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Abstract

Since July 2007, monthly averages of mid-tropospheric methane are retrieved in the
Tropics over land and sea, by day and night, from IASI onboard MetOp-A, yielding a
complete view of the geographical distribution, seasonality and long-term tendency of
methane in the mid-troposphere. Retrieved methane displays a clear seasonal cycle5

of ∼25 ppbv in the Northern Tropics, with a maximum in November and a minimum in
April–May, a more complex cycle of ∼15 ppbv in the Southern Tropics, and a south-to-
north latitudinal variation of ∼30 ppbv, in good agreement with regular aircraft measure-
ments of the CONTRAIL program. Comparisons with CARIBIC aircraft measurements
made at ∼11 km yield an averaged difference between collocated IASI estimates and10

CARIBIC measurements of 7.2 ppbv with a standard deviation of 13.1 ppbv, and show
that IASI captures well the evolution of mid-tropospheric methane. In particular, in 2007
and 2008, IASI shows an increase of mid-tropospheric methane in the tropical region
of 9.5±2.8 and 6.3±1.7 ppbv yr−1 respectively, in excellent agreement with the rate of
increase measured at the surface after almost a decade of near-zero growth. IASI also15

indicates a slowing down of this increase in the following years to ∼2 ppbv yr−1, with the
highest increase in 2010. Assuming that the recent evolution of methane is mostly due
to an increase in surface emissions, IASI might indicate a decrease in tropical wetland
emissions for the period 2009–2011, in agreement with decreasing tropical precipita-
tion over this period, together with an increase in biomass burning emissions in 201020

in the Southern Tropics.

1 Introduction

Methane (CH4) is the third most important greenhouse gas in the atmosphere, after
water vapor and carbon dioxide (CO2), and is responsible for about 20 % of the to-
tal radiative forcing by long-lived greenhouse gases (Hofmann et al., 2006). On a per25

molecule basis, its global warming potential is even greater than for CO2 (IPCC, 2007).

23732

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/23731/2012/acpd-12-23731-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/23731/2012/acpd-12-23731-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 23731–23757, 2012

The 2007–2011
evolution of tropical

methane

C. Crevoisier et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Moreover, methane plays a significant role in tropospheric chemistry through its re-
moval of OH that increases its radiative forcing by indirectly increasing the radiative
forcing of ozone and stratospheric water vapor. There is therefore a considerable in-
terest in monitoring the evolution of atmospheric methane to better characterize its
atmospheric budget and infer how it might evolve in the future.5

The average concentration of atmospheric methane stems from the sum of all its
sources and sinks and mostly reflects the balance between emission from the surface
and destruction by OH in the troposphere. Methane is emitted at the surface by several
natural and anthropogenic sources (Matthews and Fung, 1987). The largest source of
methane comes from natural wetlands (Ringeval et al., 2010), mostly in the tropical10

region, but also at mid-to-high northern latitudes. Major anthropogenic sources include
coal mining, natural gas losses, solid waste burning and also emissions from ruminant
animals, rice paddies and biomass burning. All together, global emissions of methane
range from 500 to 600 Tg CH4 yr−1 (IPCC, 2007). But the partition of the global emis-
sions between these various sources, as well as the impact of human activities on15

these sources, remain poorly known. Most of the emitted CH4 is destroyed in the at-
mosphere by the chemical reaction with tropospheric OH that accounts for 450–520 Tg
CH4 yr−1 and happens predominantly in the Tropics (Fung et al., 1991).

Over the last decades, the atmospheric methane burden has undergone a series of
significant changes. Its global average has more than doubled since the beginning of20

the industrial era (Cunnold et al., 2002) with a persistent increase since the 1970s (Dlu-
gokencky et al., 1994), but the rate of increase in CH4 has been steadily decreasing
since the late 1980s (Steele et al., 1992), reaching a near-zero increase from 1999 to
2006 (Dlugokencky et al., 2003; Worthy et al., 2009). Several hypotheses have been
proposed to explain the atmospheric methane budget and its interannual and long-25

