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19GAME/CNRM, Météo-France, CNRS – Centre National de Recherches Météorologiques,
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Abstract

Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric
Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to
calculate tropospheric ozone radiative forcings (RFs). We calculate a value for the
pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 0.40 Wm−2. The5

model range of pre-industrial to present-day changes in O3 produces a spread (±1
standard deviation) in RFs of ±17 %. Three different radiation schemes were used –
we find differences in RFs between schemes (for the same ozone fields) of ±10 %.
Applying two different tropopause definitions gives differences in RFs of ±3 %. Given
additional (unquantified) uncertainties associated with emissions, climate-chemistry in-10

teractions and land-use change, we estimate an overall uncertainty of ±30 % for the
tropospheric ozone RF. Experiments carried out by a subset of six models attribute tro-
pospheric ozone RF to increased emissions of methane (47 %), nitrogen oxides (29 %),
carbon monoxide (15 %) and non-methane volatile organic compounds (9 %); earlier
studies attributed more of the tropospheric ozone RF to methane and less to nitrogen15

oxides. Normalising RFs to changes in tropospheric column ozone, we find a global
mean normalised RF of 0.042 Wm−2 DU−1, a value similar to previous work. Using
normalised RFs and future tropospheric column ozone projections we calculate future
tropospheric ozone RFs (Wm−2; relative to 1850 – add 0.04 Wm−2 to make relative to
1750) for the Representative Concentration Pathways in 2030 (2100) of: RCP2.6: 0.3120

(0.16); RCP4.5: 0.38 (0.26); RCP6.0: 0.33 (0.24); and RCP8.5: 0.42 (0.56). Models
show some coherent responses of ozone to climate change: decreases in the tropical
lower troposphere, associated with increases in water vapour; and increases in the
sub-tropical to mid-latitude upper troposphere, associated with increases in lightning
and stratosphere-to-troposphere transport.25
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1 Introduction

While estimates of many aspects of Earth’s past atmospheric composition can be de-
rived from analyses of air trapped in bubbles during ice formation (Wolff, 2011), the
greenhouse gas ozone (O3) is too reactive to be preserved in this way. Direct mea-
surements of tropospheric ozone concentrations prior to the 1970s are also extremely5

limited (Volz and Kley, 1988; Staehelin et al., 1994), and most early measurements
used relatively crude techniques, such as Schönbein papers (Rubin, 2001), that are
subject to contamination from compounds other than ozone (Pavelin et al., 1999).
Only in the last few decades have observation networks and analytical methods de-
veloped sufficiently to allow a global picture of ozone’s distribution in the troposphere10

to emerge (Fishman et al., 1990; Logan, 1999; Oltmans et al., 2006; Thouret et al.,
2006). Despite this paucity of early observations, tropospheric ozone is thought to have
increased substantially since the pre-industrial era; this is largely based on model stud-
ies. Ozone photochemistry in the troposphere is relatively well understood (Crutzen,
1974; Derwent et al., 1996), and anthropogenic (including biomass burning) emissions15

of ozone precursors (methane, CH4; nitrogen oxides, NOx; carbon monoxide, CO; and
non-methane volatile organic compounds, NMVOCs) have changed (generally risen)
dramatically since pre-industrial times (Lamarque et al., 2010). Increasingly sophisti-
cated models of atmospheric chemistry, driven by emission estimates, and sometimes
coupled to climate models, have been used to simulate the rise of ozone since industri-20

alisation (Hough and Derwent, 1990; Crutzen and Zimmerman, 1991; Berntsen et al.,
1997; Wang and Jacob, 1998; Gauss et al., 2006).

Although increases in anthropogenic precursor emissions have been the main driver
of ozone change, several other factors may also have contributed. Natural sources
of precursor emissions (e.g. wetland CH4, soil and lightning NOx, biogenic NMVOCs)25

show significant variability and have probably also changed since the pre-industrial
era, but these changes are highly uncertain (Arneth et al., 2010). Downwards trans-
port of ozone from the stratosphere is also an important source of tropospheric ozone
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(Stohl et al., 2003; Hsu and Prather, 2009); this source may have been affected by
stratospheric ozone depletion, and is forecast to change in the future, via ozone recov-
ery and acceleration of the Brewer-Dobson circulation (Hegglin and Shepherd, 2009;
Zeng et al., 2010; SPARC-CCMVal, 2010), although attempts to diagnose circulation
changes from observations have given ambiguous results (Engel et al., 2009; Lin et al.,5

2009; Ray et al., 2010; Young et al., 2012b). Ozone’s removal, via chemical, physical
and biological processes is also subject to variability and change. Increases in absolute
humidity (driven by warming), changes in ozone’s distribution, and changes in OH and
HO2 (HOx), have all tended to increase chemical destruction of ozone (Johnson et al.,
2001; Stevenson et al., 2006; Isaksen et al., 2009). Dry deposition of ozone at the sur-10

face, and to vegetation in particular, has been influenced by land-use change, but also
by changes in climate and CO2 abundance (Sanderson et al., 2007; Sitch et al., 2007;
Fowler et al., 2009; Andersson and Engardt, 2010; Ganzeveld et al., 2010; Wu et al.,
2012). Fluctuations in these natural sources and sinks are driven by climate variabil-
ity; climate change and land-use change may also have contributed towards long-term15

trends in ozone.
Ozone is a radiatively active gas, and interacts with both solar (shortwave, SW) and

terrestrial (longwave, LW) radiation, meaning that changes in its atmospheric distri-
bution affect both upwards and downwards fluxes of radiation. Increases in ozone
have consequently contributed to climate warming (e.g. Lacis et al., 1990). We use20

the concept of radiative forcing (RF) (e.g. as defined by Forster et al., 2007) to quan-
tify the impacts of tropospheric ozone changes on Earth’s radiation budget since the
pre-industrial period. Specifically, in this paper we follow the Intergovernmental Panel
on Climate Change (IPCC) and use stratospherically-adjusted RFs at the tropopause
(Forster et al., 2007). Previous estimates of the tropospheric ozone RF (e.g. Gauss25

et al., 2006) span the range 0.25–0.65 Wm−2, with a central value of 0.35 Wm−2 for
the RF from 1750–2005 (Forster et al., 2007). Skeie et al. (2011) recently estimated
a value of 0.44 Wm−2, with an uncertainty of ±30 %, using one of the models we
also use in this study. Cionni et al. (2011) calculated ozone RFs for the IGAC/SPARC
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(International Global Atmospheric Chemistry/Stratospheric Processes and their Role
in Climate) ozone database, and found a tropospheric ozone RF (1850s–2000s) of
0.23 Wm−2, using an earlier version of the main radiation scheme used here. Using an
updated version of this radiation scheme with exactly the same ozone fields we find an
equivalent, and presumed more accurate, value of 0.32 Wm−2. The tropospheric part5

of the IGAC/SPARC ozone database was constructed from early ACCMIP integrations
from two of the 17 models used here (GISS-E2-R and NCAR-CAM3.5). Through the
use of additional models, we consider the multi-model mean results presented here to
be a more robust estimate of atmospheric composition change than the IGAC/SPARC
database.10

Because ozone is a secondary pollutant (i.e. it is not directly emitted), it is use-
ful to understand how emissions of its precursors have driven up its concentration.
Model experiments carried out by Shindell et al. (2005, 2009) attributed pre-industrial
to present-day ozone changes to increases in CH4, NOx, CO and NMVOC emissions,
finding that methane emissions were responsible for most of the ozone change. These15

emissions also influence the oxidising capacity of the atmosphere in general, and affect
a range of radiatively active species beyond ozone, including methane and secondary
aerosols (Shindell et al., 2009).

