and Olsen, 1997). It can survive
extreme conditions, such as drought, freezing and UV-radiation (Dodds et al., 1995).5

Migrating birds, such as Arctic tern (Sterna paradisaea), have been shown to disperse
Nostoc commune in their tail feathers to Antarctica (Schlicting et al., 1978).

Nostoc commune (Vaucher) forms macroscopic colonies both on top of lake sedi-
ments and on soils. Recent findings suggest that the two forms, aquatic and terrestrial
ones, have separated both genetically and ecologically (Novis and Smissen, 2006)10

and their response to environmental factors differ from each other. Studies on terres-
trial communities show a positive response to increasing temperature until 24 ◦C, after
which respiration is expected to exceed net carbon fixation (Novis et al., 2007). In con-
trast, Vincent and Howard-Williams (1989) have shown a decrease in net carbon fixa-
tion at much lower temperatures (increase in temperature from 0 to 10 ◦C) for aquatic15

mats. Decomposition studies on aquatic Nostoc commune suggest that the thick mats
of Nostoc can only exist due to cold temperatures that greatly depress the growth rates
of bacterial decomposers (Vincent and Howard-Williams, 1989). In melt ponds the mi-
crobial mats are exposed to larger temperature changes than those that are living in
the lakes (since they are living in the bottom of the lake). Therefore we can assume20

that the N. commune populations in meltwater ponds are closer to the terrestrial ones,
which have much higher temperature optimum for net carbon fixation.

At Aboa, Nostoc commune is found mainly from the snow- and ice-melting zones on
the top of Basen (Sohlenius et al., 2004), but also terrestrial communities have been
found. During the Finnish Antarctic Research Program (FINNARP) 2009 expedition,25

the ponds were formed around Christmas and the cyanobacteria were exposed to sun-
light around New Year (Fig. 7). In addition, the occurrence of microfauna in Basen is
much more frequent in Nostoc than in inorganic material (Sohlenius et al., 2004) and

32754

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/32741/2012/acpd-12-32741-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/32741/2012/acpd-12-32741-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 32741–32794, 2012

Antarctic new
particle formation
from continental

biogenic precursors

E.-M. Kyrö et al.
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a number of different lichens species are also found from the mountain (Johansson
and Thor, 2008).

3.2.1 Evidence from air mass trajectories

When investigating the origin particles associated with the observed regional NPF
events, we made two assumptions: (1) particles grew initially very fast to sizes be-5

tween about 5 and 15 nm, as observed in our local NPF events, (2) particles then grew
at about a constant rate until reaching our measurement site (the GR measured at
Aboa). With these assumptions, and following the HYSPLIT back-trajectories back in
time, we could then determine the geographical area where the particles had roughly
been formed, or where the precursors initiating NPF originated from.10

According to our calculations, newly-formed particles or their precursors originated
mostly from the margin between the shelf ice and continental ice (Fig. 8). In this region,
there is a large area of blue-/superimposed ice (blue areas shown in Fig. 8b, c). These
blue ice areas encase supraglacial lakes (Brandt and Warren, 1993), which experi-
ence surface melting during the summer (Liston and Winther, 2005), forming shallow15

ponds. A similar lake is also found near Aboa (Lehtinen and Luttinen, 2005). Some
newly-formed particles seemed to originate also from the mountain ranges Gjelsvikf-
jella, Mühlig-Hofmannfjella, Heimefrontfjella and Vestfjella.

3.2.2 Evidence from chemical analyses

When comparing NRF of organics and nucleation mode particle concentration, a clear20

correlation between the two was found (Fig. 9). We observed a clear correlation be-
tween the neutral (panel a) as well as charged (panels b–c) nucleation mode particle
concentrations and the NRF of organics found from the filter samples. The correlation
was greatest (R2 = 0.73) for the large negatively charged ions and smallest (R2 = 0.37)
for the intermediate negatively charged ions.25
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Comparison of the chemical composition of studied aerosol samples and samples
from the cyanobacteria and water revealed that some compounds having a high NRF
during the NPF event days were also present in the algal and/or water samples (Ta-
ble 2). From these compounds, three were exclusively present in the aerosol particles
collected during the event period 1 to 3 January 2010 and three were present in all the5

aerosol samples with the highest NRF values (related to concentrations) in the samples
collected during the event periods.

