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Abstract

Continuous black carbon (BC) observations were conducted from 1999 through 2009
by an Aethalometer (AE10) and from 2006 through 2011 by a Multi-Angle Absorption
Photometer (MAAP) at Neumayer Station (NM) under stringent contamination control.
Considering the respective observation period, BC concentrations measured by the5

MAAP were somewhat higher (median± standard deviation: 2.1±2.0 ngm−3) com-
pared to the AE10 results (1.6±2.1 ngm−3). Neither for the AE10 nor for the MAAP
data set a significant long-term trend could be detected. Consistently a pronounced
seasonality was observed with both instruments showing a primary annual maximum
between October and November and a minimum in April with a maximum/minimum10

ratio of 4.5/1.6=3.8 and 2.7/0.64=4.2 for the MAAP and AE10 data, respectively. Oc-
casionally a secondary summer maximum in January/February was visible. With the
aim to assess the impact of BC on optical properties of the aerosol at NM, we evalu-
ated the BC data along with particle scattering coefficients measured by an integrating
nephelometer. We found the mean single scattering albedo of ω550 =0.992±0.009015

(median: 0.994) at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

1 Introduction

Among sulfate, mineral dust, and water soluble inorganic compounds (e.g. ionic com-
pounds originating mainly from sea salt aerosol production as well as ammonia and
nitrate), carbonaceous aerosols represent one of the major fractions of tropospheric20

aerosols (Ramanathan et al., 2001; Forster et al., 2007). Aerosol particles influence
the global radiation balance directly and can additionally act as condensation nuclei for
cloud droplets, which in turn affect climate (Haywood and Boucher, 2000; Hatzianas-
tassiou et al., 2004). Extinction of solar radiation in the visible and near UV range by
carbonaceous aerosols is dominated by absorption and not by scattering (Horvath,25

1993; Bond and Bergstrom, 2006). Actually, apart from carbonaceous aerosol, only
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mineral dust shows significant absorption of visible light, caused by variable amounts
of haematite (Fe2O3) which result in a considerable imaginary part of the complex re-
fractive index in the blue and green spectral range (Clarke and Charlson, 1985; Petzold
et al., 2009).

There exist various terminologies for the light-absorbing fraction of the carbonaceous5

aerosol (Bond and Bergstrom, 2006; Andreae and Gelencsér, 2006). Despite the am-
biguous definition, we refer to the term black carbon which is defined as combustion-
produced black particulate carbon having a graphitic-like microstructure (Novakov,
1984) because it is widely used in climate research. However, it has to be noted that
precisely speaking we refer to equivalent BC because for all applied optical methods10

the principal measure is light absorption which then is converted into mass of light-
absorbing BC by applying a mass-specific absorption coefficient (MAC); see e.g. Bond
and Bergstrom (2006).

Black carbon is exclusively produced by combustion of fossil fuels or biomass
(Cachier, 1995). The remaining and larger fraction of carbonaceous aerosol (about 70–15

90 %) consists of highly polymerized organic material, so-called organic carbon (OC),
which mainly scatters solar radiation comparable to sulfate aerosols (Cachier, 1995).
Recent model calculations assessing the influence of aerosols on the global radiation
budget have shown that the radiative forcing of carbonaceous aerosols is contrary to all
other aerosol species: While the latter, including the weak light absorbing mineral dust,20

provoke a net cooling and thus mitigate the impact of greenhouse gases, the radiative
forcing of carbonaceous aerosols is mainly positive and consequently leads to an am-
plification of the greenhouse warming (Andreae, 2001; Hatzianastassiou et al., 2004;
Hansen et al., 2005; Seinfeld, 2008; Mahowald et al., 2011). Hansen et al. (2005),
however, showed that for carbonaceous aerosol the situation is somewhat complicated25

by the fact, that in global models fossil fuel BC+OC clearly provoke positive forcing,
while for biomass burning BC+OC a negative forcing dominates. The reliability of the
amount of forcing on a global scale and especially its regional dependence is largely
determined by the accuracy of the modelled aerosol distribution which finally relies
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on the availability of global BC emission and concentration data. While the Northern
Hemisphere is clearly dominated by industrial BC emissions, within the Southern Hemi-
sphere BC emissions by biomass burning (natural, fire clearing and household) are
decisive (Koch et al., 2005). Especially in Polar Regions the positive forcing of absorb-
ing aerosol should be most striking due to inherently high surface albedo caused by5

snow, sea ice and glacial ice coverage (Warren and Clarke, 1990; Forster et al., 2007).
Indeed, there are some indications that BC and its deposition on snow may have sub-
stantially contributed to the rapid warming entailed by sea ice loss in the Arctic (Hansen
et al., 2005).