term variations: changes in various sources (for instance wetland emissions, Mikaloff-
Fletcher et al., 2004; Bousquet et al., 2006, anthropogenic emissions, Dlugokencky
et al., 1994, wild fires, Langenfelds et al., 2002), and changes in OH photochemistry
(Dentener et al., 2003). From the end of 2006 or beginning of 2007, a renewed growth
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of atmospheric CH4 has been observed by surface networks until the most recent mea-
surements (Rigby et al., 2008; Dlugokencky et al., 2009; Terao et al., 2011), potentially
stemming from a combination of a slight change in OH, and increased emissions in
Northern high and low latitude regions (Bousquet et al., 2011). This increase has also
been observed in 2007–2009 on total columns of methane retrieved, mostly over land,5

from near infrared observations by the SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY) instrument on board the European Space
Agency’s environmental research satellite (ENVISAT) (Frankenberg et al., 2011).

Although the current surface atmospheric measurement networks allow to monitor
the average evolution of atmospheric methane, it is not sufficient to fully describe the10

global atmospheric methane burden and to resolve methane surface fluxes. This is par-
ticularly true in the Tropics: despite the fact that natural tropical sources are believed to
be the largest methane sources (natural wetlands, rice paddies in Asia, biomass burn-
ing), their emissions are not well captured by the current surface stations networks
because of its scarcity and because of intense convective mixing which dilutes the sig-15

nal of surface fluxes in the air column, causing a smaller sensitivity of surface stations
to CH4 sources. Another major flaw in the current network is that measurements have
mostly been made at the surface and therefore lack the information in the free tro-
posphere despite the major role this part of the atmosphere plays in the atmospheric
budget of methane through tropospheric chemistry. This is particularly true in the Trop-20

ics where more than half of the total destruction of CH4 by OH occurs (Fung et al.,
1991). Here, we present more than 4 yr of mid-tropospheric methane derived from the
Infrared Atmospheric Sounding Interferometer (IASI) over the Tropics, spanning July
2007–December 2011, from which we infer characteristics of tropospheric methane
and its most recent evolution.25
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2 Method and data

2.1 IASI

IASI, developed by CNES in collaboration with EUMETSAT, is a Fourier Transform
Spectrometer based on a Michelson Interferometer coupled to an integrated imaging
system that measures infrared radiation emitted from the Earth. IASI provides 84615

spectral samples, aligned in three bands between 645.00 cm−1 and 2760.00 cm−1

(15.5 µm and 3.63 µm), with a spectral resolution of 0.50 cm−1 after apodisation and
a spectral sampling interval of 0.25 cm−1. IASI was launched on October 2006 on-
board the European MetOp-A platform and declared operational in July 2007. Since
then, it has been providing water vapour and temperature soundings for operational10

meteorology, while observing simultaneously the most important trace gases (Hilton
et al., 2012).

2.2 Methane retrieval process

As described in details in Crevoisier et al. (2009a), use is made of 10 IASI channels lo-
cated in the 7.7 µm spectral region that are mostly sensitive to CH4 and, as all infrared15

channels, to atmospheric temperature. Observations made in the microwave by the
AMSU instrument, flying with IASI onboard MetOp-A (both instruments are synchro-
nized), are also sensitive to temperature, but are insensitive to CH4. Thus, combining
IASI and AMSU allows separating the two signals. The retrieval scheme, initially devel-
oped to retrieve CO2 from thermal infrared sounders (Chédin et al., 2003; Crevoisier20

et al., 2009b), is based upon a non-linear regression inverse radiative transfer model
using Multi-Layer Perceptrons. Given that, since the beginning of 2009, AMSU chan-
nel 7 has started to degrade and now exceeds specifications, precluding any further
use, AMSU 8 has replaced AMSU 7 in the retrieval process described in Crevoisier
et al. (2009a).25
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In this work, potential radiative systematic biases existing between simulations used
to train the networks and observations are computed for each channel by averag-
ing, over the first three years of operation (July 2007–June 2010), the differences
between simulations and collocated (in time and space) satellite observations. The
simulations are performed using the 4A/OP-2009 forward model (Scott and Chédin,5

1981; http://www.noveltis.net/4AOP/), which is based on the updated 2009 version of
the GEISA spectroscopic database (available at http://ether.ipsl.jussieu.fr/) (Jacquinet-
Husson et al., 2011), and radiosonde measurements from the Analyzed RadioSound-
ings Archive database (available at http://ara.lmd.polytechnique.fr/) (Scott et al., 2012)
as inputs.10