The first group of the compounds, related to the pond melting, was also detected
in water and the algae samples. Due to the lack of authentic standards, it was not
possible to quantify these compounds in the samples. Although the NRF allowed the10

comparison of the results achieved between the different samples, it did not provide
information about the real concentration of the compounds. The exclusive presence of
some compounds and the increased NRF for some individual compounds in the par-
ticles collected during the event periods supported the role of NPF. In order to clarify
this point, the NRF, expressed as percentage of

∑
NRF, was calculated for these com-15

pounds (Table 3). The values for NRFs ranged between 0.5 and 2.4 % in the case of the
compounds present in the filter during the second event period (1 to 3 January 2010).
In the case of the compounds present in all aerosol samples the NRF values ranged
between 1.4 and 5.5 % in the period from the 1 to 3 January 2010 and between 0.8 and
3.1 % in the period from the 17 to 20 January 2010. These values are surprisingly high20

in comparison with the average NRF for these compounds in the particles collected
during the non-event days (0.18 %).

Although the theoretical vapour pressures of the compounds present in the groups 1
and 2 are not high enough (Table 4) to allow them to evaporate from the ponds more
than what is their saturation concentration, it is possible that primary particles emitted25

by the ponds contained these compounds. In addition, some potential precursors of
these compounds were found in the water and aerosol samples (Table 5). Thus, the
compounds in pond samples were oxidised from these precursors while being in the
ponds whereas same compounds found from the filter samples were oxidised in the
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atmosphere from the precursors and transferred to the particles either by nucleation of
condensation.

3.2.3 Other possibilities

In order to be sure that the observed local NPF and subsequent growth was caused by
the near-by meltwater ponds, we investigated other possible factors that could cause5

changes in particle size spectrum similar to the events observed here. These include
the intrusion of air (and dimethyl sulphide, DMS) from higher altitudes, the possibility
that the air mass had stayed over open ocean and picked up aerosol precursors from
there, contamination, and changes in the condensation and coagulation sinks.

The influence of air intrusion from higher altitudes was ruled out by using the ozone10

concentration as an indicator. Since there are no local sources for O3, this can be done
with a good accuracy. Figure 10 shows the ozone and nucleation mode concentration
over the entire campaign. The NPF periods are shown with shaded light yellow, light
blue and pink areas and the median ozone concentration during those periods is given.
The median ozone concentration over the whole campaign is also shown. From the15

figure it is clear that only the first event period (9 to 11 December 2009) occurred when
the O3 concentration was higher than on average, whereas the two periods where we
observed local NPF took place when the O3 concentration was lower than on average.

According to the HYSPLIT back-trajectories, each time when a local NPF event was
observed at Aboa, the air mass had not descended from higher altitudes but rather20

arrived from close to the ground level (Fig. 11). The trajectories were calculated to
arrive at 500 m above the ground level. With this arrival height in the HYSPLIT model,
the real arrival height to the measurement site was approximately 250 m, since nunatak
Basen is not included to the HYSPLIT terrain. Aboa is located on a plateau 250 m above
the glacier.25

HYSPLIT back-trajectories were also used in order to exclude the trajectories that
had been over the ocean. The trajectories were calculated at 500 m a.g.l., 48 h back-
wards from each local NPF event. Approximately half of these trajectories were not
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over the sea at any point and any of the trajectories were not over sea less than 24 h
before arriving at the station. Matrix trajectories (trajectories that are arriving at slightly
different coordinates) as well as trajectories at different heights were also calculated in
order to validate the sensitivity of the trajectories and these calculations showed similar
behaviour of the air mass.5

According to the National Snow and Ice Data Center, the January 2010 sea ice
conditions at the coastline of Dronning Maud Land (DML) were close to the median
values. The sea ice on the western side of DML was extending more than hundred
kilometres from the coast, almost all of the Weddell Sea was covered with ice and the
sea ice on the eastern side of DML was also extending some tens of kilometres from10

the coastline, with only a narrow band of ice-free coast at the central part of DML. Even
if some of the trajectories seemed to have been over the ocean at some point (all more
than 24 h before arrival) of their path, they were still over the sea ice and not over open
ocean. Thus, the observed local events cannot be explained by emissions from the
sea.15

The contamination sector at Aboa is well defined, 210◦–270◦, all the infrastructure
and vehicle tracks being in that direction. Also the Swedish station Wasa, only 200 m
from Aboa, is in that direction. During the campaign, the wind blew only 4.6 % of the
time from the contamination sector.