Concerning the global distribution of carbonaceous aerosols, there is a major lack10

of observations at high southern latitudes, most notably Antarctica. This is especially
disturbing, considering the recent enormous boost in the mainly ship borne Antarctic
tourism activities during austral summer (Shirsat and Graf, 2009; Graf et al., 2010).
Previous measurements indicate a geographical gradient of atmospheric BC concen-
trations from South Pole to Southern Ocean with minimum BC concentrations at South15

Pole (around 0.65 ngm−3, Bodhaine, 1995), slightly increasing to coastal Antarctic sites
(around 1 ngm−3 at Halley, Wolff and Cachier, 1998), but significantly higher at the
Antarctic Peninsula (8.3 ngm−3, Pereira et al., 2006). Neither of these investigations
provided a trend estimate for BC concentrations, mainly due to short observation pe-
riods. Very recently, a study on global decadal trends of aerosol optical properties20

revealed no significant long term trend for BC concentrations observed at Neumayer
(Collaud Coen et al., 2012). Individual ice core studies showed highly decadal scale
BC deposition variability during the last 150 yr, but an anthropogenic impact could not
be assessed (Bisiaux et al., 2012a,b).

In this paper we present an analysis of our BC concentration record from the Ger-25

man Antarctic Station Neumayer (NM), starting in 1999 and comprising now 13 yr of
continuous measurements. First of all, this analysis will comprise a reanalysis of the
BC long term trend, now including our observations made by a Multi-Angle Absorp-
tion Photometer (MAAP) started in March 2006, which was not included in the trend
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analysis mentioned above (Collaud Coen et al., 2012). In addition we will primarily fo-
cus on seasonal aspects and finally on the impact of BC on the bulk optical properties
of the aerosol at NM.

2 Experimental techniques and data evaluation methods

2.1 Site description5

BC measurements were conducted at the Air Chemistry Observatory, Neumayer Sta-
tion (70◦39′ S, 8◦15′ W, http://www.awi.de/en/go/air chemistry observatory) which par-
ticipates in the Global Atmosphere Watch (GAW) programme. A detailed descrip-
tion of the measuring site, meteorological conditions, contamination free sampling
was already presented and we refer here to Wagenbach et al. (1988), König-Langlo10

et al. (1998) and Weller et al. (2008). Because in particular BC measurements are
highly proned to the impact of local contamination, we will respond to this crucial aspect
here again. First of all, the Air Chemistry Observatory is situated in the clean air district
approximately 1.5 km south of NM and power supply is provided by cable from the main
station. Due to the fact that northerly wind directions are very rare, contamination from15

the base can be excluded for most of the time. Furthermore, contamination-free sam-
pling is additionally controlled by the permanently recorded wind velocity, wind direc-
tion and by the condensation particle (CP) concentration. Contamination was indicated
for each of the following criteria: wind direction within a 330◦–30◦ sector, wind velocity
<2.0 ms−1 and/or CP concentrations (measured by a TSI CPC 3022A particle counter)20

>2500 cm−3 during summer, >800 cm−3 during spring/autumn and >400 cm−3 during
winter. The CP threshold values were chosen based on our more than 25-yr long CP
record from Neumayer, demonstrating that CP concentrations above the corresponding
levels can usually be traced back to local pollution. In fact, only during such conditions,
BC concentrations frequently showed suspicious spikes exceeding 100 ngm−3 by far.25
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In the end, about 2 % of data loss was actually caused by potential contamination ac-
cording to the criteria mentioned previously.

2.2 Instrumentation and data evaluation methods

2.2.1 Aerosol absorption photometer

Black carbon measurements with aerosol absorption photometers are based on the5

optical attenuation method described in general by Hansen et al. (1982, 1984). In
short, BC is collected by drawing ambient air through a filter. The transmission of light
through the loaded filter is related to the transmission through a clean part of the fil-
ter material. Knowledge of the specific BC attenuation cross section on the filter in
use (QBC) finally allows the calculation of BC concentrations. This approach requires10

that the main aerosol species absorbing visible light at the considered wavelength is
actually BC. In fact only haematite (Fe2O3), naturally occurring as a minor compound
in mineral dust, has a significant, but two orders of magnitude lower absorption cross
section in the visible compared to BC (Clarke and Charlson, 1985). Recent studies
on the wavelength-dependence of the light absorption by mineral dust demonstrated15

that cross-sensitivities of light absorption methods for BC measurement are relevant
for the wavelength of 550 nm and shorter while they can be almost neglected for the
red spectral region (Petzold et al., 2011). Considering the generally low mineral dust
concentrations at NM, typically in the lower ngm−3 range (Weller et al., 2008) and
the operational wavelengths of the applied instruments (Aethalometer: around 800 nm;20

MAAP: 637 nm), this possible interference was neglected throughout this work.
At Neumayer BC concentrations were continuously monitored by a white light