In this paper, we present results from global models participating in the Atmospheric
Chemistry and Climate Model Intercomparison Project (ACCMIP; see www.giss.nasa.20

gov/projects/accmip). Within ACCMIP, multiple models simulated atmospheric com-
position between 1850–2100. Lamarque et al. (2012) give an overview of ACCMIP
and present detailed descriptions of the participating models and model simulations.
Shindell et al. (2012) describe total radiative forcings, particularly those from aerosols;
Lee et al. (2012) further focus on black carbon aerosol. Young et al. (2012a) describe25

the ozone results in detail, including a range of comparisons with observations; Bow-
man et al. (2012) focus on comparisons with measurements from TES (Tropospheric
Emission Spectrometer). Voulgarakis et al. (2012) document the evolution of the oxi-
dising capacity of the atmosphere, especially OH and its impact on methane lifetime.
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This paper looks in detail at tropospheric ozone RFs from the ACCMIP simulations. In
Sect. 2, the models used and the experiments they performed are described. Results
of simulated ozone and resulting radiative forcings are presented in Sect. 3; these are
discussed and conclusions are drawn in Sect. 4. For conciseness, the main text fo-
cusses on generalised results (often presented as the multi-model mean) and specific5

results from individual models are predominantly presented in the Supplement.

2 Methods

2.1 Models employed

Results from 17 different models are analysed here (Table 1). Detailed model de-
scriptions are provided in Lamarque et al. (2012); for model Q (TM5) see: Huijnen10

et al. (2010) and Von Hardenberg et al. (2012). All are global atmospheric chemistry
models, and most are coupled to climate models, which provide the driving meteoro-
logical fields. Climate model output of sea-surface temperatures and sea-ice concen-
trations (SST/SIC) from prior CMIP5 runs typically provide the lower boundary condi-
tions; well-mixed atmospheric greenhouse gas concentrations are also specified. Three15

models (B, Q and M) are chemistry-transport models, driven by offline meteorological
analyses (B and Q) or offline output from a climate model (M). Additionally, models
B and Q provide only a single year’s output for each experiment and were run with
the same meteorology in each case. In all other models, the chemistry module is em-
bedded within a general circulation model. With the exception of models O and P, the20

calculated chemical fields are used in the climate model’s radiation scheme; i.e. they
are fully coupled chemistry-climate models (CCM). Models G and H are two versions
of GISS-E2-R, but set up in different ways: G has a fully interactive coupled ocean
(the only model with this) whilst H uses SST/SIC from GISS-E2-R but also includes
a more sophisticated aerosol microphysics scheme instead of the simpler mass-based25

scheme used in G. Models I and J are two versions of HadGEM2: I uses a relatively
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simple tropospheric chemistry scheme, whereas J has a more detailed scheme with
several hydrocarbons. Several models (C, D, E, F, G, H, L, M, and N) include detailed
stratospheric chemistry schemes; tropospheric schemes range from simple methane
oxidation (C) through models with a basic representation of NMVOCs (A, G, H, I, and
P) to those with more detailed hydrocarbon schemes (B, D, E, F, J, K, L, M, N, O and5

Q). In addition, some models include interactions between aerosols and gas-phase
chemistry (B, F, G, H, I, J, K, L, N, and Q).

Models without detailed stratospheric chemistry handled their upper levels in a vari-
ety of different ways. Model A simulated simulated stratospheric ozone using the LINOZ
scheme (McLinden et al., 2000). Model B used monthly model climatological values of10

ozone and nitrogen species, except in the three lowermost layers of the stratosphere
(approximately 2.5 km) where the tropospheric chemistry scheme is applied to account
for photochemical ozone production (Skeie et al., 2011). Models I, J, K, O, P and Q
all used the IGAC/SPARC ozone database (Cionni et al., 2011) to prescribe ozone in
the stratosphere. In models I and J, ozone is overwritten in all model levels which are15

3 levels (approximately 3–4 km) above the tropopause. Model O used the ozone fields
together with vertical winds, to calculate a vertical ozone flux at 100 hPa, added as
an ozone source at these levels in regions of descent. Model P prescribed ozone at
pressures below 100 hPa between 50◦ S–50◦ N and pressures below 150 hPa poleward
of 50◦, and model Q at pressures below 45 hPa between 30◦ S–30◦ N and pressures20

below 90 hPa poleward of 30◦.
Some models allowed natural emissions of ozone precursors to vary with climate;

others fixed these sources (Table 2).

2.2 Model simulations

The main experiments analysed here are multi-annual simulations for the 1850s and25

the 2000s. Every model performed these experiments. Table 1 shows the model run
length for each experiment: typically 10 yr, but in a few cases longer or shorter. Model
G ran five 10-yr ensemble members. In most cases, models simulated climates of
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the 1850s and 2000s, typically by specifying SST/SIC fields (typically decadally av-
eraged from prior coupled ocean–atmosphere climate simulations) and setting well-
mixed greenhouse gas concentrations at appropriate levels. Models B, J and Q ran
with the same climate in the 1850s as in their 2000s runs, so only assess how emis-
sions have changed composition; single year experiments are thus not unreasonable5

in these cases.
All models used anthropogenic emissions (including biomass burning emissions,

which are partly anthropogenic and partly natural) from Lamarque et al. (2010). This
harmonisation of all models to the same source of emissions removes a potentially
large source of inter-model difference (cf. Gauss et al., 2006). However, as each model10

did not run exactly the same years to represent the 1850s and 2000s (see Table 1),
and models used a range of values for natural emissions (Table 2) there are still some
differences between models in the magnitude of the applied change in emissions (see
Young et al., 2012a, Fig. 1). Note that the model years specified in Table 1 refer to
nominal years for the driving climate, but not for the emissions. These differences are15

added to by different chemistry schemes and decisions within each model of how to
partition NMVOC emissions between individual species and/or to emit directly as CO
emissions.

Most models ran with prescribed methane concentrations of around 791 ppbv
(1850s) and 1751 ppbv (2000s) (Prinn et al., 2000; Meinshausen et al., 2011). One20

model (K) ran with methane emissions for the historical period, allowing methane con-
centrations to evolve.

Six of the models (Table 1) ran a series of attribution experiments, based on the
2000s simulations. In these, specific drivers of ozone change (anthropogenic emissions
of NOx, CO, NMVOCs, and CH4 concentrations) were individually reduced to 1850s25

levels. These experiments are closely related to previous studies with the GISS model
(Shindell et al., 2005, 2009), and allow us to attribute methane and ozone radiative
forcings since the 1850s to these individual drivers, although we do not consider how
the individual drivers interact.
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A subset of ten models (Table 1) ran experiments where they fixed emissions at
2000s levels, but applied an 1850s climate. These simulations allow us to investigate
how climate change has contributed to the ozone change since the 1850s. Most of
these models also ran equivalent experiments for future climates.

Finally, most models (Table 1) ran additional historical and future simulations, using5

harmonized emissions from the Representative Concentration Pathway (RCP) scenar-
ios, and prescribing methane concentrations (Meinshausen et al., 2011). Models K
and G ran with methane emissions in the future, allowing methane concentrations to
freely evolve. Ozone fields from these experiments are presented in detail by Young
et al. (2012a) – here we use future tropospheric column ozone changes in conjunc-10

tion with normalised radiative forcings (mWm−2 DU−1) to estimate future tropospheric
ozone radiative forcings.

2.3 Radiative forcing calculations

Ozone fields were inserted into an offline version of the Edwards and Slingo (1996)
radiation scheme, updated and described by Walters et al. (2011) (their Sect. 3.2). The15

scheme includes gaseous absorption in six bands in the SW and nine bands in the
LW. The treatment of ozone absorption is as described by Zhong et al. (2008). The
RF calculations use an updated version of the radiation code compared with those
presented by Cionni et al. (2011), and it is found that these updates make substantial
differences in the values. The updated calculations presented here supersede the RF20

calculations from Cionni et al. (2011) that were calculated with the older version of the
radiation scheme and from two rather than 17 models in this study.