Contamination of the regional observation can be ruled out simply by considering20

the scale of the regional particle formation events. For the local emissions, we studied
signatures of known contamination (such as snowmobiles) and found that the duration
and shape of the observed apple-type events was markedly different from the contam-
ination signature. Contamination is observed in particle size spectrometers (DMPS,
AIS) as short peaks in concentration in most size bins, appearing and disappearing25

quickly (Fig. 12). This is in contrary to local NPF events that appear as continuous par-
ticle formation over several hours, without sharp gaps in between. Also, the particles
that are seen during contamination are always larger than 10 nm in size. Thus, nei-
ther the contamination from Aboa nor from neighbouring stations (German Neumayer

32758

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/32741/2012/acpd-12-32741-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/32741/2012/acpd-12-32741-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 32741–32794, 2012

Antarctic new
particle formation
from continental

biogenic precursors

E.-M. Kyrö et al.
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350 km or South African SANAE IV 420 km away) can explain the observed local NPF
events.

Changes in pre-existing aerosol as a cause to our observations can be ruled out by
analysis of the time series of condensation and coagulation sinks at Aboa. The sinks
were generally very low, due to the minimal aerosol loading over Antarctica, and NPF5

can therefore be considered to be limited by the aerosol source rather than the vapour
and particle sink. Additionally, we did not observe a reduction of the computed sink
values prior to the observations of NPF.

The time series of condensation and coagulation sinks (CS and CoagS, respectively)
together with the time series of nucleation mode particle concentration are presented10

in Fig. 13. All three NPF event periods are marked in the figure with shaded areas.
During the entire campaign, the median values for CS and CoagS were 4.0×10−4 and
4.2×10−6 s−1, respectively. While the CS and CoagS values over the first event period
(9 to 11 December 2009) only slightly higher than these median values, during the
second event period (1 to 3 January 2010) CS and CoagS were lower than compared15

with the entire campaign. During the last period, 17 to 20 January 2010, the values
were an order of magnitude larger. Since local events occurred both in the second
and third event period, high or low CS and CoagS did not affect the probability of local
NPF. The value of CS correlated moderately with both Aitken and accumulation mode
particle number concentrations (Fig. 14), but had no correlation with the nucleation20

mode particle concentration (Fig. 14).

3.3 Particle growth and their interaction with clouds

We next investigate the growth of newly-formed particles in order to find out (i) which
vapours were responsible for their growth, and (ii) whether these particles grew suf-
ficiently large to be able to interact with clouds as observed previously in the Arctic25

atmosphere (Kerminen et al., 2005; Komppula et al., 2005).
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3.3.1 Contribution of sulphuric acid to the particle growth

The rate at which the newly-formed aerosol population grows can be determined from
the measured number size distributions by following the geometric mean size of the
nucleation mode particles (Dal Maso et al., 2005; Yli-Juuti et al., 2011). During both
local and regional NPF events observed here, the particle growth appeared to be very5

rapid compared with previous observations from Antarctica (Kulmala et al., 2004; Yu
et al., 2008). We next investigate which fraction of the particle growth can be explained
by sulphuric acid and to which extend other condensing vapours are needed.

In lack of direct sulphuric acid measurements, we estimated limiting values for the
sulphuric acid concentrations by assuming that the aerosol formation was driven by10

a kinetic sulphuric acid nucleation mechanism. The kinetic theory (McMurry and Fried-
lander, 1979) assumes that the rate limiting step in nucleation is the collision of two
sulphuric acid molecules as in kinetic gas theory, and that a fraction of these colli-
sions lead to the formation of stable clusters. This leads to a formulation that gives the
nucleation rate a quadratic dependence of the sulphuric acid concentration:15

J = k [H2SO4]2 (2)