Aethalometer (Magee Scientific, type AE10) from 1999 through 2009. Apart from sev-
eral problems concerning the relation of the measured absorption signal to actual BC
concentrations (e.g. Weingartner et al., 2003; Collaud Coen et al., 2010), this instru-25

ment is well-established and was used worldwide for many years, including pristine
Antarctic sites like South Pole (Bodhaine, 1995) and Halley (Wolff and Cachier, 1998).
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The AE10 accumulated the aerosol on a circular spot with an area determined to be
107±2 mm2. We employed high volume filters (Pallflex, type T60A20; material: pure
borosilicate glass fibers with moisture-resistant tetrafluoroethylene coating) with a flow
rate of 2.37 m3 h−1. The detection limit (DL), i.e. three times the standard deviation
(std) of the noise level was derived from the output signals when the Aethalometer was5

operated with zero air (ambient air passed through two quartz filters in series or one
HEPA filter). Referring to the original temporal resolution (sampling period t) of 4 h the
DL was around 5 ngm−3 which corresponds to a DL of around 10 ngm−3 for 1 h reso-
lution (assuming a 1/

√
t dependence, supported by the fact that the noise signal was

normally distributed). This raw data set was finally combined into daily means and me-10

dians. The manufacturer notes that under normal performance the instrument should
be able to detect approximately 1 ng BC, but recommend a more conservative value of
5 ng BC. This would result in a nominal DL of 0.6 ngm−3 BC for a 4 h sampling interval,
which appeared highly optimistic as already stated before by Nyeki et al. (1998). In
addition it was found that the sensitivity of the method decreased when the BC loading15

on the filter becomes high. We found that the noise level slightly increased when the
sample filter was preloaded with black carbon, e.g. a test loading of 1850 to 3350 ng
BC deteriorated the detection limit by a factor of 1.1 to 1.4. To prevent an appreciable
loss in sensitivity, we changed the filters if the optical attenuation −ln(I /I0) (where I and
I0 are the transmitted light intensities for an exposed and a blank portion of the filter)20

exceeded a value 0.22, corresponding to a BC quantity of 1570 ng. More problematic
is the impact of increasing light scattering with increasing aerosol load of the filter,
biasing the results to the higher end. Up to now there exists no generally accepted
procedure to correct this interference (Collaud Coen et al., 2010; Müller et al., 2011).
The reduction of optical path length in the filter with increasing load was considered by25

the so-called Weingartner correction (Weingartner et al., 2003; Müller et al., 2011) and
a more recent correction by Collaud Coen et al. (2010; Eq. 13 therein). Both correc-
tions depend on the single scattering albedo of the aerosol ω0, which was derived from
nephelometer data combined with MAAP results (see below) in order to avoid circular
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reasoning. It turns out that these corrections were well below 1 % throughout and thus
negligible in case of the NM measurements. Due to the fact that such a procedure was
impossible before March 2006 (start of the MAAP measurements), we finally refrain
from correcting the AE10 data.

Since March 2006 ongoing a more sophisticated MAAP (Model 5012, Thermo Elec-5

tron Corp.) is in operation, especially circumventing successfully the stray light problem
(Petzold and Schönlinner, 2004; Petzold et al., 2005). Aerosol was sampled on a glass
filter tape (Schleicher & Schüll, type GF 10) at an inlet air flow of 1.0 m3 h−1. The fil-
ter tape was automatically moved forward when the transmission exceeded 20 %. The
measured absorption refers to a wavelength of 637 nm (Müller et al., 2011). Raw data10

were originally sampled in one minute resolution. Finally hourly, as well as daily means
and medians were extracted. Hourly averaged MAAP data went rarely to negative val-
ues (12.8 % of the data), whereas for the AE10, even the 4-h samples fluctuated around
zero (26.9 % of the data). A similar behavior was observed during side-by-side oper-
ations of an Aethalometer and a MAAP at the Jungfraujoch observatory (Petzold and15

Schönlinner, 2004). These fluctuations indicate BC values close to or below the DL.
Consequently, we generally did not remove negative values because such a procedure
would bias the data to higher values. Daily median MAAP data never showed negative
values, while still about 8 % of the AE10 values were below zero (range between −1.0
and 0 ngm−3). Thus all further data evaluation was based on daily medians. We found20

a MAAP detection limit of around 6.3 ngm−3 BC for hourly resolution, which appeared
somewhat better than the DL of <20 ngm−3 for 30 min means reported in the original
paper (Petzold and Schönlinner, 2004). Extending the averaging period to 24 h with
a flow of 1.0 m3 h−1 would result in a reduced DL of 0.25 ngm−3.