Because of the lesser variability of the atmospheric temperature profiles in the Trop-
ics compared to higher latitudes, the decorrelation between temperature and methane
signals in the observations is easier to do in the tropical belt, yielding a better precision
there. We thus restrict our study to latitudes between 20◦ N to 20◦ S. The retrieved CH4
integrated columns are weighted to the tropical mid-troposphere with peak sensitivity at15

about 230 hPa (∼11 km), half the peak sensitivity at 100 and 500 hPa (∼6 and 16 km),
and no sensitivity to the surface. Retrievals are performed over land and sea, night and
day at 9:30 a.m./p.m. LT.

2.3 Aircraft and in-situ data

Very few measurements of CH4 are available in the mid-troposphere, rendering the val-20

idation of satellite retrievals as well as model simulations in the mid-troposphere quite
delicate. In the following, we will use measurements made by commercial aircrafts
in the framework of two programs that provide valuable information about CH4 vari-
ations in the middle troposphere: CONTRAIL (Comprehensive Observation Network
for Trace gases by AIrLiner) and CARIBIC (Civil Aircraft for the Regular Investigation of25

the atmosphere Based on an Instrument Container). The CONTRAIL project originates
from regular in-situ measurements of CO2 made by commercial airliners of the Japan
Airlines (JAL) between Japan and Australia since the mid 1980s (Nakazawa et al.,
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1991; Matsueda et al., 2002; data available at: http://ds.data.jma.go.jp/gmd/wdcgg). In
November 2005, the National Institute for Environmental Studies (NIES), the Meteoro-
logical Research Institute (MRI), Tohoku University, and Japan Airlines started a new
phase of the JAL project called CONTRAIL, expanding the commercial aircraft mea-
surement program to include regular JAL flights from Japan to Europe, North America,5

and Asia and providing measurements of CO2, CH4 and CO (Machida et al., 2007,
2008; Matsueda et al., 2008; Sawa et al., 2008). The acquired air samples are returned
to NIES within a day from the sampling, and the mixing ratios of various trace gases
including CH4 are analyzed. The CH4 mixing ratio of each air sample is determined
against the NIES-94 CH4 scale using a gas chromatograph (Agilent 5890, Agilent Tech-10

nologies Inc.) equipped with a flame ionization detector (GC-FID) (Tohjima et al., 2002;
Machida et al., 2008). According to the results of the 2002–2007 WMO Round-Robin
inter-calibration (Zhou et al., 2009), NIES-94 scale is higher than NOAA/GMD scale by
3.5–4.6 ppbv in a range between 1750 and 1840 ppbv.

CARIBIC is a long-term atmospheric measurement program based on the use of15

a comprehensive scientific instrument package aboard a commercial passenger air-
craft operated by Lufthansa (Brenninkmeijer et al., 2007). Its first operational phase
was from 1999 through 2001. Since May 2005 the new, extended CARIBIC instru-
mentation package is employed once per month during regular passenger flights out of
Germany to Asia, Africa, North and South America. Both, real-time measurements and20

air sample collection are performed. The air samples are analysed for a large number
of trace gases in several laboratories, including GC-FID analysis of CH4 (Schuck et al.,
2009). CH4 data are reported on the NOAA/GMD scale, with a precision of 2.2 ppbv.

While comparing IASI and aircraft observations, it must be kept in mind that CON-
TRAIL and CARIBIC CH4 is representative of methane at the aircraft altitude (∼11 km),25

whereas IASI gives access to a mid-tropospheric integrated content.
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3 General features of mid-tropospheric CH4

3.1 Seasonal variations

Figure 1 displays the zonally averaged tropical distribution of methane in the mid-
troposphere as retrieved from IASI from July 2007 to December 2011. Several fea-
tures are summarized in this figure, which can be compared to the zonally averaged5

representation of the global distribution of methane in the marine boundary layer ob-
tained from surface stations (e.g. Dlugokencky et al., 1994). Methane measured at
the surface is generally characterized by low mixing ratios in local summer months,
a combined effect of larger sources and stronger chemical losses, and large concentra-
tion in winter months, with a decreasing amplitude with latitudes from ∼40 ppbv in the10