Here k is a coefficient that incorporates both the collision frequency and the stable
cluster formation probability. It has been found that the value of k averages about of
10−12 cm−3 s−1 in the atmosphere (Paasonen et al., 2010), so we used this value for
our estimation (Table 1). In addition, the theoretical upper limit (10−10 cm−3 s−1) and the20

lowest reported value (10−14 cm−3 s−1) were used. The H2SO4 concentrations obtained
this way are in a good agreement with a recent modelling study (Yu and Luo, 2010) that
yielded concentrations in the range of ∼0.6–1.5×106 moleculescm−3 in the Antarctic
coastal areas in the austral summer (December–February), as well as with the directly
measured values from South Pole (Mauldin et al., 2004, 2010).25

We obtained the observed values for the nucleation rate J (Table 1) from the particle
formation rates measured by the AIS according to the methodology described by Kul-
mala et al. (2007) and Manninen et al. (2010). From these, we could then estimate the
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upper and lower boundaries for the sulphuric acid concentration using Eq. (2). From
the aerosol size distribution data we obtained the modal growth rate of Aitken-mode
(size of 20–100 nm) particles following the mode-fitting methodology described in Dal
Maso et al. (2005) and Yli-Juuti et al. (2011). Since the particle diameter growth in
this size range and at the observed concentrations range is to any observable extent5

mainly due to vapour condensation, we could compare the observed growth rate to the
theoretical prediction of the growth rate in the case that only sulphuric acid was grow-
ing the particles. In this approach, the sulphuric acid concentration required for a given
diameter growth is given by (McMurry and Friedlander, 1979; Nieminen et al., 2010)

Cv =
2ρvdv

αmmv∆t
·
√

πmv

8kT
·
[

2x1 +1

x1 (x1 +1)
−

2x0 +1

x0 (x0 +1)
+2ln

(
x1 (x0 +1)

x0 (x1 +1)

)]
(3)10

Here, Cv is the vapour concentration, ρv is the vapour density, mv is the molecular
mass of the vapour, k is the Boltzmann constant, and T is temperature. x1 = dv/dp

and x0 = dv/dp0, where dv is the vapour molecule diameter, dp is the particle diam-
eter at the end of growth, and dp0 is the initial particle diameter. αm is the mass ac-15

commodation coefficient and ∆t is the elapsed time. Setting the diameter growth to
1 nmh−1 in the above equation, we get a vapour concentration multiplier γGR=1 (in
molecules cm−3 nm−1 h) for the sulphuric acid growth rate, essentially corresponding
to the [H2SO4] concentration causing a growth rate of 1 nmh−1. Knowing the sulphuric
acid concentration, the growth rate caused by it is now given by (Paasonen et al., 2010)20

GRH2SO4
=

[H2SO4]
γGR=1

. (4)

In Table 1, we have compared the observed growth rates (GRobs) to the sulphuric acid
growth rate when assuming the value of k to be equal to 10−12 cm−3 s−1. By assuming
k to be two orders of magnitude lower (k = 10−14 cm−3 s−1), the percentages given in25

Table 1 would be ten times higher and even then at maximum 42 % of the observed
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particle growth rate would be explained by sulphuric acid condensation. By assuming
the theoretical upper limit for k (10−10 cm−3 s−1), the corresponding percentages would
be ten times lower.

We conclude that vapours other than sulphuric acid dominated the growth of newly-
formed particles in our observations. The most likely candidates for such vapours are5

highly-oxidized, extremely low-volatile organic vapours (Pierce et al., 2011; Riipinen
et al., 2011; Ehn et al., 2012). The identity and formation pathways of these vapours,
as well as their relation to be meltwater ponds, remain to be quantified.

3.3.2 Cloud droplet activation

A sequence of cloud droplet activation events from 17 to 18 of January 2010 showed10

the potential of even fairly small particles to act as cloud condensing nuclei. The station
was inside a cloud three times during these days (Fig. 15); 19:30–22:00, 17 January,
03:00–07:00 and 10:30–12:00, 18 January. From Fig. 15 one can see that the smallest
size bin where some activation occurred was 48 nm. The activation diameter (D50) was
determined to be the diameter, where in-cloud and the spectra of activated particles15

(out-of-cloud minus in-cloud size spectra) had same concentrations (Komppula et al.,
2005) (Fig. 16). During these periods, the median D50 was as low as 60 nm. Such small
activity diameter can be explained by the low concentrations of particles larger than
100 nm in diameter which, compared with more polluted air, allows the development of
higher cloud supersaturation (e.g. McFiggans et al., 2006).20