The accuracy of BC measurements by aerosol absorption photometers depends on25

the validity of the specific BC attenuation cross section (QBC) used for the filter mate-
rial, which was 14 m2 g−1 for the AE10 for Pallfex filters (note that a factor of 19 m2 g−1

was recommended for often used quartz filters) and 6.6 m2 g−1 for the MAAP. How-
ever, it should be mentioned that values in the range from 5 m2 g−1 up to 20 m2 g−1
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have been found in ambient samples (Liousse et al., 1993; Petzold et al., 1997). Apart
from this, it has to be stated very clearly that QBC is different from MAC for which
a recent review recommend a value of 7.5±1.2 m2 g−1 at a wavelength of 550 nm
(Bond and Bergstrom, 2006). According to Bodhaine et al. (1995) we suppose that
the method dependent QBC vary proportional to physically defined MAC so the ratio5

might be expected to be fairly constant. Both instruments operated at NM were not ab-
solutely calibrated; on-site, hence a stringent accuracy designation could not be given.
As a reasonable assumption we refer to the DL as a crude measure for accuracy. For
daily averaged BC concentration, the accuracy for the AE10 and MAAP would thus
correspond to ±2.1 ngm−3 and ±1.3 ngm−3, respectively. We emphasize that this es-10

timate does not include the uncertainties arising from the actual specific absorption
coefficients QBC and MAC. Due to the inferior quality of the AE10 data, we considered
the MAAP results as more reliable and focus for the main part of our evaluation and
reasoning on this data set. Nevertheless we are confident that also the AE10 data
represent a consistent and valuable BC time series.15

The AE10 and the MAAP were both connected to the central inlet duct of the ob-
servatory, a ventilated electro-polished stainless steel inlet stack (total height about 8
m above the snow surface) with a 50 % aerodynamic cut-off diameter around 7–10 µm
at wind velocities between 4–10 ms−1 (determined with an aerodynamic particle sizer
TSI, type APS 3321). From the stack to the MAAP and AE10 we used silicone con-20

ductive tubes each with a length of around 50 cm, hence the inlet characteristic of both
instruments were virtually identical.

Apart from the contamination screening procedure an additional data selection was
necessary for the AE10: During stormy weather conditions (typically at wind velocities
above 20 ms−1), occasionally huge positive and negative spikes and extraordinarily25

noisy signal output occurred, possibly caused by sea salt deposition on the filter. Such
periods were discarded as well.
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2.2.2 Auxiliary measurements

In order to assess the impact of BC on the optical properties of the aerosol, BC
concentrations have to be converted to particle absorption coefficients σap(λ) (unit:

1 Mm−1 =106 m−1) by using the specific BC absorption on the filter material (QBC).
This part of the evaluation was restricted to the MAAP data, because the operating5

wavelength and spectral sensitivity of the AE10 detection optic is ill defined (Weingart-
ner et al., 2003). For the MAAP, we relied on the operative wavelength of 637 nm. In
addition to BC data, we employed particle scattering coefficients measured with an in-
tegrating three wavelength nephelometer (TSI, model 3563), in operation since 2001,
and snow surface albedo measurements Rs, started in 1982. A thorough discussion10

of these time series is a matter of its own and beyond the scope of this paper. Hence
we merely present the time series of these parameters in the Supplement (Figs. S.1
to S.3).

Operation of the nephelometer and data evaluation have previously been described
in detail by Weller and Lampert (2008). In short, particle scattering σsp(λ) and hemi-15

spheric back-scattering σbsp(λ) coefficients were originally determined in 10 min av-
erages at the wavelengths 450 nm, 550 nm, and 700 nm. After correction for non-
Lambertian illumination and truncation errors (according to Anderson and Ogren, 1998)
hourly averages were extracted and used for further evaluation. The hemispheric back-
scattering fraction bλ was calculated according to:20

bλ = σbsp(λ)/σsp(λ) (1)

Surface albedo measurements started at Georg von Neumayer, GvN in 1982. In the
meanwhile these measurements are embedded within a wider observation program
and are part of the Baseline Solar Radiation Network (BSRN, Ohmura et al., 1998,
http://www.bsrn.awi.de/en/home/bsrn/) since March 1992. Snow surface albedo was25

determined by two identical pyranometers of the type CM11, CM22, or CMP22, respec-
tively (Kipp&Zonen, The Netherlands), integrating global solar and reflected radiation
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within a spectral range from 305 nm to 2800 nm. The temporal resolution of the origi-
nal data was 10, 5, and 1 min for the CM11, CM22, and CMP22, respectively, but for
our purpose exclusively daily means were used. Surface albedo measurements were
critical at very low solar radiation (large solar zenith angles) and frequently exhibited
strong diurnal cycles due to snow ripples (sastruga) reflections especially under clear5

sky conditions (Pirazzini, 2004; Wuttke et al., 2006). Such impacts are obviated by us-
ing daily means of radiation data and additionally excluding all global radiation values
below a daily mean of 10 Wm−2.