The offline code was set up so that all input fields except ozone remained fixed (at
present-day values) – thus differences between two runs of the radiation code with
different ozone yield the changes in fluxes of radiation due to ozone change alone.25

Monthly mean ozone fields were interpolated from each model to a common resolu-
tion: 5◦ longitude by 5◦ latitude, and 64 hybrid vertical levels up to 0.01 hPa. The vertical
levels were chosen to be compatible with the base climatological fields (temperature,
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humidity, cloud fields), taken from a present-day simulation of the HadAM3 model
(Pope et al., 2000; Tian and Chipperfield, 2005). Values for cloud particle effective
radii were taken from the GRAPE (Global Retrieval of ATSR (Along Track Scanning
Radiometer) cloud Parameters and Evaluation) dataset (Sayer et al., 2011).

To calculate an ozone radiative forcing, the code is applied as follows. A base cal-5

culation of radiation fluxes is performed, using multi-annually averaged monthly ozone
data from the 1850s, for each column of the model atmosphere. The radiation calcu-
lation is then repeated, keeping everything the same, but using a different ozone field
(e.g. from the 2000s). The change in net radiation at the tropopause between these two
calculations gives the instantaneous radiative forcing. In this study, we only consider10

changes in tropospheric ozone, by overwriting ozone fields above the tropopause with
climatological values taken from Cionni et al. (2011) (up to 1 hPa) and values from Li
and Shine (1995) at higher altitudes.

By changing the ozone field, heating rates in the stratosphere will have changed.
If such a change were to happen in the real atmosphere, stratospheric temperatures15

would respond quickly (days to months, e.g. Hansen et al., 1997) – much more quickly
than the surface-troposphere system, which will adjust on multiannual timescales.
A better estimate of the long-term forcing on the surface climate takes into account this
short-term response of stratospheric temperatures (Forster et al., 2007). Stratospheric
temperature adjustment was achieved by first calculating stratospheric heating rates for20

the base atmosphere. The stratosphere was assumed to be in thermal equilibrium, i.e.
with dynamical heating exactly balancing the radiative heating. Furthermore, the dy-
namics were assumed to remain constant following a perturbation to ozone. Hence to
maintain equilibrium, radiative heating rates must also remain unchanged. To achieve
this, stratospheric temperatures were iteratively adjusted in the perturbed case, until25

stratospheric radiative heating rates returned to their base values. This procedure is
called the fixed dynamical heating approximation (Ramanathan and Dickinson, 1979).
Here we report annual mean forcings at the tropopause, after stratospheric tempera-
ture adjustment.
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We compare calculations with the Edwards-Slingo radiation scheme to results from
similar schemes from the University of Oslo and the National Center for Atmospheric
Research (NCAR). The Oslo radiative transfer calculations are performed with a broad
band longwave scheme (Myhre and Stordal, 1997) and a model using the discrete
ordinate method (Stamnes et al., 1988) for the shortwave calculations (see further de-5

scription in Myhre et al., 2011). Meteorological data from ECMWF (European Centre
for Medium-range Weather Forecasting) are used and stratospheric temperature ad-
justment is included. The NCAR calculations used the NCAR Community Climate Sys-
tem Model 4 offline radiative transfer model, also allowing stratospheric temperatures
to adjust. Net LW and SW all-sky fluxes at the tropopause (based on a climatology10

of tropopause pressure from the NCAR/NCEP reanalyses) were computed using the
same conditions for all parameters except for the ozone distribution.

3 Results

3.1 Pre-industrial (1850s) and present-day (2000s) simulations

3.1.1 Core ACCMIP experiments15

Ozone distributions and changes

Figure 1 shows the multi-model mean (MMM) annual zonal mean (AZM) ozone for the
1850s and 2000s. All models are included in the MMM, with equal weighting. In the
Supplement, Fig. S1 shows AZM ozone (ppbv) for the 1850s and 2000s for all 17 mod-
els. Figure 2 shows maps of MMM tropospheric column ozone (DU) for the 1850s and20

2000s. Figure S2 is the equivalent for all 17 models. In these figures, we use the same
monthly zonal mean climatological tropopause (hereafter referred to as MASKZMT)
for all models, based on the 2 PVU definition applied to present-day NCEP/NCAR re-
analysis data (Cionni et al., 2011). We also calculate ozone changes and radiative
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forcing results using a different tropopause definition (1850s O3=150 ppbv; hereafter
referred to as MASK150; as used in Young et al., 2012a) to test how sensitive re-
sults are to this choice. The MASKZMT tropopause is the same for all models (and
all time slices); the MASK150 tropopause is different for each model, but the same for
all time slices of a given model. Table 3 compares global mean tropospheric column5

ozone changes using both definitions for all models. Evaluation of simulated present-
day ozone fields against a variety of observational data sets can be found elsewhere
(Young et al., 2012a). Overall, present-day distributions are similar to those presented
by Stevenson et al. (2006) from the ACCENT PhotoComp model intercomparison. Fig-
ure 3 shows the MMM change (2000s–1850s) in AZM ozone (ppbv) and tropospheric10

column ozone (DU) for MASKZMT. Figure S3 is the equivalent for all 17 models. Ozone
generally increases throughout the troposphere, most strongly in the Northern Hemi-
sphere sub-tropical upper troposphere. This mainly reflects the industrialised latitudes
where emissions are concentrated, and the fact that the ozone lifetime is longer in the
upper troposphere. Decreases in ozone are seen in the high latitudes of the Southern15

Hemisphere (SH) in many models (Figs. 3 and S3). This reflects the present-day ozone
depletion (relative to the 1850s) of air transported downwards from the stratosphere,
and is especially pronounced in models M, G and H. This effect is strong enough in sev-
eral models to produce decreases in tropospheric column ozone in high SH latitudes
(Fig. S3).20

Ozone radiative forcings

Figure 4 shows maps of the multi-model annual mean radiative forcing (mWm−2) in
the total (SW+LW), SW, and LW, using MASKZMT. Table 3 and Fig. S4a show the
total RFs for all 17 models; Fig. S4b shows the equivalent plot to Fig. 4 for ozone from
the IGAC/SPARC database (Cionni et al., 2011). The LW RF peaks in regions where25

large ozone changes coincide with hot surface temperatures and cold tropopause tem-
peratures (e.g. over the Sahara and Middle East). The SW RF peaks where large
ozone changes coincide with high underlying albedos (either reflective surfaces, such
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as deserts or ice, or low cloud). RFs are reduced over high altitude regions (e.g. Ti-
bet, Rockies, Greenland) as there is less air mass, and hence less column ozone (see
Fig. 2). Figure 5 shows the normalised total RF (mWm−2 DU−1) for MASKZMT; Fig. S5
is equivalent for all 17 models. Normalised RFs are highest in the tropics, where the
temperature difference between the surface and tropopause is largest, and peak in rel-5

atively cloud-free regions over NW Australia. Similar distributions for normalised RFs
have been found previously (e.g. Gauss et al., 2003, their Fig. 7).

In order to estimate the uncertainty associated with these RFs, we tested how the fol-
lowing processes and choices influenced results: (i) choice of tropopause definition; (ii)
choice of radiation scheme; (iii) stratospheric adjustment; and (iv) treatment of clouds.10

Tropopause definitions are problematic (e.g. Prather et al., 2011). The Edwards-
Slingo (hereafter E-S) scheme was run for all models using the two different tropopause
definitions (MASKZMT and MASK150). MASK150 was also used to define the tropo-
sphere in some of the other ACCMIP papers (e.g. Young et al., 2012a), and has been
widely used in earlier studies (e.g. Prather et al., 2001; Stevenson et al., 2006). Radia-15

tion calculations with the different tropopause differ due to changes in: (i) tropospheric
column ozone; (ii) the altitude of where the net flux changes are output; and (iii) the alti-
tude above which stratospheric temperatures are adjusted. The initial temperature pro-
file remains unchanged. Global mean 1850s–2000s column ozone changes are larger
by 0.1–1.1 DU (1–12 %), and net ozone RFs larger by 5–41 mWm−2 (1–10 %), with20

MASK150 compared to MASKZMT (Table 3; the ranges quoted cover the full model
spread).