4 Summary and conclusions

We observed two periods of local and regional particle formation at the Finnish Antarc-
tic Research Station Aboa. The particle formation was intense, and to our knowledge,
this was the first time that local non-polluted NPF events were observed in Antarctica.
The amount of organics observed in filter samples and nucleation mode particle con-25
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centration showed a positive correlation over the campaign. By careful investigation,
we could link the local particle formation to near-by meltwater ponds and cyanobacte-
ria Nostoc commune (Vaucher) living abundantly in the ponds. Regional NPF events
could be linked with blue-ice and mountainous areas, both known to have meltwater
during the summer.5

Evidence of the ponds being the source of the NPF precursor vapours was derived
from analysis of the air mass transport before it reached the measurement station.
For the local events, we investigated local wind direction measurements and found
that during the local events, the wind was coming from the direction of recently-formed
meltwater ponds. This evidence was backed up by chemical analysis of aerosols during10

such time periods, which showed a markedly elevated signal of organic compounds.
The same compounds were identified in the analysis of the pond water.

For regional events, evidence for the meltwater pond source was presented by air
mass analysis using computed back trajectories for the observed regional events. The
analysis showed that air had travelled over areas that are commonly covered by melt-15

water ponds during the time of the year that the events were observed.
Figure 17 summarizes our current understanding of the continental new particle for-

mation in Antarctica. Meltwater ponds release organics that are after oxidation in the
atmosphere, capable of increasing the condensational growth of aerosols enough for
them to have climatic effects via CCN activation and probably increasing the nucleation20

as well. In addition to this, Nostoc commune (Vaucher) is known to emit DMS, which is
further oxidized in the atmosphere as sulphuric acid – the most important gas in parti-
cle formation. It has also been suggested (Antony et al., 2010), that the bromine emis-
sions from coastal ice caps would increase the oxidation of DMS and could therefore
increase the nucleation even in areas with no meltwater. Also microalgae on coastal25

ice caps might have a minor effect on nucleation by emitting DMS.
A demonstration of the aerosol-cloud interaction of the newly found aerosol source

was seen when the station was inside a cloud three times during the last NPF event
period. We observed cloud droplet activation of particles only few hours after they had
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formed in blue-ice and mountainous areas. Due to low concentrations of accumulation
mode particles the activation diameter was very low (60 nm) and some activation oc-
curred already at 48 nm-sized particles. This shows that if there are enough oxidized
organics in the atmosphere, particles in the Antarctic atmosphere do not have to grow
over several days before they can reach climatically relevant sizes.5

This is the first time that freshwater vegetation has been identified as an aerosol
precursor source. In the future when the climate warms, the area of meltwater ponds
and biogenic activity in such ponds are likely to increase (Liston, 1999), so we antici-
pate that the new aerosol source identified here and its climatic role will also grow in
importance. Currently as much as 11.8 % of the Antarctic continent experiences sur-10

face melting (Liston and Winther, 2005). It could be noted that dramatic changes in
the open-water period, Chlorophyll a concentrations and water temperature have al-
ready been observed at Signy Island (Quayle et al., 2002). Besides Antarctica, similar
process is expected to occur in the Arctic atmosphere, especially at locations having
conditions similar to our site, such as the coastal areas of Greenland, Svalbard and15

Canadian High Arctic.
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Ø. and Nilsson, E. D.: The effect of sea ice loss on sea salt aerosol concentrations and the10

radiative balance in the Arctic, Atmos. Chem. Phys., 11, 3459–3477, doi:10.5194/acp-11-
3459-2011, 2011.
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Table 1. Obtained and calculated parameters for selected NPF events during 1 to 3 and 17 to
20 January 2010. Tmed is the median temperature over the event time, WS is the wind speed
at the onset of visible nucleation, J1.6− is the formation rate of 1.6-nm sized negative clusters
and Jassum. is the nucleation rate assuming that the ion-induced nucleation explains 10 % of the
observed. K, which the coefficient in Eq. (1) is assumed to be 10−12 cm−3 s−1. [H2SO4]calc is
the calculated atmospheric sulphuric acid concentration whereas [H2SO4]needed is the sulphuric
acid concentration needed to explain the growth without organics. GRcalc is the GR that would
result from the atmospheric sulphuric acid concentration and GR is the growth rate obtained
from DMPS size spectrum using the “mode-fitting method” described in Dal Maso et al. (2005)
and Yli-Juuti et al. (2011). Also the percentage that sulphuric acid explains of the growth is
given. Event numbers refer to the ones marked in Figs. 3 and 4.