3 Data presentation

Figure 1a shows the BC time series measured by the AE10, while in Fig. 1b the results10

from the MAAP are presented. Individual data points refer to daily medians, which
could be described by a log-normal distribution (see Supplement S.4). Figure 2 shows
the monthly means of both time series together. Obviously the AE10 data with an
overall median (mean) of 1.60 ngm−3 (2.20 ngm−3) for the whole period (1999 through
2009) and 1.55 ngm−3 (2.23 ngm−3) regarding the overlapping period with the MAAP15

(March 2006 through 2009) appeared somewhat lower compared to the MAAP data
with a long-term median of 2.14 ngm−3 (2.60 ngm−3) and 2.34 ngm−3 (2.77 ngm−3) for
the overlapping period.

A linear reduced major axis (RMA) regression of BCaeth vs. BCMAAP (daily medians)
resulted in a slope of 0.82±0.03 with an intercept of 0.86±0.1 (r2 =0.19, n=928;20

Fig. 3). Note that a RMA regression based on weekly medians resulted in a com-
parable poor correlation (slope=0.96±0.07, intercept=−0.53±0.36, r2 =0.26), po-
tentially related to the fact that both instruments operate close to their lower limit of
detection which caused very noisy data.

We tried to homogenize both data sets using this regression by rescaling the AE1025

data with the calculated slope and intercept. Unfortunately, it emerged that this ap-
proach did not really improve the situation, most probably due to the poor correlation
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between both data sets. Thus a reliable homogenization of both time series emerged
unsuccessful and we preferred a separate trend analysis on both data sets. A non-
parametric rank-order Mann Kendall test with Sen’s slope trend analysis (Hirsch et al.,
1982) revealed that for the individual segments measured by the MAAP or AE10 no
significant overall trend could be detected, in accordance with the trend analysis al-5

ready presented for the AE10 time series (Collaud Coen et al., 2012; note that therein
a statistically significant but marginal negative trend of −0.01 ngm−3 yr−1 was found
and finally discarded due to high percentage of negative values). A monthly resolved
analysis showed significant (p<0.05) but opposite trends for the months June and Au-
gust (−0.51 ngm−3 yr−1 and +0.14 ngm−3 yr−1, respectively) for the MAAP data. As for10

the AE10 time series, slight negative trends for the months November and December
(−0.09 ngm−3 yr−1 and −0.11 ngm−3 yr−1, respectively) could be detected.

Apart from the obvious discrepancy of both data sets and the weak correlation be-
tween them, the mean seasonality was in agreement (Fig. 4), indicating that the AE10
data reliably described the annual BC cycle at NM. With both instruments a primary15

annual maximum between October and November and a minimum in April was vis-
ible with a maximum/minimum ratio of 4.5/1.6=3.8 and 2.7/0.64=4.2 for the MAAP
and AE10 data, respectively. A closer inspection revealed that BC concentrations mea-
sured by the MAAP appeared also relatively high for the months January and February
a feature which was not reflected by the AE10 data (Fig. 4). It seems that this double20

maximum was not an artifact provoked by the averaging process but was also present
during the individual austral summers 2007/2008, 2008/2009 and 2009/2010 (Fig. 2).

4 Discussion

4.1 Long term trend

A discussion of trend and seasonality requires that the specific BC attenuation25

cross section (QBC) was all about the same throughout the measuring period. This
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assumptions appeared reasonable considering the fact that BC from biomass burning
is well aged (long range transport time to coastal Antarctica is typically >5 days ac-
cording to Stohl and Sodemann, 2010) and the physico-chemical state of BC aerosol
should be consistent. Indeed, Liousse et al. (1993) and Petzold et al., (1997) found
QBC to be constant in a given atmospheric environment. Furthermore we argue that5

the impact of local BC was generally negligible, except some few sporadic events (see
below). This conclusion was supported by the annual cycle of the observed BC con-
centrations showing a broad maximum around October/November (Fig. 4). In contrast,
local BC pollution at NM should have a striking maximum starting in the mid of Decem-
ber through the end of February. Supply and removal activities of the station happened10

within this time frame each year, associated with heavy freight traffic. Nevertheless
there are some indications pointing to a minor but not negligible impact of local contam-
ination. These are occasional secondary BC maxima in the MAAP data around January
and apparently high BC concentrations observed from November 2007 through Febru-
ary 2009 (Figs. 1 and 2), the period when the new construction of Neumayer III Station15

was afoot.
Although ice core records indicate a growing BC deposition in Antarctica (Bisiaux

et al., 2012a,b), our results revealed a virtually constant long-term atmospheric BC
level around 2 ngm−3 for the MAAP and 1.55 ngm−3 for the AE10 time series. Up to
now no BC trend analyses from other Antarctic sites are available, but BC concentra-20

tions at NM were comparable to previous measurements from Halley (AE10 record,
1992–1995) with a mean around 1 ngm−3, but definitely lower than annual mean BC
concentrations of 8.3 ngm−3 observed with an AE9 in 1993, 1997, and 1998 on King
George Island (Antarctic Peninsula) (Table 1). Chaubey et al. (2010) reported outstand-
ing high BC concentration during austral summer 2008/2009 from the coastal sites25