Northern Hemisphere (NH) to ∼20 ppbv in the Southern Hemisphere (SH). IASI mid-
tropospheric methane also displays strong seasonal variations in Fig. 1, with a more
pronounced cycle in the Northern than in the Southern Tropics. However, compared to
surface data, the amplitude of the cycle is lower and varies from ∼25 ppbv in the north
to ∼15 ppbv in the south.15

In the Northern Tropics, the maximum is reached in November and the minimum in
March–April. In the Southern Tropics, the seasonal variation is more complex. This may
be attributed to the weak seasonal cycle of methane in the SH that makes it sensitive
to year-to-year fluctuations of upper-tropospheric winds at ∼200 hPa which modulates
the inter-hemispheric transport during ENSO phases (Prinn et al., 1992), yielding en-20

hanced exchanges in December–May during cold phases (as in 2007 and 2008), and
a cancellation in the Southern Tropics of the summer minimum due to photochemical
destruction of methane. Differences in phase and amplitude between surface mea-
surements and IASI mid-tropospheric retrievals might be attributed to the time-lag of
the emitted methane when going from the surface to the upper-troposphere, combined25

with the seasonality of destruction by OH which mostly happens in the free tropo-
sphere.
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Figure 2 shows the seasonal cycles in the Northern and Southern Tropics measured
by CONTRAIL and retrieved from IASI. Use is made of CONTRAIL flights between
Japan and Australia from December 2005 to March 2009. IASI CH4 retrievals have
been averaged over a 20◦ longitudinal band centered on the flight tracks to get enough
data. To ease the comparison a bias of −9 ppbv (3 ppbv) has been added to CONTRAIL5

data in the Northern (Southern) Tropics. Part of this bias can be attributed to the use of
NIES-94 scale to determine CONTRAIL CH4 mixing ratio. IASI and CONTRAIL cycles
agree quite well for the period July 2007–March 2009 when both data are available.
This is particularly true in the Northern Hemisphere where the seasonal cycle is well
defined. The amplitudes of CONTRAIL and IASI cycles are in good agreement with10

each other: about 25 ppbv in the Northern Tropics and 15 ppbv in the Southern Tropics.
In the Southern Tropics, there seems to be an over-estimation of IASI CH4 compared
to CONTRAIL in August–October 2008. However, such high values of methane are not
seen for the other years and seem to be specific of 2008. CONTRAIL data lie in the
standard deviation of IASI data.15

3.2 Latitudinal variations

A clear interhemispheric variation of mid-tropospheric methane is observed by IASI
with a north to south decrease of about 30 ppbv between 20◦ N and 20◦ S. As stated
in Crevoisier et al. (2009a), this is in excellent agreement with aircraft measurements
performed over a few months in 1993 at 10–11 km, which corresponds to the peak of20

sensitivity of IASI in the channels selected to perform the retrievals, but lower by more
than a factor of 2 when compared to the gradient estimated from surface measure-
ments, highlighting the influence of the proximity of emissions to the measurements
and vertical mixing. Methane is well-mixed in the Southern Tropics while a gradient
persists with methane regularly increasing with latitude in the Northern Tropics.25

IASI mid-tropospheric CH4 is now compared with CH4 CARIBIC aircraft measure-
ments made at ∼11 km over the African continent during 13 flights spanning the pe-
riod March 2009–March 2011. Figure 3 shows the daily retrieved IASI CH4 (two to
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three orbits per day in the region of interest) together with the measured CARIBIC
CH4 (two flights per month, except for November 2010 for which a single flight is avail-
able) for 6 consecutive months between November 2010 and March 2011. Difference
in the spatial coverage and lack of retrievals because of cloudiness render the com-
parison between both datasets difficult. Nonetheless, the general features of methane5

appear to be consistent between IASI and CARIBIC: lower methane in the South than
in the North with high values of methane localized in a region between 5◦ S and 10◦ N,
where large wetland emissions (e.g. Bergamaschi et al., 2007) that are upvected in
the mid-troposphere can be found. The general agreement between both datasets is
better seen with the monthly averaged CH4 retrieved from IASI that is also plotted in10

Fig. 3. In particular, the location of high values of wetland-emitted methane is shown
to vary in latitude around the equator: in December, CH4 is higher between 10◦ N and
the equator, whereas in February–March, higher concentrations are found between the
equator and 10◦ S. This variation is in good agreement with CARIBIC features, even if
higher values are measured by the aircrafts than retrieved by IASI. This may be due15

to the fact that the aircrafts measure methane at one altitude whereas IASI retrievals
integrate methane over 6–16 km.