Time Tmed [K]/ J1.6− Jassum./ [H2SO4]calc GR [nm h−1] [H2SO4]needed GRcalc Explained
WS [ms−1] [cm−3 s−1] J10 [cm−3 s−1] [molec. cm−3] (size range) [nm h−1] %

1 Jan 2010
Event 1

270.4/11.3 0.09 0.9/0.3 9.5×105 5.5±0.2
(24.1–45.9 nm)

1.05×108 0.050 0.9

2 Jan 2010
Event 2

270.8/11.5 0.1 1.0/0.2 1×106 2.1±0.05
(28.4–47.0 nm)

4.0×107 0.052 2.5

3 Jan 2010
Event 3

272.3/9.7 0.02 0.2/0.08–0.1∗ 4.5×105 5.6±0.11
26.9–90.2 nm)

1.1×108 0.023 4.2

17 Jan 2010
Event 1

271.8/2.8 0.27 2.7/0.3 1.6×106 8.8±0.2
(21.9–61.7 nm)

1.7×108 0.08 0.9

20 Jan 2010
Event 2

268.6/5.2 0.008 0.03/0.003 1.7×105 1.8±0.3
(34.8–67.8 nm)

3.5×107 0.01 0.5

∗ Two bursts, 10:00–12:00 and 16:00–19:00 UTC, were observed in DMPS.
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Table 2. Organic compounds found from filter as well as water and algal samples. Group 1 com-
pounds were present in the filter samples during the second event period, whereas Group 2
compounds were present during all event periods, but their absolute concentration and contri-
bution to the total organics was greatest during the second period. Compounds labelled with
“A” have been found from algal and “W” from water samples.

Group 1 Group 2

1-hydroxy-3-oxopropane-1,2,3-tricarboxylic acid A 1,4-bis(sulfanyl)butane-2,3-diol A
1-iodo-2-methylundecane A,W hexanedioic acid A
1-iodo-2-methylnonane A,W 2,2-dimethylhexan-1-ol A
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Table 3. Percentage of
∑

NRF calculated for group 1 and 2 compounds.

Sample % of
∑

NRF
Group 1 Group 2

8–10 Dec 0.0 2.2
10–12 Dec 0.0 1.5
12–15 Dec 0.0 0.2
15–17 Dec 0.0 0.1
17–19 Dec 0.0 0.4
19–22 Dec 0.0 0.2
22–24 Dec 0.0 0.2
24–26 Dec 0.0 0.1
26–29 Dec 0.0 0.1
29–31 Dec 0.0 0.1
31 Dec–2 Jan 6.5 10.5
2–5 Jan 5.8 6.8
5–7 Jan 0.0 0.2
7–9 Jan 0.0 0.3
9–12 Jan 0.0 0.2
12–14 Jan 0.0 0.1
14–16 Jan 0.0 0.2
16–19 Jan 0.0 2.7
19–21 Jan 0.0 6.9
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Table 4. Theoretical vapour pressure for the compounds contained in groups 1 and 2.

VP (mmHg at 25 ◦C) AHvap (KJ mol−1)

1-hydroxy-3-oxopropane-1,2,3-tricarboxylic acid 4.01×10−10 80.4
1-Iodo-2-methylundecane 2.0×10−3 51.5
1-Iodo-2-methylnonane 2.2×10−2 47.6
1,4-bis(sulfanyl)butane-2,3-diol 5.17×10−5 70.6
hexanedioic acid 1.28×10−5 63.9
2,2-dimethylhexan-1-ol 6.2×10−1 48.8
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Table 5. Potential identified precursors in water and aerosol phases for the compounds in
groups 1 and 2.