Maitri (75±33 ngm−3) and Larsemann Hills (13±4 ngm−3). At least for Maitri, a con-
siderable impact of local pollution by human activities has to be considered (Chaubey
et al., 2010). We conclude that BC concentrations between 1 ngm−3 and 2 ngm−3

can be regarded representative for coastal Antarctica except the northern parts of
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the Antarctic Peninsula (King George Island). Lowest BC concentrations (0.65 ngm−3;
Bodhaine, 1995) were found at South Pole, a site which may be representative for the
Antarctic Plateau. Figure 5 may serve as simplified survey of this geographical BC
concentration gradient. Based on our data, there is up to now no conclusive evidence
of significantly enhanced atmospheric BC pollution caused by increasing shipping ac-5

tivities (mostly tourism) in the South Atlantic peaking between December and March
(Shirsat and Graf, 2009). Note, however, that Antarctic tourism is up to now mainly fo-
cused on the marine realm of the Antarctic Peninsula and long range transport from
this region to NM seems to be less efficient.

4.2 Seasonality and dependence on general weather situation10

Black carbon concentrations at NM showed a broad annual maximum around Octo-
ber/November, consistent in relative amplitude and phase with measurements con-
ducted at Halley (Wolff and Cachier, 1998), South Pole (Bodhaine 1995), and Antarctic
Peninsula (Pereira et al., 2006). Biomass burning in Africa, South America and Aus-
tralia is the main BC source in the Southern Hemisphere (van der Werf et al., 2006,15

2008). Given the fact that large scale meridional transport was mainly provoked by
cyclonic activity (Pereira et al., 2006; Fiebig et al., 2009; Hara et al., 2010), we ex-
pect higher BC concentrations at NM during passing of low pressure systems which
was generally characterized by strong easterly winds at NM. In fact BC concentrations
were significantly higher (2.85 ngm−3) during storm (wind velocity >15 ms−1 and wind20

direction between 0◦ and 120◦) compared to the annual median (2.14 ngm−3) or to
1.64 ngm−3 encountered during calm weather conditions (wind velocity <7 ms−1, wind
direction between 120◦ and 360◦).

Results from Pereira et al. (2006) and Fiebig et al. (2009) indicate that South Amer-
ica is the main BC source region for the Weddell Sea and Dronning Maud Land re-25

gion. There, biomass burning typically peaks in late winter/early spring (September–
October), i.e. around 1–2 months earlier compared to BC concentration maximum
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typically observed in Antarctica (van der Werf et al., 2006, 2008). The dominant
biomass burning region in South America is Amazonia, extending to Northern Ar-
gentina around 45◦ S (van der Werf et al., 2006; see also http://rapidfire.sci.gsfc.nasa.
gov/firemaps/). Apart from BC, the dominant source region for mineral dust aerosol
entry in Antarctica is also South America (Smith et al., 2003). Figure 6 presents the5

mean annual cycle of BC in combination with the rare earth element La (a tracer for
mineral dust; data from Weller et al., 2008) and a further terrigenous tracer, 210Pb (data
from Elsässer et al., 2011) all observed at NM. Given that for these three tracers South
America was the main source region, a comparison of their annual cycle observed
at NM may give some insight on the interplay of source variability (including vertical10

exchange processes with the free troposphere), large scale meridional transport effi-
ciency (including depositional loss en route), and boundary layer inversion strength at
NM (affecting downward mixing) in determining the concentrations finally measured at
NM. For 210Pb and the mineral dust tracer La a broad summer maximum was evident,
slightly shifted to January/February for La (Fig. 6). The main seasonal maximum of15

BC was about 3 months early. For biomass burning a strong seasonality and patchy,
sporadic occurrence is evident (van der Werf et al., 2006, 2008). While also mineral
dust sources are generally patchy and sporadic, their seasonality in South America
is somewhat ambiguous, though a broad maximum between October and March is
discernible (Gaiero et al., 2003). Atmospheric mixing height should also be at maxi-20

mum during summer supporting vertical exchange of air masses. Deposition efficiency
should be larger for the supra-micrometer mineral dust (Sanak et al., 1981) compared
to BC, a typical sub-micrometer aerosol species (Seinfeld and Pandis, 1998a; Adachi
and Buseck, 2008). As for 210Pb, a decay product of the noble gas 222Rn which is
continuously emitted from soil, the annual cycle of the continental source strength is25

relatively weak. Note that at NM, oceanic emissions peaking after the retreat of the
sea ice in late summer might add to the local atmospheric 222Rn inventory during that
time (Elsässer et al., 2011). The effect on the 210Pb seasonality is, however, not clear
yet. Long range transport of 210Pb and maybe also of BC should be more efficient
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compared to mineral dust due to the smaller atmospheric residence time of the lat-
ter. Large scale meridional transport towards Antarctica, most probably via the free
troposphere should be most favorable after decay of the polar vortex in summer (Gen-
thon, 1992; Krinner and Genthon, 2003; Stohl and Sodemann, 2010). This is also the
time when surface inversion strength at NM was at minimum (Elsässer et al., 2011),5