We additionally calculated instantaneous (i.e. without stratospheric temperature ad-
justment) tropospheric ozone RFs with the E-S scheme, both leaving clouds as before,
and also for clear skies (i.e. removing all clouds). We only use a single representation25

of cloud distributions (from the 64-level HadAM3 model) in the E-S calculations; cloud
fields from individual models were not used. We found very similar results for the influ-
ence of stratospheric adjustment and clouds in the E-S scheme for all models; results
are summarised in Table 4. Stratospheric temperature adjustment changes the SW, LW
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and net RFs, respectively, by: 0 %, −24±1 %, and −20±1 % for MASKZMT; and 0 %,
−26±1 %, and −22±1 % for MASK150. Inclusion of clouds affects RFs by: 20±4 %,
−16±1 %, and −12±1 % for MASKZMT; and 21±5 %, −16±1 %, and −12±1 % for
MASK150. Quoted uncertainties are standard deviations across all the models. Model
B sits close to the mean values. The Oslo radiation scheme repeated these calcula-5

tions for just model B, and found (results in the same format as above) that strato-
spheric adjustment changes RFs by: 0, −21, and −17 %; whilst clouds change RFs
by: 35, −30, −22 %. Thus stratospheric adjustment has a slightly smaller effect in the
Oslo scheme compared to E-S, whereas clouds have a stronger influence. The Oslo
radiation scheme uses its own cloud fields; we have not compared these to the cloud10

fields used in the E-S calculations.
Comparing the clear-sky instantaneous results between the E-S and Oslo schemes

for MASK150 (Table 5) indicates that the Oslo LW RFs are 6 % lower than E-S, but that
the SW RFs are 13 % higher. Since these differences are in opposite directions, the
difference between schemes for the net RF is smaller (Oslo is 4 % less than E-S).15

Comparing stratospherically adjusted RFs between these two schemes (Table 5) (for
MASK150) shows that the SW RF is 24 % higher in the Oslo scheme, but the LW RF
is 18 % lower, and the net RF is 10 % lower. A similar result is found when comparing
the E-S and NCAR schemes (Table 5): the NCAR scheme has 17 % higher values for
SW RF, 16 % lower LW RF values, and net RFs that are 10 % lower. These compar-20

isons between radiation schemes are used to infer levels of uncertainty associated with
radiation calculations (see Sect. 4).

3.1.2 Attribution experiments

A subset of six models ran a series of attribution experiments, based on the 2000s
simulations (Tables 1 and 6). Specific drivers of ozone change (anthropogenic emis-25

sions of NOx, CO, NMVOCs, and CH4 concentrations) were individually reduced to
1850s levels. In all these experiments, the driving meteorology was identical to the
base 2000s case; thus differences between simulations isolate the influence of the
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specific component that is changed. For the methane case, concentrations were re-
duced to 1850s levels (∼791 ppbv), and are fixed at this level. In the other experiments,
methane was fixed at present-day levels (∼1751 ppbv), and emissions were reduced to
their 1850s levels. Fixing methane concentrations has important consequences for how
these experiments are interpreted, and this set-up differs from previous approaches,5

where methane emissions were changed, and methane concentrations were allowed
to respond (Shindell et al., 2005, 2009).

Differences in ozone fields between attribution experiments and the year 2000s
base case suggests that the largest component of the 1850s–2000s ozone change
comes from NOx emissions, the next largest from changes in methane, and relatively10

small contributions from changes in CO and NMVOC emissions (e.g. Figs. S6 and S7
show ozone changes and radiative forcings for model B). However, by imposing fixed
methane concentrations, these runs are out of equilibrium for methane (and hence
ozone). Making the assumption that the base 1850s and 2000s runs are in equilib-
rium for methane (with methane concentration [CH4]base and lifetime τbase), we take15

diagnosed methane lifetimes from the attribution experiments (τatt) and calculate equi-
librium methane concentrations ([CH4]eq) for each attribution experiment. We apply the
method described in West et al. (2007) and Fiore et al. (2009), using the following
equation:

[CH4]eq=[CH4]base(τatt/τbase)f (1)20

where f is the methane adjustment factor, which we take to be 1.35 (Prather et al.,
2012). Methane lifetimes are for the whole atmosphere; we use diagnosed tropospheric
lifetimes (with respect to OH), and adjust to include losses in the stratosphere (120 yr
lifetime) and soils (160 yr lifetime) (Table 7). Differences between these equilibrium
methane concentrations and the observed year 2000s value were used to calculate25

a methane radiative forcing associated with attribution experiments #2–5. Methane RFs
were calculated using global mean methane concentrations and the simple formula
given by Ramaswamy et al. (2001; their Table 6.2). This methane adjustment will also
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generate a further ozone change and radiative forcing – these have been estimated by
assuming a linear scaling of the ozone RF found in each model’s methane experiment.

For example, for model B, the NOx experiment (#3) yields a methane lifetime of
11.60 yr, compared to the base year 2000s experiment (#1) value of 8.70 yr (Table 7).
The longer lifetime reflects lower levels of OH due to the removal of NOx emissions.5

If this experiment had been carried out with methane free to adjust, Eq. (1) indicates
that methane would have responded by increasing from 1751 ppbv to an equilibrium
level of 2581 ppbv (Table 7), generating a radiative forcing of 276 mWm−2. Thus the
methane radiative forcing associated with NOx emission increases from the 1850s up
to the 2000s is −276 mWm−2. The associated extra ozone forcing, found by scaling10

model B’s ozone response to methane, is −132 mWm−2. Adding this to the ozone
forcing found directly from the NOx attribution experiment (193 mW m−2) yields a net
ozone forcing of 61 mWm−2 for model B (Table 8).

We further extend our analysis to include the impacts of CH4, CO and NMVOC emis-
sions on CO2 concentrations. All these emissions oxidise to form CO2 and therefore15

generate an additional RF (Table 9 and Supplement). Other effects, such as impacts
of methane on stratospheric H2O, or impacts of changes in oxidants on secondary
aerosol (Shindell et al., 2009), are not included in our analysis. We summarise the
average results of all the models that ran the attribution experiments in Table 9.

Based on this analysis, the tropospheric ozone RF can be attributed to emissions20

increases as follows: 52 % (CH4), 21 % (NOx), 17 % (CO) and 10 % (NMVOC). The
sum of the contributions to ozone RF diagnosed from the individual experiments is
364 mWm−2, compared to a mean result for the 1850s–2000s experiments by the
same models of 385 mWm−2. However, the sum of the indirect effects on methane
must sum to zero, but actually sum to −98 mWm−2, dominated by the large negative25

contribution from NOx. This indicates some deficiencies in our analysis as non-linear
coupled effects are not captured by our simple approach.

The mean changes in methane lifetime in the attribution experiments (Table 7)
are: −16 % (CH4), +40 % (NOx), −7 % (CO) and −3 % (NMVOC). The estimation of

26063

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/26047/2012/acpd-12-26047-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/26047/2012/acpd-12-26047-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 26047–26097, 2012

Tropospheric ozone
radiative forcing in

ACCMIP

D. S. Stevenson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

equilibrium methane concentrations from Eq. (1) is only valid for small perturbations
to the methane lifetime (West et al., 2007). As such, the method is probably reason-
able for the CO and NMVOC experiments, and possibly for the CH4 experiments, but
is likely to produce poor results for the large perturbations from the NOx experiments.
If we make the crude assumption that all of the error is in the [CH4]eq values from the5

NOx experiments, and force the sum of the indirect effects on methane to be zero, then
the mean indirect RF for methane from NOx must be −229 mWm−2 rather than the
value of −327 mWm−2 in Table 9. The inferred ozone RF associated with the methane
change will also reduce proportionately, increasing the net ozone RF associated with
NOx emissions from 76 to 119 mWm−2. Applying these crude corrections, we find the10

relative contributions to the ozone RF are now: 47 % (CH4), 29 % (NOx), 15 % (CO) and
9 % (NMVOC). We consider these proportions to be more accurate than those without
any corrections applied.