Compounds Precursors

1-hydroxy-3-oxopropane-1,2,3-
tricarboxylic acid

Malic acid, oxalic acid, maleic acid

1-Iodo-2-methylundecane Undecanol, undecene, undecene
nitrile, sulphuric acid, sodium iodine

1-Iodo-2-methylnonane Nonanol, nonanal, nonene, sulphuric
acid, sodium iodine

1,4-bis(sulfanyl)butane-2,3-diol –
hexanedioic acid Cyclohenanone, butadiene, cyclohex-

anol, nitric acid
2,2-dimethylhexan-1-ol –
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Fig. 1. Classification of compounds found in the quartz filter samples into main chemical
groups. (A) halogenated compounds, (B) hydrocarbons, (C) nitrogen compounds, (D) sulphur
compounds, (E) carboxyl compounds, (F) hydroxyl compounds and (G) carbonyl compounds.
The y-axis is the number of detected compounds.

32778

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/32741/2012/acpd-12-32741-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/32741/2012/acpd-12-32741-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 32741–32794, 2012

Antarctic new
particle formation
from continental

biogenic precursors

E.-M. Kyrö et al.
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Fig. 2. The negatively charged (0.8–10 nm) and neutral particle (10–500 nm) number size dis-
tribution (upper panel) during the campaign, 5 December 2009 to 23 January 2010 (the time
axis is the same in every figure). The total particle concentration, where the contamination has
been taken away, is given in the second panel. The third panel shows the wind direction at
1-h time resolution with the pond- and contamination-sectors shaded with green and grey, re-
spectively. The lowermost panel shows the normalized response factor (bars) of Group 1 and
Group 2 compounds as well as their fraction from all detected organic compounds (coloured
rectangles).
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Fig. 3. Particle size distributions from AIS (negative polarity) and DMPS during the entire cam-
paign (upper panel) zoomed to the event period from 1 to 3 January 2010 (second panel).
The colour scale is dN/d logDp, unit cm−3. Local (I–IV) and regional NPF events (1.–3.) are
also marked in the figure. The white dashed lines follow the growth of the regionally formed
particles. Meteorological parameters (wind direction, speed and gust; average, minimum and
maximum temperature as well as relative humidity; global radiation and pressure) during the
event period are shown in the three lowermost panels. The shaded green and grey areas in the
third panel show the pond (10◦–85◦) and contamination (210◦–270◦) sectors, respectively.
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Fig. 4. Same as Fig. 3, except zoomed for the event period 17 to 20 January 2010. The period
inside the cloud is marked with dashed purple rectangle.
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Fig. 5. The 24-h HYSPLIT back-trajectories during the observed local events from 17 to 20 Jan-
uary 2010. Each time the airmass had been staying over the land and in the surrounding area
over the last 24 h. Continental and shelf ice are seen separately in the map. According to the
National Snow and Ice Data Center (NSIDC), the sea ice edge next to Aboa was more than
hundred kilometres from the shelf ice edge on January 2010.
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Fig. 6. Wind-induced events during December 2009. Boxes (A–D) show the particle size dis-
tribution from AIS (negative polarity) as well as wind direction and speed during five days of
wind-induced events on December 2009. The colour scale in AIS surface plots is dN/dlogDp.
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Fig. 7. Formation of the ponds and exposure of the cyanobacteria. The map in the upper left
corner shows the locations where the photos have been taken. On 9 December 2010 the top
of Basen was still under snow (A) and on 16 December there was clearly less snow (B), but
open ponds were not formed. The first ponds were observed on 25 December (C) and the
samples from water and microbial mats of Nostoc commune (Vaucher) were taken on 3 Jan-
uary 2010 (D–E). On that day, also underground trickles (F) were observed. Big lake, approxi-
mately 100 m2 in area, formed in the first half of January (G) and even more Nostoc commune
(Vaucher) was found on 17 January (H). The satellite image is downloaded from Landsat Image
Mosaic of Antarctica (LIMA), http://lima.usgs.gov/. The mentioned days are the only days when
the top of the mountain was visited and photographed.
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Fig. 8. Origin of Aitken mode particles associated with observed regional nucleation events.
In each growing Aitken mode, the growth is assumed to happen at the formation site until 5,
10 or 15 nm (marked with circles, squares and triangles, respectively), and from that on the
growth rate is assumed to be constant (obtained GR at Aboa). The larger markers represent
the origins calculated in the middle of the growing Aitken mode, and the smaller markers are for
the beginning and end of the mode. Different colors represent different growing Aitken modes