facilitating down mixing from the free troposphere into the planetary boundary layer.
Therefore the seasonality of virtually all processes relevant for mineral dust generation
and transport as well as 210Pb transport to NM were in phase and consistent with the
observed annual maximum (Weller et al., 2008; Elsässer et al., 2011). On the other
hand, the annual BC cycle observed at NM was presumably shaped by a convolution10

of the more pronounced and earlier biomass burning maximum in September/October
and the seasonal maximum of large scale meridional transport efficiency during austral
summer. The impact of biomass burning seasonality appeared considerable if not dom-
inant, hence observed BC concentration apparently reflect essentially the variability of
biomass burning in South America.15

4.3 Impact on aerosol optical properties

In order to assess the impact of BC on optical aerosol properties at NM, we calculated
the single scattering albedo (ω550) as well as the critical single scattering albedo (ωcrit)
for the wavelength λ=550 nm (Seinfeld and Pandis, 1998b):

ω550 = σsp(550)/(σsp(550)+σap(550)) (2)20

ωcrit = 2Rs/(2Rs +b550(1+Rs)2) (3)

The critical single scattering albedo ωcrit provides a crude estimate whether aerosol
forcing was negative (ωcrit <ω550) or positive (ωcrit >ω550) (Seinfeld and Pandis,
1998). To this end we made use of aerosol light scattering coefficient, hemispheric25

backscattering fraction b550 at 550 nm, and surface albedo (Rs) values from our contin-
uous nephelometer and radiation measurements, respectively. BC concentrations re-
ported by the MAAP were re-converted to aerosol absorption coefficients at 550 nm
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(σap(550)) using the firmware coefficient of 6.6 m2 g−1 at λ=637 nm and extrapo-

lated to λ=550 nm accepting a λ−1 dependence of σap(λ) (Horvath, 1993; Schnaiter
et al., 2003). Note that for Rs only broadband values (305 nm to 2800 nm) were
available. Spectral snow surface albedo measurements at NM indicate a maximum
close to 1.0 at 500 nm, decreasing to around 0.95 at 300 nm and between 0.455

and 0.75 at 1000 nm (Wuttke et al., 2006). As already mentioned in Sect. 2.2.1,
the time series of the respecting parameters σsp(550), σbsp(550), and Rs are pre-
sented in the Supplement (Figs. S.1 to S.3). In short, the long-term mean values and
standard deviations were: σsp(550)=4.37±5.8 Mm−1 (range: 0.1 Mm−1 to 59 Mm−1),

σbsp(550)=0.62±0.71 Mm−1 (range: 0.1 Mm−1 to 15.4 Mm−1), and Rs =0.857±0.05310

(range: 0.51 to 1.0). In addition, a trend analysis of aerosol optical properties by neph-
elometer measurements at NM can be found in Collaud Coen et al. (2012).

The calculated daily mean values for ω550 and ωcrit are presented in Fig. 7. In addi-
tion Fig. 8 may serve as an overview for the dependence of ωcrit on Rs and hemispheric
backscattering fraction b550 values typical for NM as well as the range of the derived15

ω550 data. Based on this simple estimate, in most of the cases a net heating effect (pos-
itive forcing) of boundary layer aerosol at NM (ω550 <ωcrit in 69.5 % of the cases) was
evident. Nevertheless, even under the highest measured σap(550) (around 0.15 Mm−1,
for daily medians) merely 0.015 % of the incident solar radiation at 550 nm would be
absorbed in an atmospheric layer with an optical path length of 1 km. We conclude that20

any heating effect within the PBL was eventually negligible.

5 Conclusions

In light of the dramatically increasing human activities in Antarctica during the last few
decades, the nearly constant annual median BC concentrations observed at NM from
1999 through 2011 appeared somewhat peculiar. Apart from the sporadic impact of25

local pollution, growing combustion derived emissions from ship borne activities in the
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Southern Ocean are, up to now, only of exiguous relevance for BC concentrations at
NM. Large scale meridional transport of biomass-burning derived black carbon, pref-
erentially from South America, seems to determine the BC burden in Antarctica and
caused a distinct and consistent spring/early summer concentration maximum. Never-
theless, without much doubt anthropogenic combustion derived emissions will perpet-5

ually grow around and within continental Antarctica. Hence there is a demand to con-
tinue observations with a view to document the impact of such activities on the Antarctic
environment. In addition to atmospheric BC measurements such observations should
especially include the critical role of BC deposition and its impact on surface albedo in
Antarctica. Apart from the contribution of absorbing aerosol on the radiation balance of10

the Antarctic atmosphere at present, BC profiles measured in Antarctic ice cores could
elucidate the potential increase since pre-industrial era and thus clearly constrain the
respective human effect. Moreover, this effort might reveal the biomass burning history
in ancient times including its relevance on climate forcing.