3.1.3 Experiments that isolate the climate change component

Most models performed the core 1850s and 2000s experiments with driving climates15

appropriate for these decades (Table 1). In addition, 10 models carried out sensitivity
experiments with 2000s emissions, but driven by 1850s climate. By comparing runs
with the same emissions, but different climates, we can diagnose the impact of climate
change on tropospheric ozone. Figure 6 shows the impact of climate change from
1850s to 2000s on AZM and tropospheric column ozone, for the 10 models.20

Modelled tropospheric ozone shows a range of responses to climate change. The
largest overall response is seen in models G and H (the two GISS versions), where
climate change is the main driver of the SH decreases in ozone seen in these models
(Fig. S3). In these GISS integrations, the stratosphere also changes, so it is unclear
if it is stratospheric change or climate change that is driving the SH decreases. The25

other model with large decreases in SH ozone (M), also changes its stratosphere in its
climate change experiments, however the climate change experiment does not produce
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the large SH decrease seen in the standard 1850s–2000s experiment, so the origin of
this signal in this model remains unclear. Some models show increases in tropical
mid- to upper tropospheric ozone, with these increases centred over the continents
(G, H, and to a lesser extent O, F and L). All these models (except F) show (small)
increases in lightning NOx emissions (Table 2); however, other models that also show5

increases in lightning do not show obvious increases in tropical ozone (A, M, N and
P). Most of the models show decreases in ozone, particularly in the tropical lower
troposphere, which would be expected due to increases in water vapour and hence
ozone destruction (e.g. Johnson et al., 2001). Several models also show indications of
increases in the stratospheric source of ozone, e.g. in the sub-tropical jet region (A, F,10

I, L, and P). Similar features have been seen in some future simulations under climate
change scenarios (e.g. Zeng and Pyle, 2003; Kawase et al., 2011). On average, the net
impact of climate change on ozone is a small decrease in tropospheric ozone. Many of
these climate change induced changes in ozone can be seen more strongly in results
from associated experiments that fixed emissions at 2000s levels but simulated climate15

of the 2030s and 2100s (see Fig. S8).

3.2 Other simulations

Several models ran time slice simulations covering several intervening decades be-
tween the 1850s and 2000s, and also for the four future Representative Concentra-
tion Pathway scenarios (RCP2.6, RCP 4.5, RCP6.0 and RCP8.5) (Table 1). Young20

et al. (2012a) provide details of the changes in surface and tropospheric ozone from
these simulations. Here, we use spatially resolved annual mean changes in tropo-
spheric column ozone, and convolve these together with individual model’s normalised
ozone RFs (Fig. 5/S5), to estimate the RF for each timeslice experiment relative to
the 1850s (Fig. 7). A subset of these results (for the 1980s, 2000s, 2030s and 2100s)25

are also presented in Table 10. Seasonal variations in both column changes and nor-
malised RFs are not accounted for, and this indirect method of calculating RFs also
assumes that the normalised ozone RF for 1850s–2000s does not change with time;
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i.e. that the shape of the change in ozone vertical profile is temporally invariant. We con-
sider that these approximations introduce only small errors in the estimates of ozone
RF presented in Fig. 7 and Table 10.

Table 10 also shows mean values for selected time periods, constructed in three
different ways: (i) using all available models for a given time slice; (ii) just using the5

four models (F, G, K and N) that ran all of the timeslices in Table 10; and (iii) using
a subset of ten models (A, B, F, G, K, L, M, N, O and P) that ran all the time slices
except those for RCP4.5 and RCP6.0. Comparing the mean values calculated by these
different methods shows that there is little influence on the overall results (the maximum
deviation is 0.024 Wm−2, or ∼10 %, for RCP6.0 in 2100) of the variable model coverage10

of different timeslices.

4 Discussion and conclusions

With the MASKZMT tropopause, we find a mean value for the tropospheric ozone radia-
tive forcing (1850s–2000s) of 356 mWm−2, with a standard deviation across 17 models
of ±58 mWm−2 (±16 %) (Table 10). The median model has a value of 367 mWm−2,15

and the full range spans 211–429 mWm−2. The model at the low end of this range
(model M) is an isolated outlier – the next lowest value is 297 mWm−2 (Table 10). Using
an alternate tropopause (MASK150), we find slightly higher values: 377±65 mWm−2

(±17 %) (Table 3). Values from the two sets of calculations differ by 6 %; this suggests
that tropopause definition introduces an uncertainty of at least ±3 %.20

These values were calculated by the Edwards and Slingo (1996) (E-S) radiation
scheme. We find that the E-S radiation scheme gives net, stratospherically adjusted
ozone RFs that are 10 % higher than comparable schemes from Oslo and NCAR (Ta-
ble 5). Taking the mean of our values for the two different tropopauses with the E-
S scheme (367 mWm−2), and adjusting for the Oslo and NCAR schemes producing25

slightly lower values (i.e. giving equal weight to each radiation scheme by multiplying
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by a factor of (1.0+0.9+0.9)/3 = 0.93), our best estimate of tropospheric ozone RF is
342 mWm−2.

Based on a comparison of instantaneous clear sky SW ozone RFs between the E-S
and Oslo schemes (Table 5), we estimate radiative transfer schemes introduce un-
certainty of about ±6 %. Clouds influence ozone RFs to different degrees in the E-S5

and Oslo schemes, and add uncertainty of at least ±7 % (Table 4). The influence of
stratospheric adjustment also varies between the two schemes, adding uncertainty of
about ±3 %. Based on a these individual uncertainties, and assuming they are indepen-
dent, we estimate the overall uncertainty associated with the radiation scheme of about
±10 %, based on the square root of the sum of the squares (RSS). Combining these10

uncertainties with the model range (±17 %) and difference due to tropopause definition
(±3 %), we estimate an overall (RSS) uncertainty of ±20 % from these factors.

Further sources of uncertainty in the ozone RF stem from uncertainties in precursor
emissions (natural and anthropogenic), as well as changes in climate and stratospheric
ozone. Most models predict relatively small impacts on tropospheric ozone via climate15

change up to present-day (Fig. 6), but these impacts may increase in future (Fig. S8).
Uncertainties associated with these factors, and emissions in particular, are probably
similar or larger than the ±20 % estimated above. We therefore estimate an overall
uncertainty of ±30 % on our central estimate (Skeie et al., 2011, estimate the same
value for uncertainty). Given the magnitude of the uncertainty, we quote values to two20

significant figures, giving our best estimate and uncertainty of 340±100 mWm−2. It
should be noted that this value is for 1850s to 2000s (which we take to be 1855 to
2005). Skeie et al. (2011) calculated tropospheric ozone increases between 1750 and
1850 of 1.0 DU (using model B), suggesting an extra 42 mWm−2 should be added
to give the RF from 1750 to 2005. Similarly, they calculate an increase from 2005 to25

2010 of 0.25 DU, which would add a further 11 mWm−2. Hence for 1750–2010 our best
estimate of tropospheric ozone RF is 400±120 mWm−2.