The latitudinal variations of CARIBIC and monthly IASI methane are plotted in Fig. 4,
together with the associated standard deviation of IASI retrievals. For this figure,
monthly 1◦ ×1◦ IASI fields have been collocated with CARIBIC tracks. Once more,20

both IASI and CARIBIC display similar variations and the aircraft data stay within the
monthly variability retrieved from IASI with the two exception of very high values mea-
sured locally on 12th December 2010 and 18th January 2011. These two days illustrate
the high variability of mid-tropospheric methane that is particularly seen on the two
CARIBIC flights performed on 18th and 19th January 2011 (Fig. 4c): between 10◦ S25

and 5◦ S, a more than 60 ppbv difference is observed in methane between the two
flights. This difference is consistent with the spatial variability of IASI CH4 in January
displayed in Fig. 3 (third line): lower values of methane are well seen for this month
(bluish colours) east of 28◦ E between 10◦ S and the equator, whereas high values of
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methane (yellowish colours) are located west of this longitude and are mostly missed
by IASI due to persistent cloudiness. Such a structure is in agreement with wind pat-
terns, which display a positive (negative) gyre east and west of this longitude creating
two regions of respectively high and low concentrations of methane. The lack of re-
trievals explains the discrepancy between IASI and CARIBIC in Fig. 4c for the 18th5

of January (full lines), whereas the agreement is quite good for the 19th of January
(dashed lines).

More quantitatively, the consistency between IASI and CARIBIC methane can be
evaluated by averaging daily IASI CH4 in a 4◦ ×4◦ box (to get enough co-locations)
centered on the measurements performed during the 13 CARIBIC flights. This com-10

parison yields a bias between IASI and CARIBIC of 7.2 ppbv with a standard deviation
of 13.1 ppbv. The mean standard deviation of IASI retrievals in the 4◦ ×4◦ boxes is
18 ppbv. Given the difference in the products, and the large co-location criteria, these
values confirm the good agreement between IASI and CARIBIC methane.

4 Discussion15

A striking feature displayed in Fig. 1 and 2 is the increase of mid-tropospheric methane
from 2007 to 2011, in agreement with the renewed growth of methane measured at
the surface since the end of 2006 (Rigby et al., 2008; Dlugokencky et al., 2009, there-
after referred to as R08 and D09 respectively). To investigate this increase in the mid-
tropospheric methane burden, we use the sum of a quadratic polynomial and a series20

of four harmonics to respectively represent the averaged long-term trend and the av-
eraged seasonal cycle of methane. The differences between the fitting curve and the
data (the residuals) are smoothed by applying a low-pass filter to account for interan-
nual variations in the trend. The result is added to the quadratic polynomial to obtain
a deseasonalized trend function (Duglokencky et al., 1994).25

Figure 5a shows the fitted methane cycle estimated from IASI data over the IASI-
period (July 2007 to December 2011) for the entire tropical region. Also shown are the
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deseasonalized trend function and its associated standard deviation. The growth rate
of methane given by the derivative of the deseasonalized trend function is plotted in
Fig. 5b. An increase of methane in the mid-troposphere in the tropical region is clearly
seen in this figure, with the highest increase rate in 2007–2008. Unfortunately, the
beginning of the increase (end of 2006–beginning of 2007) is missed by IASI, which5

was declared operational in July 2007. In the following years, the rate of increase of
methane appears to be decreasing, with an average increase of ∼2 ppbvyr−1 in 2009
and 2011.