Supplementary material related to this article is available online at:15

http://www.atmos-chem-phys-discuss.net/12/25355/2012/
acpd-12-25355-2012-supplement.pdf.
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Virkkula, A., Weingartner, E., Wilhelm, R., and Wang, Y. Q.: Characterization and intercom-10

parison of aerosol absorption photometers: result of two intercomparison workshops, Atmos.
Meas. Tech., 4, 245–268, doi:10.5194/amt-4-245-2011, 2011.

Novakov, T.: The role of soot and primary oxidants in atmospheric chemistry, Sci. Total Environ.,
36, 1–10, doi:10.1016/0048-9697(84)90241-9, 1984.

Nyeki, S., Baltensperger, U., Colbeck, I., Jost, D. T., Weingartner, E., and Gäggeler, H. W.: The15
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Table 1. BC concentration measured at different Antarctic sites.

Site Geographical BC concentration Reference
position

South Pole 90◦ S 0.65 ngm−3 Bodhaine (1995)
(annual mean)

Halley 75◦35′ S 26◦14′ W 1.0 ngm−3 Wolff and Cachier (1998)
(annual mean)

Neumayer 70◦39′ S 08◦15′ W 2.6 ngm−3 this study
(annual mean)

Ferraz, 62◦05′ S 58◦23′ W 8.3 ngm−3 Pereira et al. (2006)
King George Island (annual mean)
Maitri 70◦46′ S 11◦44′ E 75 ngm−3 Chaubey et al. (2010)

(summer)
Larsemann Hills 69◦44′ S 76◦11′ E 13 ngm−3 Chaubey et al. (2010)

(summer)
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Fig. 1. BC time series, based on daily medians, measured by the Magee Scientific AE10
Aethalometer (a) and by the MAAP (b). Vertical grey lines mark the turn of the year.
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Fig. 2. Complete BC time series based on monthly means. The black and red line represents
the data measured by the AE10 and the MAAP, respectively.
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and MAAP. Slope = 0.82±0.03, intercept = 0.86±0.1, 

r2 = 0.19, n = 928). 
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Fig. 3. RMA regression of BC concentrations (daily medians) measured by the AE10 and the
MAAP. Slope=0.82±0.03, intercept=0.86±0.1, r2 =0.19, n=928.
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Fig. 4. Box plots of the mean seasonality of BC concentrations based on daily medians: Results
measured by the AE10 for the years 1999–2009 (a) and by the MAAP for the period 2006–
2011. Lines in the middle of the boxes represent sample medians (mean: red line), lower and
upper lines of the boxes are the 25th and 75th percentiles, whiskers indicate the 10th and
90th percentiles, dots 5th and 95th percentiles. The graph comprises 18 months starting from
January to show the summer maximum without cease.
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Figure 5. Spatial BC concentration gradient in Antarctica. Only sites from 

which annual mean values were available are shown; references can be 

found in Table 1. 

Fig. 5. Spatial BC concentration gradient in Antarctica. Only sites from which annual mean
values were available are shown; references can be found in Table 1.

25384

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/25355/2012/acpd-12-25355-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/25355/2012/acpd-12-25355-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 25355–25387, 2012

Characterization of
long-term and

seasonal variations
of black carbon

R. Weller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 6. Seasonality (monthly means) of typical terrestrial tracers measured at NM: BC (grey line,
measured by the MAAP), the rare earth element La, a tracer for mineral dust, and 210Pb (blue
line) a progeny of the terrigenous noble gas 222Rn. The graph comprises 18 months starting
from January to show the seasonal maxima without cease.
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Fig. 7. Time series of the measured single scattering albedo at 550 nm, ω550 (black circles)
along with the calculated critical single scattering albedo ωcrit (red circles). Note that ωcrit values
were not available between end of April and early August of each year, because then solar
radiation was below 10 Wm−2 and Rs could not be reliably determined.
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Figure 8. Critical single scattering albedo wcrit as a 

function of surface albedo Rs typically found at NM; 

wcrit is calculated for the mean (black line), maximum 

(blue line) and minimum (red line) hemispheric 

backscattering fraction measured by nephelometer at 

550 nm. The yellow shaded region represents the 5% to 

95% percentile range, the grey solid line the median of 

the measured w550. 
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Fig. 8. Critical single scattering albedo ωcrit as a function of surface albedo Rs typically found
at NM; ωcrit is calculated for the mean (black line), maximum (blue line) and minimum (red
line) hemispheric backscattering fraction measured by nephelometer at 550 nm. The yellow
shaded region represents the 5 % to 95 % percentile range, the grey solid line the median of
the measured ω550.
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