While it is well understood that increases in CH4, NOx, CO and NMVOCs have
driven up tropospheric ozone, only one model has previously explored the relative
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contributions of these different precursors (Shindell et al., 2005, 2009). Applying six
different models here, we estimate that CH4, NOx, CO and NMVOCs are, respectively
responsible for 47 % (full model range: 29–53 %), 29 % (23–46 %), 15 % (13–17 %) and
9 % (6–12 %) of the 1850s–2000s ozone RF. As can be seen from the model range,
there remains some uncertainty over the exact values for these fractions; an impor-5

tant source of uncertainty stems from extrapolating results from the experiments to
yield equilibrium methane concentrations. Model P is an outlier, the only model that
finds NOx emissions to be a larger driver of tropospheric ozone RF than CH4 emis-
sions. These contributions compare to values of 51 % (CH4), 15 % (NOx), and 33 %
(CO and NMVOC combined) from Shindell et al. (2005), as reported in IPCC-AR410

(Forster et al., 2007, Table 2.13). The results from Shindell et al. (2009) indicate a split
of: 74 % (CH4), 11 % (NOx), 13 % (CO) and 2 % (NMVOCs), which is outside the model
range (except for CO) found in this study. The reasons for differences between the two
Shindell et al. studies and the results presented here are unclear, but do point to sig-
nificant model diversity and uncertainty in the drivers of tropospheric ozone increases.15

Using the fractions from this study, we find that for 1750–2010, the tropospheric ozone
RF of 400 mWm−2 can be apportioned to increased emissions as follows: 188 mWm−2

from CH4, 116 mWm−2 from NOx, 60 mWm−2 from CO and 36 mWm−2 from NMVOC.
By affecting methane’s lifetime, these emissions have also influenced the methane
RF, and we find values of: +147, −229, +59 and +23 mWm−2 for CH4, NOx, CO and20

NMVOC, respectively. With the exception of NOx, all these emissions oxidise to form
CO2 and therefore generate an additional RF (Table 9 and Supplement). There are
further RF impacts of these emissions via secondary aerosol formation and changes
in stratospheric water vapour that have not been estimated here (see Shindell et al.,
2009). Based on their impacts on CO2, CH4 and tropospheric ozone, we estimate25

overall emissions based RFs for CH4, NOx, CO and NMVOC of: +780, −110, +210
and +90 mWm−2, respectively.

Normalising the tropospheric ozone RF by the change in tropospheric column ozone
(Fig. 5), we find a global mean value of 42 mWm−2 DU−1 (using MASKZMT). This is
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similar to values from earlier studies, namely 42 mWm−2 DU−1 (Ramaswamy et al.,
2001; their Table 6.3 – a mean value from 11 studies) and 36 mWm−2 DU−1 (Gauss
et al., 2003; their Table 3 – a mean value from 11 models simulating 2000 to 2100
changes). Normalised forcings vary slightly between models (Fig. S5), reflecting differ-
ing ozone changes at different latitudes and heights (Fig. S3).5

Using the normalised forcing from each model, together with the simulated tropo-
spheric column ozone change, we have calculated RFs for each model for each avail-
able timeslice (Fig. 7). Although different subsets of models ran the timeslices, we
find this has only a small influence on calculated multi-model mean values (Table 10).
Making the harmonisation to our best estimate of 1850s–2000s RF, we estimate tropo-10

spheric ozone RFs (relative to the 1850s) of 80, 290 and 340 mWm−2 for the 1930s,
1980s and 2000s, respectively. For the RCP2.6 scenario, we find values of 310 and
160 mWm−2 for the 2030s and 2100s; for RCP4.5: 380 and 260 mWm−2; for RCP6.0:
330 and 240 mWm−2; and for RCP8.5: 420 and 560 mWm−2 (again, all relative to the
1850s). All these have similar uncertainties to our pre-industrial to present-day esti-15

mate, which is at least ±30 %. Uncertainties are arguably smaller for the future scenar-
ios, as they are for exactly prescribed emissions; however, other sources of uncertainty
increase, in particular the effects of climate change, land-use change and changing
stratospheric ozone on tropospheric ozone.

Over the 1850s–2000s, climate change has had relatively small influences on tropo-20

spheric ozone in most models (Fig. 6), but is more important in some (e.g. models G
and H). In the future, models suggest these changes will generally increase, with mod-
els displaying some coherent responses (Fig. S8). All models suggest ozone in the
tropical lower troposphere will reduce, mainly due to warmer temperatures and higher
water vapour concentrations. Most models indicate that ozone will increase in the sub-25

tropical to mid-latitude upper troposphere, due to a combination of increased lightning
NOx production (Schumann and Huntrieser, 2007), and an increase of stratosphere-
to-troposphere transport (Hegglin and Shepherd, 2009), as suggested by some earlier
studies.
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This study provides an up-to-date assessment of the tropospheric ozone radiative
forcing included in the current generation of Earth System Models participating in
CMIP5. Although the magnitudes and uncertainties in the tropospheric ozone radiative
forcing are rather similar to previous assessments, this study sets a useful benchmark
for future work. There remains significant diversity in model response to ozone pre-5

cursor emissions, and this range of model behaviour needs to be better understood if
models are to provide useful advice to policymakers. Future studies should target the
key processes that control tropospheric ozone and its precursors.

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/12/26047/2012/10

acpd-12-26047-2012-supplement.pdf.
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time was provided by Météo-France/DSI supercomputing center. DTS and YHL acknowledge
support from the NASA MAP and ACMAP programs. DP would like to thank the Canadian15

Foundation for Climate and Atmospheric Sciences for their long-running support of CMAM de-
velopment. AC was supported by the SciDAC program of the Dept. of Energy.

References

Andersson, C. and Engardt, M.: European ozone in a future climate: importance of changes
in dry deposition and isoprene emissions, J. Geophys. Res.-Atmos., 115, D02303,20

doi:10.1029/2008JD011690, 2010.
Arneth, A., Sitch, S., Bondeau, A., Butterbach-Bahl, K., Foster, P., Gedney, N., de Noblet-
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Table 1. Models and experiment run lengths (in years). All models ran with emissions for
the 1850s and 2000s; the years specified correspond to the years specified for the climate
(SST/SIC).

Experiments (as used in this paper)
Model 1850sa 2000sb Attribc ∆Climd Futuree

A. CESM-CAM-superfast 10 10 – 10 YnYY
B. CICERO-OsloCTM2 1 (2006) 1 (2006) 1 – YYnY
C. CMAM 10 (1860s) 10 (2010s) – – nYnY
D. EMAC 10 10 – – nYnY
E. GEOSCCM 10 (1870s) 14 (1996–) – – nnnn
F. GFDL-AM3 10 (1860s) 10 – 10 YYYY
G. GISS-E2-Rf 10 (x5) 10 (x5) – 40 YYYY
H. GISS-E2-R-TOMAS 10 10 – 10 nnnn
I. HadGEM2 10 (1860s) 10 – 10 YYnY
J. HadGEM2-ExtTC 10 (2000s) 10 10 – nnnn
K. LMDzORINCA 10 5 (1996–) – – YYYY
L. MIROC-CHEM 11 (1850–) 11 (2000–) – 5 (1850–) YnYY
M. MOCAGE 4 (1850–) 4 (2000–) – 4 (1850–) YnYY
N. NCAR-CAM3.5 8 (1852–) 8 (2002–) 8 8 (1852–) YYYY
O. STOC-HadAM3 10 10 10 10 YnnY
P. UM-CAM 10 10 (1996–) 10 10 YYnY
Q. TM5 1 (2006) 1 (2006) 1 – nnnn

a Where models did not run 1850–1859 or 1851–1860, the climate model decade ran is indicated. Where
other than 10 yr were ran, the starting year is shown.
b Where models did not run 2000–2009 or 2001–2010, the climate model years ran are indicated. Where
other than 10 yr were ran, the starting year is shown.
c Details of the attribution experiments are given in Sect. 3.1.2.
d Details of the climate experiments are given in Sect. 3.1.3.
e The code shown corresponds to the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.0, in
order). “Y” indicates that the scenario was run, “n” indicates that it was not.
f Model G ran five ensembles of the 1850s and 2000s experiments, and an average of the five ensembles is
used.
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Table 2. Natural emissions (lightning NOx, biogenic isoprene, soil NOx) in 1850s and 2000s.
Two models (C and I) that did not include isoprene in their chemical schemes included surrogate
emissions of CO. Some values are not available (n/a); where values are not available, but
models ran with constant present-day (PD) values, this is indicated.

