- Supplementary material for the manuscript:
- 2

The link between organic aerosol mass loading and degree of oxygenation: An α-pinene photooxidation study

5

L. Pfaffenberger, P. Barmet, J. G. Slowik, A. P. Praplan, J. Dommen, A. S. H. Prévôt and U. Baltensperger

8 Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland

9 Correspondence to: A. S. H. Prévôt (Andre.Prevot@psi.ch)

- 10
- 11
- 12 **Table S 1:** Overview of the HONO input into the smog chamber before switching on the
- 13 lights. The last column contains the ratio between HONO and α-pinene initial concentrations.
- 14

Expt.	initial HONO	α-pinene	HONO / α-pinene
No.	ppbv (±10% instrument accuracy)	ppbv	
1	1.6	7	0.2
2	4.9	14	0.4
3	1.0	20	0.05
4	1.0	22	0.05
7	1.9	45	0.04
8	2.8	46	0.06
9	5.1	50	0.1

Table S 2: Slope of $\Delta f_{44}/\Delta$ (OH exposure) for the period where aging dominates (see Fig. S6)

Expt. No.	$\Delta f_{44}/\Delta$ (OH exposure)	$\Delta OH exposure / \Delta f_{44}$
	$\cdot 10^{-8}$ % $\cdot cm^{3} \cdot h^{-1}$	$\cdot 10^{7} \cdot \text{cm}^{-3} \cdot \text{h} / \%$
8	2.0	5.1
3	2.1	4.7
2	3.3	3.1
4	3.5	2.8
9	3.7	2.7
1	3.9	2.6
6	5.5	1.8
7	5.7	1.8
5	8.6	1.2

18 and the OH exposure needed to increase f_{44} by 1%.

Fig. S 1: Comparison of OH exposures derived from α-pinene decay and butanol-d9 decay
for experiments where butanol-d9 was above detection limit throughout the entire
experiment. The dashed line represents the 1:1 line.

Fig. S 2: The measured organic mass concentration (green line) was fitted exponentially (black line) for the last three hours of experiment 5 where wall loss dominates over organic mass production. This procedure results into a lower limit of the wall loss corrected organic mass concentration (purple line).

33 Retrieval of the OH exposure of experiment 1 and 2 from a repeat experiment

34 As the decay of α -pinene in the beginning of experiment 1 and 2 was very rapid, using the α pinene method including the extrapolation to the whole experiment time leads to a possibly 35 36 strong overestimation of the OH exposure. For this reason a repeat experiment was conducted 37 which showed the same characteristics in α -pinene decay, but with the OH tracer butanol-d9 present for the whole experiment time (See Fig. S 3). The repeat experiment resembles 38 39 strongly experiment 2, which has the same initial α -pinene concentration (14 ppby). During experiment 1 (with an initial α -pinene concentration of 7ppbv), the reactant decays within the 40 41 same time. This lower initial α -pinene concentration is also the reason for the lower O₃ production. The replaced OH exposures derived from the α -pinene decay for experiments 1 42 43 (black line) and 2 (turquoise line) are shown in the lower panel together with the OH 44 exposure of the repeat experiment (purple line).

48 Fig. S 3: The α -pinene and O₃ concentrations of experiment 1, 2 and the repeat experiment 49 are shown as a function of light exposure time (upper panel). The lower panel shows the OH 50 concentration and exposure retrieved from the decay of the tracer butanol-d9, present during 51 the repeat experiment as well as the replaced OH exposures derived from the α -pinene 52 method.

- 53
- 54
- 55
- 56
- 57

62 Fig. S 4: OH exposures for the nine different experiments (color code) derived from the 63 decay of α -pinene, butanol-d9 or a combination of both. The OH exposure of experiment 1 64 and 2 was derived from a repeat experiment.

67 Fig. S 5: Squares of the Pearson correlation coefficients, R^2 , of measured mass spectra in comparison with LV-OOA (filled circles) and SV-OOA (empty circles) reference spectra (Ng 68 69 et al., 2011) as a function of the organic mass concentration (wlc). The color code represents 70 the OH exposure as a time stamp around which the averaging of the measured mass spectra 71 was performed (± 15 min).

Fig. S 6: The organic mass fraction f_{44} as a function of OH exposure for the nine smog chamber experiments. The data was fitted with a line for the period when aging dominates, i.e. after the peak of suspended organic mass is reached. The slopes of $\Delta f_{44}/\Delta$ (OH exposure) are shown in Table S2. The average slope of the nine experiments results in a needed OH exposure of $2.9 \pm 1.3 \cdot 10^7$ cm⁻³ ·h to increase f_{44} by 1%.

82	
83	References
84	
85	Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop,
86	D. R.: Changes in organic aerosol composition with aging inferred from aerosol mass
87	spectra, Atmos. Chem. Phys., 11, 6465-6474, 2011.
88	
89	