(A). Below LANDSAT-satellite images over same area showing larger areas of meltwater in the
border between the shelf-ice and ice sheet (B and C). Satellite images are downloaded from
LIMA (Landsat Image Mosaic Of Antarctica) webpage, http://lima.usgs.gov/.
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Fig. 9. The correlation between NRF and neutral (A), charged 1.6–8.0 nm (B) and charged
8.0–20 nm (C) particles. The particle concentrations are medians over filter sampling times
(2–3 days). The red and blue curves and points represent the positive and negative ions, re-
spectively.
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Fig. 10. Ozone concentration (A) and nucleation mode concentration (B) during the entire
campaign. The event periods are shaded with light yellow (9 to 11 December 2009), light blue
(1 to 3 January 2010) and pink (17 to 20 January 2010). The median ozone concentration
during the campaign is marked with red line.
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Fig. 11. Trajectory height above ground during event periods 1 to 3 and 17 to 20 January, 2010.
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Fig. 12. Contamination at ABOA, 20–21 December 2009. Upper and middle panel show the
neutral (10–500 nm, upper) and negatively charged (0.8–42 nm, middle) particle size distribu-
tion, while the lowermost panel shows the 1-h averaged wind direction. Wind direction values
marked with red are coming from the contamination sector. The contamination sector at ABOA
is well defined and during the campaign wind blow from this sector only 4.6 % of the time. The
colour scale in size distributions is dN/dlogDp, unit cm−3.
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Fig. 13. Condensation and coagulation sinks and nucleation mode concentration during the
measurement campaign. The uppermost and middle panel show the condensation and coagu-
lation sink during the whole measurement campaign, respectively. The lower panel shows the
nucleation mode concentration as calculated from DMPS, for the same time period. The event
periods are shaded with light yellow (9 to 11 December 2009), light blue (1 to 3 January 2010)
and pink (17 to 20 January 2010). Median CS and CoagS values for the event periods and for
the whole measurement campaign are shown as well. The coagulation sink was calculated for
11 nm sized particles.
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Fig. 14. Correlation of condensation sink with different particle mode concentrations.
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Fig. 15. Cloud droplet activation event during three cloud cover periods from 17 to 18 January
2010. The times when the station was inside a cloud are denoted with orange boxes. The
particle size distribution is shown in (A), whereas the total concentrations for 41, 48, 57, 67, 80
and 94 nm sized particles are shown in (B). Same size bins are shown with correspondingly
coloured dashed lines in the surface plot. No activation is seen in the smallest size bin, 41 nm,
but already some particles are activated in the next, 48 nm size bin (see the first and second
cloud cover period, where the small decreases in concentration of 48 nm particles happen at
the same time as in the larger sizes) and finally the activation is very clear in the 57 nm sized
particles.
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Fig. 16. Median size distributions of out-of-cloud, in-cloud and activated particles (A) and acti-
vation percent as a function of particle size (B). The dashed lines show the activation diameter
D50 (out-of-cloud minus in-cloud size spectra). Out-of-cloud and in-cloud size distributions are
medians over corresponding times. Activation percent (B) is defined as activated divided by
in-cloud size spectra.
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Fig. 17. Continental new particle formation in Antarctica: meltwater ponds that form during
summertime hold lots of organics inside – including blue-green algae Nostoc commune. These
ponds are found close to nunataks and blue-ice areas. The DMS emissions from the alga
are oxidized to form sulphuric acid and can therefore take part in the formation of secondary
aerosol particles. The organics are also oxidized in the atmosphere and increase locally the
condensational growth of particles and can have an influence in the nucleation as well. The
oxidized organics play a key role in growing the aerosols enough – up to 50–100 nm in diameter
– for them to have climatic effects. This growth takes only few hours, whereas with only sulphuric
acid growing the particles, the timescale would be days and the particles would be scavenged
from the atmosphere before reaching sufficient sizes. The bromine emissions from coastal ice
caps, as suggested by Antony et al. (2010), increase the oxidation of DMS and can therefore
increase the nucleation even in larger scale. The sources of DMS include ocean, algae in
meltwater ponds and possibly microalgae in the snow.
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