Figure 6 shows the latitudinal and temporal variations of the growth rate of methane
obtained from IASI and from the GLOBALVIEW-CH4 (2009) surface stations located in10

the tropical band for the period 2007–2010. It should be kept in mind that IASI provides
a homogeneous coverage of the tropical band, whereas surface measurements are
only available at ∼20 stations in this band. Nonetheless, growth rates measured at
the surface and in the mid-troposphere are similar, with a good match both in terms of
temporal and geographical locations of positive and negative growth rates. According15

to Fig. 6, methane has been increasing in both the Northern and Southern Tropics, but
there are differences in the intensity of the growth rate. Annual increases of methane
are given in Table 1 together with their standard deviations. They are determined for
each year by taking the difference between January in one year and January in the next
year on the deseasonalized trend curve in Fig. 5a. Since only half of 2007 is available20

from IASI, the annual increase for this year is based on the extrapolation of the fit to
the other half of the year. The resulting standard deviation for 2007 is thus higher than
for the years fully constrained by IASI data. The values inferred from IASI retrievals for
2007 (9.5±2.8 ppbvyr−1) and 2008 (6.9±1.2 ppbvyr−1) are in good agreement with
the growth rates reported by D09 and R08.25

As seen in Fig. 6., according to IASI, the increase in the Southern Tropics was
larger than in the Northern Tropics for 2007 (10.7±2.5 vs. 8.2±1.8 ppbvyr−1) and
2008 (7.9±1.2 vs. 6.0±1.2 ppbvyr−1). D09 did report a larger increase of atmospheric
methane in the SH than in the Northern Hemisphere (NH) for 2007, as seen in Fig. 6,
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with a zonally averaged SH trend of 9.2±0.3 ppbvyr−1 compared to a zonally aver-
aged NH trend of 7.3±1.3 ppbvyr−1. This may again be due to the enhanced transport
from the NH to the SH in La Niña years (Prinn et al., 1992). According to R08, stations
located in the Southern Tropics experienced a higher increase than stations located
at higher Southern latitudes, which might explain the highest increase we find in the5

[EQ:20S] band compared to the SH increase reported by D09. For 2008, these authors
found the largest increase at low northern latitudes with a value of 8.1±1.6 ppbvyr−1,
for a slowing global increase of 4.4±0.6 ppbvyr−1, whereas IASI estimates seem to
indicate a larger increase in the Southern Tropics. This disagreement on the exact
location of the highest increase of methane in 2008 might be due to the different spa-10

tial coverage of both datasets, with 1 to 2 surface stations located in each 5◦ latitude
band when IASI coverage is more homogeneous. According to IASI observations, the
increase of methane seems to continue in the Tropics but at a slower rate with an av-
erage of 1.0±0.5 ppbvyr−1 in 2009, 4.2±0.5 ppbvyr−1 in 2010 and 2.2±0.7 ppbvyr−1

in 2011.15

Methane variability can be attributed to variations in the surface emissions or in the
strength of OH sink. D09 have suggested a slight change in OH, but a significant con-
tribution of emissions at high latitudes in 2007, and an increase of methane emis-
sion from tropical wetlands due to enhanced La Niña precipitation in 2007 and 2008.
Such a hypothesis has been confirmed by Bousquet et al. (2011) by using both at-20

mospheric inversions and a process-based model of methane emissions by natural
wetland ecosystems. As seen in Fig. 5, IASI data suggests a slowing down of the in-
crease in 2009–2011. This result thus indicates either an increase of the destruction of
methane by OH or a decrease in methane surface emissions in the Tropics (predom-
inantly wetlands and biomass burning). The analysis of ECMWF precipitation fields25

reveals that precipitation has continuously decreased in wetland tropical regions over
these three years, the total rain fall in 2010 reaching a similar value to that of 2007.
In particular, a severe drought happened in Amazonia in 2010 due to a particularly
high value of the Atlantic Multidecadal Oscillation (Lewis et al., 2011). Moreover, our
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analysis of MODIS burned area (Roy et al., 2008) shows: (i) no significant change in
fires, and thus in biomass burning CH4 emissions, in the tropical region over 2007–
2009; (ii) a sharp increase of fire in 2010 (Thonat et al., 2012), which might explain
part of the increase of methane seen in the second half of 2010 by IASI since the
fire season extends from July to October in most of the southern regions. These re-5

sults seem to confirm that tropical wetland emissions driven by higher than average,
although decreasing after 2008, precipitation are one of the main drivers of the 2007–
2008 strong increase and of the less pronounced increase of methane suggested by
IASI observations in the following years.