Model Lightning NOx Isoprene Soil NOx

TgNyr−1 Tgyr−1 TgNyr−1

1850s 2000s 1850s 2000s 1850s 2000s

A. CESM-CAM-superfast 3.8 4.2 500 500 Constant PD Constant PD
B. CICERO-OsloCTM2 5.0 5.0 449 449 8.0 8.0
C. CMAM 4.5 3.8 250 250 8.7 9.3

Tgyr−1 CO Tgyr−1 CO
D. EMAC 5.3 5.7 560 591 5.8 6.0
E. GEOSCCM 5.0 5.0 411 470 6.9 7.2
F. GFDL-AM3 4.5 4.4 565 565 3.6 3.6
G. GISS-E2-R 7.5 7.7 549 602 2.7 2.7
H. GISS-E2-R-TOMAS 7.5 7.7 549 602 2.7 2.7
I. HadGEM2 1.2 1.2 475 475 5.6 5.6

Tgyr−1 CO Tgyr−1 CO
J. HadGEM2-ExtTC 6.4 6.4 656 521 5.6 5.6
K. LMDzORINCA n/a n/a Constant PD Constant PD Constant PD Constant PD
L. MIROC-CHEM 9.3 9.7 Constant PD Constant PD Constant PD Constant PD
M. MOCAGE 5.0 5.2 568 568 4.5 4.5
N. NCAR-CAM3.5 3.7 4.1 483 483 n/a n/a
O. STOC-HadAM3 6.9 7.2 608 653 5.6 5.6
P. UM-CAM 4.9 5.1 390 390 7.0 7.0
Q. TM5 5.5 5.5 524 524 5.0 5.0
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Table 3. Changes in tropospheric column ozone (DU) and radiative forcing (mWm−2) for two
different tropopause definitions (MASKZMT and MASK150). The mean and standard deviation
(SD) excludes Model J.

Model Tropospheric column Tropospheric O3
O3 change radiative forcing

(2000s–1850s) (DU) (mWm−2)
MASKZMT MASK150 MASKZMT MASK150

A. CESM-CAM-superfast 9.4 10.0 428 446
B. CICERO-OsloCTM2 8.7 9.3 383 401
C. CMAM 7.2 7.6 315 322
D. EMAC 9.8 10.8 429 460
E. GEOSCCM 8.0 8.7 364 387
F. GFDL-AM3 9.7 10.3 406 423
G. GISS-E2-R 7.9 8.3 286 314
H. GISS-E2-R-TOMAS 8.4 8.7 305 333
I. HadGEM2 7.2 7.3 301 303
J. HadGEM2-ExtTC 8.2 8.4 315 n/a
K. LMDzORINCA 7.9 8.2 344 351
L. MIROC-CHEM 8.4 9.2 376 402
M. MOCAGE 4.7 4.8 210 219
N. NCAR-CAM3.5 9.3 10.2 406 433
O. STOC-HadAM3 9.4 10.5 396 437
P. UM-CAM 8.5 8.7 371 376
Q. TM5 9.3 10.0 399 422
Mean±SD 8.4±1.3 8.9±1.5 357±60 377±65
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Table 4. Influence of stratospheric adjustment and clouds (% change in ozone RFs when in-
cluded) in the Edwards-Slingo (E-S) and Oslo schemes. First two rows are for all models: values
are means and standard deviations. Lower rows are just for model B.

Radiation Models Tropopause Influence of stratospheric Influence of
scheme mask adjustment (%) clouds (%)

SW LW net SW LW net

E-S all MASKZMT 0 −24±1 −20±1 20±4 −16±1 −12±1
E-S all MASK150 0 −26±1 −22±1 21±5 −16±1 −12±1
E-S B MASKZMT 0 −25 −21 21 −17 −12
E-S B MASK150 0 −27 −22 22 −16 −12
Oslo B MASK150 – – – 35 −30 −22
Oslo B MASKOsloa 0 −21 −17 – – –

a Results using the Oslo model tropopause.
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Table 5. Comparison of ozone RFs from different radiation schemes for both the clear-sky,
instantaneous case, and cloudy-sky, stratospherically adjusted case. Results are shown for
model B alone (to allow direct comparison of E-S and Oslo schemes), 11 models (ACE-
FGIKLMNP; to allow direct comparison of E-S and NCAR schemes), and all models (for con-
text).

Tropopause Clear-sky, instantaneous Cloudy-sky, stratospherically
mask O3 RF (mWm−2) adjusted O3 RF (mWm−2)

SW LW net SW LW net

E-S (B) MASKZMT 62 491 552 75 309 384
E-S (B) MASK150 64 521 585 78 322 401
Oslo (B) MASK150 72 488 560 97 264 361
Oslo (B) MASKOsloa 70 470 540 94 259 353
E-S (11) MASKZMT 58±9 437±87 495±96 70±13 277±51 347±64
E-S (11) MASK150 58±9 463±93 521±101 71±12 291±56 361±68
NCAR(11) MASK150 – – – 83±16 243±88 326±100
E-S (all) MASKZMT 60±9 452±82 512±90 72±12 286±49 358±60
E-S (all) MASK150 61±8 483±89 543±96 74±12 303±54 377±65

a Results using the Oslo model tropopause.
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Table 6. Attribution experiments.

Attribution experiment Climate [CH4] Anthropogenic Emissions
NOx CO NMVOC

#0 Em1850CH41850a 2000s 1850s 1850s 1850s 1850s
#1 Em2000CH42000b 2000s 2000s 2000s 2000s 2000s
#2 Em2000CH41850 2000s 1850s 2000s 2000s 2000s
#3 Em2000NOx1850 2000s 2000s 1850s 2000s 2000s
#4 Em2000CO1850 2000s 2000s 2000s 1850s 2000s
#5 Em2000NMVOC1850 2000s 2000s 2000s 2000s 1850s

a Experiment Em1850CH41850 is the same as the core 1850s experiment for models B, J, Q.
b Experiment Em2000CH42000 is the same as the core 2000s experiment for all models.
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Table 7. Methane lifetimes (yr, for the whole atmosphere), from attribution experiments, and
corresponding equilibrium methane concentrations (ppbv), calculated using Eq. (1), for experi-
ments #2–5. For experiments #0 and #1, we show observed imposed methane values.

#0 #1 #2 #3 #4 #5
1850s 2000s 1850CH4 1850NOx 1850CO 1850NMVOC

Model τ [CH4] τ [CH4] τ [CH4]eq τ [CH4]eq τ [CH4]eq τ [CH4]eq

B 8.06 791 8.70 1751 7.31 1384 11.60 2581 8.14 1599 8.61 1725
J 9.02 791 9.29 1751 7.80 1384 12.02 2479 8.70 1603 9.29 1752
N 9.26 791 8.11 1751 6.62 1330 12.06 2989 7.49 1571 7.82 1665
O 8.47 791 8.06 1751 6.76 1382 10.84 2612 7.68 1641 7.99 1733
P 12.29 791 11.61 1751 9.99 1428 16.38 2786 10.75 1577 11.09 1646
Q 8.55 791 8.66 1751 7.13 1349 13.15 3080 8.01 1577 8.16 1618
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Table 8. Tropospheric ozone and methane radiative forcings (mWm−2) for each model and
attribution experiments #2–5 relative to experiment #1 (year 2000s). For methane radiative
forcings, an equilibrium [CH4] is calculated based on the diagnosed perturbation to the methane
lifetime (Table 4); the RF is then calculated from the difference between the prescribed and
equilibrium methane concentrations. For the methane experiment, also shown is the methane
RF due to the prescribed (observed) 1850s–2000s change (upper box: 427 mWm−2; the same
in each case) and the net methane RF (lower box). For ozone radiative forcings, three numbers
are given: the uppermost is the RF from the calculated ozone field (e.g. Fig. S7); the middle
value is the inferred ozone RF associated with the methane adjustment to equilibrium; the lower
number is the net ozone RF.