5 Conclusions10

Observations made in the infrared by IASI have been used to derive the distribution
of methane in the mid-troposphere (6–16 km), in the Tropics from July 2007 to De-
cember 2011. A strong seasonal cycle of 25 ppbv is observed in the Northern Tropics,
with a maximum (minimum) in November (March–April). The cycle observed in the
Southern Tropics is more complex, with an amplitude of ∼15 ppbv. Comparisons per-15

formed with aircraft measurements from the CONTRAIL and CARIBIC programs show
that methane fields derived from IASI observations agree well with the features of in-
situ measurements of mid-tropospheric methane in terms of seasonality, amplitude and
latitudinal variations. The latitudinal and temporal variations of the methane growth rate
measured by IASI are also in good agreement with those measured at the surface.20

According to IASI observations, methane has increased by 19.1±3.0 ppbv over the
period 2007–2011, with a decreasing annual growth rate from 9.5±2.8 ppbvyr−1 in
2007, in agreement with surface increase rate, to 2.2±0.7 ppbvyr−1 in 2011. A higher
rate of increase is found in the Southern Tropics than in the Northern Tropics during
2007 and 2008, possibly due to enhanced interhemispheric exchange characteristic of25

such La Niña years (Prinn et al., 1992).
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Assuming that the recent increase of atmospheric methane in the Tropics is mostly
due to an increase in wetland emission, IASI retrievals would indicate a decrease of
methane emission from wetlands for 2009–2011. Such a hypothesis is supported by
the continued decrease in precipitation over these years in wetland tropical regions in-
dicated by ECMWF precipitation fields, and small changes in tropical biomass burning5

emission for 2008–2009 indicated by MODIS burned area. Higher values of methane
observed in 2010 in the Southern Tropics might be attributed to intense biomass burn-
ings that took place in the Southern Tropics.

Only continuous measurements of methane from a variety of instruments (at the
surface, airborne and spaceborne) will help to better understand atmospheric methane10

budget and its evolution. The results presented here show that IASI can provide a pow-
erful constraint on the monitoring and understanding of atmospheric methane burden.
With the launch of two other successive IASI-like instruments scheduled for 2012 and
2017, more than 20 yr of observations of mid-tropospheric methane will be available
for climate studies.15
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Table 1. Annual increase (ppbvyr−1) in mid-tropospheric methane inferred from IASI for three
tropical latitude zones. Values reported for the Northern and Southern Hemisphere (NH and
SH) by Dlugokencky et al. (2009) are also given. For 2007, only half of the year is available
from IASI.

IASI Dlugokencky et al. (2009)

Year 20◦ N : 20◦ S 20◦ N : EQ EQ : 20◦ S NH SH
2007 9.5±2.8 8.2±1.8 10.7±2.5 7.3±1.3 9.2±0.3
2008 6.9±1.3 6.0±1.2 7.9±1.2 8.1±1.6∗

2009 1.0±0.8 −0.3±0.5 2.3±0.7
2010 4.2±0.9 3.6±0.5 4.8±0.8
2011 2.2±0.7 2.5±0.7 1.8±0.7

∗This value is attributed to low northern latitudes.
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Figure 1. Zonally averaged tropical distribution of methane in the mid-troposphere as 
retrieved from IASI from July 2007 to December 2011. 

 Fig. 1. Zonally averaged tropical distribution of methane in the mid-troposphere as retrieved
from IASI from July 2007 to December 2011.
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Figure 2. Monthly evolution of mid-tropospheric methane measured by CONTRAIL 
(December 2006 to March 2009) at an altitude of ~11km (blue) and retrieved from IASI 
observations (since July 2007) for the 6-16km range (red) in the northern (a) and southern (b) 
tropics between Japan and Australia. Standard deviation are shown as bars for CONTRAIL 
and as an envelope for IASI. A bias of -9 ppbv (3 ppbv) has been added to the CONTRAIL 
data in the northern (southern) hemisphere. 	  

Fig. 2. Monthly evolution of mid-tropospheric methane measured by CONTRAIL (December
2006 to March 2009) at an altitude of ∼11 km (blue) and retrieved from IASI observations
(since July 2007) for the 6–16 km range (red) in the Northern (a) and Southern (b) Tropics
between Japan and Australia. Standard deviation are shown as bars for CONTRAIL and as an
envelope for IASI. A bias of −9 ppbv (3 ppbv) has been added to the CONTRAIL data in the
Northern (Southern) Hemisphere.
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Figure	  3.	  Maps	   of	   daily	   IASI	  methane	   (first	   and	   second	   column)	   for	   the	   7	   days	  when	  
CARIBIC	  measurements	  were	  performed	  between	  November	  2010	  and	  March	  2011	  and	  
maps	  of	  monthly	  IASI	  methane	  (third	  column)	  for	  the	  same	  months.	  CARIBIC	  methane	  is	  
shown	  as	  square	  on	  each	  map.	  
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Fig. 3. Maps of daily IASI methane (first and second column) for the 9 days when CARIBIC
measurements were performed between November 2010 and March 2011 and maps of monthly
IASI methane (third column) for the same months. CARIBIC methane is shown as square on
each map.
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Figure	  4.	  Latitudinal	  variations	  of	  CH4	  as	  measured	  by	  CARIBIC	  (red)	  and	  as	  retrieved	  
by	  IASI	  (blue)	  between	  November	  2010	  and	  March	  2011.	  1°x1°	  monthly	  IASI	  CH4	  have	  
been	  collocated	  with	  CARIBIC	  measurements.	  The	  blue	  envelope	  gives	  the	  IASI	  monthly	  
standard	  deviation	  along	  the	  aircraft	  tracks.	  With	  the	  exception	  of	  November	  2010	  (one	  
flight	  only),	  the	  full	  line	  corresponds	  to	  the	  first	  flight	  of	  the	  month,	  and	  the	  dashed	  line	  
to	  the	  return	  flight	  on	  the	  following	  day.	  
	  

	  

Fig. 4. Latitudinal variations of CH4 as measured by CARIBIC (red) and as retrieved by IASI
(blue) between November 2010 and March 2011. 1◦ ×1◦ monthly IASI CH4 have been collo-
cated with CARIBIC measurements. The blue envelope gives the IASI monthly standard devi-
ation along the aircraft tracks. With the exception of November 2010 (one flight only), the full
line corresponds to the first flight of the month, and the dashed line to the return flight on the
following day.
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Figure	  5.	   	   (a)	  Monthly	  mean	  of	   IASI	  CH4	   in	   the	  whole	   tropical	   region	   (crosses),	   fitted	  
with	  a	  polynomial	   trend	  and	  4	  harmonics	   for	   the	  period	   July	  2007	  to	  December	  2011.	  
Also	  shown	  is	  the	  deseasonalized	  trend	  with	  ±1	  standard	  deviation	  as	  dashed	  lines.	  (b)	  
Instantaneous	   growth	   rate	   for	   globally	   averaged	   atmospheric	   CH4	   (solid	   line)	   and	   ±1	  
standard	   deviation	   (dashed	   lines).	   The	   growth	   rate	   is	   the	   time-‐derivative	   of	   the	  
deseasonalized	  trend	  in	  (a).	  
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	  Fig. 5. (a) Monthly mean of IASI CH4 in the whole tropical region (crosses), fitted with a poly-

nomial trend and 4 harmonics for the period July 2007 to December 2011. Also shown is the
deseasonalized trend with ±1 standard deviation as dashed lines. (b) Instantaneous growth
rate for globally averaged atmospheric CH4 (solid line) and ±1 standard deviation (dashed
lines). The growth rate is the time-derivative of the deseasonalized trend in (a).
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Figure	   6.	   Growth	   rate	   of	   CH4	   as	   retrieved	   from	   IASI	   (top)	   and	   as	   derived	   from	   the	  
GLOBALVIEW-‐CH4	  surface	  stations	  (bottom)	  from	  January	  2006	  to	  December	  2010.	  
	  

	  
	  
	  
	  
	  

Fig. 6. Growth rate of CH4 as retrieved from IASI (top) and as derived from the GLOBALVIEW-
CH4 surface stations (bottom) from January 2006 to December 2010.
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