#2. 1850CH4 #3. 1850NOx #4. 1850CO #5. 1850NMVOC
Model O3 RF CH4 RF O3 RF CH4 RF O3 RF CH4 RF O3 RF CH4 RF

B
153 427 193

−276
38

58
37

1059 144 −132 24 4
212 571 61 62 41

J
103 427 178

−245
29

56
29

039 144 −78 16 0
142 571 100 45 29

N
168 427 253

−395
48

68
15

3274 167 −217 31 15
242 594 36 79 30

O
153 427 205

−286
36

41
42

759 145 −137 18 3
212 572 68 54 45

P
85 427 246

−337
35

66
38

3929 126 −92 15 9
114 553 154 50 47

Q
155 427 252

−420
45

66
6

5065 159 −215 28 21
220 586 37 73 27

Mean BJNOPQ
136 427 221

−327
39

59
28

2354 147 −145 22 9
190 574 76 61 37
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Table 9. Emission-based RFs (for 1850s–2000s) (via changes in CO2, CH4 and tropospheric
ozone) for emitted CH4, NOx, CO, NMVOC, based on the mean response of the 6 models that
conducted the attribution experiments (cf. IPCC-AR4 Table 2.13).

Radiative forcing (mWm−2) via:
Emission CO2 CH4 O3 CO2 +CH4 +O3

CH4 18 574 (427+147)a 190 782
NOx −327 (−229)b 76 (119)b −251 (−110)b

CO 87 59 61 207
NMVOC 33 23 37 93
Total: 138 329 (427)b 364 (407)b 831 (972)b

a The methane RF is shown as the direct RF (due to the increase in CH4 concentration:
427 mWm−2) and the component from the change in methane lifetime.
b The values in brackets apply a crude correction to the NOx components to force the
CH4 RF to match the observed value (see text for details).
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Table 10. Tropospheric ozone RFs (mWm−2) relative to the 1850s (for MASKZMT) (also see
Fig. 7.).

RCP2.6 RCP4.5 RCP6.0 RCP8.5
Model 1980s 2000s 2030s 2100s 2030s 2100s 2030s 2100s 2030s 2100s

A 364 428 329a 150a – – 364a 229a 521 733
B 307 384 345 164 406 262 – – 456 527
C 262 315 – – 341 202 – – 385 490
D 337 429 – – 439 308 – – – 680
E 312 365 – – – – – – – –
F 365 407 367 195 443 328 439 335 513 775
G 275 297 293 184 330 235 325 301 420 567
H 271 311 – – – – – – – –
I 227 302 – 150 – 270 – – – 570
J – 316 – – – – – – – –
K 279 345 280 123 355 237 307 227 391 484
L 302 377 323 177 – – 367 260 441 527
M 190 211 191 106 – – 222 157 309 430
N 337 406 338 156 402 261 353 230 449 587
O 336 396 339 154 – – – – 468 560
P 296 371 367 253 427 356 – – 474 637
Q – 399 – – – – – – – –

Mean±SD 297±49 356±58 317±52 165±39 393±45 273±49 340±66 249±58 439±61 582±100
(all)

Mean±SD 314±44 364±53 320±40 165±32 382±50 265±43 356±58 273±53 443±52 603±123
(FGKN)

Mean±SD 305±51 362±65 317±52 166±40 – – – – 444±62 583±107
(ABFGKLMNOP)

a Model A (CESM-CAM-superfast) RCP2.6 and 6.0 results used SST/SIC inconsistent with these scenarios.
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Figures 1 

 2 

 3 

Figure 1: Multi-model mean annual zonal mean ozone (ppbv), for the 1850s and 2000s. 4 

Vertical grid is hybrid – all models have been interpolated to a common grid. Figure S1 5 

(supplementary material) shows equivalent plots for all models. 6 

7 

Fig. 1. Multi-model mean annual zonal mean ozone (ppbv), for the 1850s and 2000s. Vertical
grid is hybrid – all models have been interpolated to a common grid. Figure S1 (Supplement)
shows equivalent plots for all models.
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 1 

 2 

 3 

Figure 2: Multi-model mean annual mean tropospheric column ozone (DU), for the 1850s 4 

and 2000s (for MASKZMT). Area-weighted global mean values are in brackets. Figure S2 5 

(supplementary material) shows equivalent plots for all models. 6 

7 

Fig. 2. Multi-model mean annual mean tropospheric column ozone (DU), for the 1850s and
2000s (for MASKZMT). Area-weighted global mean values are in brackets. Figure S2 (Supple-
ment) shows equivalent plots for all models.
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 2 

 3 

Figure 3: Multi-model mean changes (2000s-1850s) in: (a) annual zonal mean ozone (ppbv) 4 

(masked at tropopause); (b) tropospheric column ozone (DU). Tropopause is a climatological 5 

monthly zonal mean (MASKZMT), as used by Cionni et al. (2011). Figure S3 (supplementary 6 

material) shows equivalent plots for all models. 7 

8 

Fig. 3. Multi-model mean changes (2000s-1850s) in: (a) annual zonal mean ozone (ppbv)
(masked at tropopause); (b) tropospheric column ozone (DU). Tropopause is a climatologi-
cal monthly zonal mean (MASKZMT), as used by Cionni et al. (2011). Figure S3 (Supplement)
shows equivalent plots for all models.
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Figure 4: Multi-model mean annual mean tropospheric ozone total, shortwave (SW; solar 2 

wavelengths), and longwave (LW; infrared wavelengths) radiative forcings (mW m-2), 3 

between the 1850s and 2000s (for MASKZMT). Area-weighted global mean values are in 4 

brackets. Figure S4 (supplementary material) shows equivalent plots for all models. 5 

6 

Fig. 4. Multi-model mean annual mean tropospheric ozone total, shortwave (SW; solar wave-
lengths), and longwave (LW; infrared wavelengths) radiative forcings (mWm−2), between the
1850s and 2000s (for MASKZMT). Area-weighted global mean values are in brackets. Fig-
ure S4 (Supplement) shows equivalent plots for all models.
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Figure 5: Multi-model mean normalised ozone radiative forcing (mWm-2/DU) (for 2 

MASKZMT). Area-weighted global mean value is in brackets. Figure S5 (supplementary 3 

material) shows equivalent plots for all models. 4 

5 

Fig. 5. Multi-model mean normalised ozone radiative forcing (mWm−2 DU−1) (for MASKZMT).
Area-weighted global mean value is in brackets. Figure S5 (Supplement) shows equivalent
plots for all models.
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 1 

Figure 6: Response of ozone to climate change (2000s emissions; 2000s climate – 1850s 2 

climate) in ten models. Left hand column are annual zonal mean changes (ppbv); right hand 3 

column are annual tropospheric column ozone changes (DU; global mean value in brackets; 4 

for MASKZMT). 5 

Fig. 6. Response of ozone to climate change (2000s emissions; 2000s climate – 1850s cli-
mate) in ten models. Left hand column are annual zonal mean changes (ppbv); right hand
column are annual tropospheric column ozone changes (DU; global mean value in brackets;
for MASKZMT).
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Figure 7: Tropospheric ozone radiative forcing (mW m-2) relative to 1850s, for all available 2 

models and timeslice experiments (1910s, 1930s, 1950s, 1970s, 1980s, 1990s, 2000s; then for 3 

the four future RCP scenarios 2010s, 2030s, 2050s and 2100s). All models ran the 2000s and 4 

1850s; for other timeslices, varying subsets of models are available. RF values were 5 

calculated using MASKZMT. 6 

aModel A (CESM-CAM-superfast) RCP2.6 and 6.0 results used SST/SIC inconsistent with 7 

these scenarios. 8 

 9 

 10 

Fig. 7. Tropospheric ozone radiative forcing (mWm−2) relative to 1850s, for all available models
and timeslice experiments (1910s, 1930s, 1950s, 1970s, 1980s, 1990s, 2000s; then for the four
future RCP scenarios 2010s, 2030s, 2050s and 2100s). All models ran the 2000s and 1850s;
for other timeslices, varying subsets of models are available. RF values were calculated using
MASKZMT.
aModel A (CESM-CAM-superfast) RCP2.6 and 6.0 results used SST/SIC inconsistent with
these scenarios.
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