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Abstract

This article investigates the potential impact of future ground-based lidar networks on
analysis and short-term forecasts of particulate matter with a diameter smaller than
10 µgm−3 (PM10). To do so, an Observing System Simulation Experiment (OSSE) is
built for PM10 data assimilation (DA) using optimal interpolation (OI) over Europe for5

one month in 2001. First, using a lidar network with 12 stations, we estimate the effi-
ciency of assimilating the lidar network measurements in improving PM10 concentra-
tion analysis and forecast. It is compared to the efficiency of assimilating concentration
measurements from the AirBase ground network, which includes about 500 stations in
Western Europe. It is found that assimilating the lidar observations decreases by about10

54 % the root mean square error (RMSE) of PM10 concentrations after 12 h of assim-
ilation and during the first forecast day, against 59 % for the assimilation of AirBase
measurements. However, the assimilation of lidar observations leads to similar scores
as AirBase’s during the second forecast day. The RMSE of the second forecast day is
improved on average over the summer month by 57 % by the lidar DA, against 56 %15

by the AirBase DA. Moreover, the spatial and temporal influence of the assimilation of
lidar observations is larger and longer. The results show a potentially powerful impact
of the future lidar networks. Secondly, since a lidar is a costly instrument, a sensitivity
study on the number and location of required lidars is performed to help defining an
optimal lidar network for PM10 forecast. With 12 lidar stations, an efficient network in20

improving PM10 forecast over Europe is obtained by regularly spacing the lidars. DA
with a lidar network of 26 or 76 stations is compared to DA with the previously-used
lidar network. The assimilation of 76 lidar stations’ measurements leads to a better
score than AirBase’s during the forecast days.
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1 Introduction

Aerosols have an impact on regional and global climates (Ramanathan et al., 2001;
Léon et al., 2002; Sheridan et al., 2002; Intergovernment Panel on Climate Control,
IPCC 2007) as well as on ecological equilibrium (Barker and Tingey, 1992) and hu-
man health by penetrating the respiratory system and leading to respiratory and car-5

diovascular diseases (Lauwerys, 1982; Dockery and Pope, 1996). Aerosols influence
gaseous molecules photo-dissociation (Randriamiarisoa et al., 2004) and can thus
have a significant impact on the photo-oxidant pollution (Dickerson et al., 1997). Thus
the accurate prediction of aerosol concentration levels has signification human and
economic cost implications.10

Various chemistry transport models are used to simulate or predict aerosol concen-
trations over Europe, e.g. EMEP (European Monitoring and Evaluation Programme)
(Simpson et al., 2003), LOTOS (Long Term Ozone Simulation) – EUROS (European
Operational Smog) (Schaap et al., 2004), CHIMERE (Hodzic et al., 2006), DEHM
(Danish Eulerean Hemispheric Model) (Brandt et al., 2007) and Polyphemus (Sartelet15

et al., 2007). However, uncertainties in modelling atmospheric components, in particu-
lar aerosols are high (Roustan et al., 2010), which leads to substantial discrepancies to
observational data (Sartelet et al., 2007). Data assimilation (DA hereafter) can reduce
the uncertainties in input data such as the initial conditions or the boundary conditions
by coupling models to observations (Bouttier and Courtier, 2001). In meteorology, DA20

has been traditionally applied to improve forecasts (Kalnay et al., 2003; Lahoz et al.,
2010). In air quality, applications of DA to PM10 forecast are still sparse. They include
Tombette et al. (2009) and Denby et al. (2008) over Europe and Pagowski et al. (2010)
over the United States of America. They demonstrated the feasibility and the useful-
ness of DA for aerosol forecasts.25

As in Tombette et al. (2009), in situ surface measurements are often assimilated, e.g.
AirBase, BDQA (Base de Données de la Qualité de l’Air) or EMEP. However, they do
not provide information on vertical profiles. Niu et al. (2008) used both satellite retrieval
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data and surface observations to assimilate dust for sand and dust storm (SDS) fore-
casts. They found that information on the vertical profiles of the SDS was needed for
the DA system. Although satellite passive remote sensing can provide vertical observa-
tions, it is very expensive and data are often limited to low horizontal (e.g. 10×10 km2

for the Moderate Resolution Imaging Spectroradiometers (MODIS), Kaufman et al.,5

2002) and temporal resolutions (e.g. twice a day for polar orbiting satellites). Passive
instruments can only retrieve column-integrated aerosol concentration (Kaufman et al.,
2002). Spaceborne lidar promises to improve the vertical resolution of aerosol mea-
surements at the global scale (Winker et al., 2003; Berthier et al., 2006; Chazette et al.,
2010). Nevertheless, the spaceborne lidar measurements are only performed following10

the satellite ground track.
Thanks to the new generation of portable lidar systems developed in the past five

years, accurate vertical profiles of aerosols can now be measured (Raut and Chazette,
2007; Chazette et al., 2007). Such instruments document the mid and lower tropo-
sphere by means of aerosol optical properties. Lidar measurements were used in15

several campaigns, such as ESQUIF (Étude et Simulation de la Qualité de l’air en
Île-de-France) (Chazette et al., 2005), MEGAPOLI (Megacities: Emissions, urban, re-
gional and Global Atmospheric POLlution and climate effects, and Integrated tools for
assessment and mitigation) summer experiment in July 2009 (Royer et al., 2011) and
during the eruption of the Icelandic volcano Eyjafjallajökull on 14 April 2010 (Chazette20

et al., 2012). Raut et Chazette (2009) established a reliable relation between the mass
concentration and the optical properties of pollution aerosol. Thereby, the PM10 con-
centrations above urban area can be retrieved from a ground-based lidar system with
an uncertainty of about 25 %.

Because a lidar network with continuous measurements does not yet exist, lidar ob-25

servations have not yet been used for DA. This work aims to investigate the usefulness
of future ground-based lidar network on analysis and short-term forecasts of PM10.
Building and maintaining observing systems with new instruments is very costly, espe-
cially for ground-based lidars. Therefore, an Observing System Simulation Experiment
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(OSSE) can be used to effectively test proposed observing strategies before a field
experiment takes place, and it can provide valuable information for the design of field
experiments (Masutani et al., 2010).

An OSSE system is constituted by a twin run (i.e. an approximate atmosphere), sim-
ulated observations, and DA experiments. The twin run is usually a simulation from5

a high-resolution state-of-the-art model forecast, and is used to create observations
and validate DA experiments (Chen et al., 2011). OSSE systems are used for many ap-
plications, such as investigating the accuracy of diagnostic heat and moisture budgets
(Kuo et al., 1984), studying carbon dioxide measurements from the Orbiting Carbon
Observatory using a four-dimensional variational assimilation (Chevallier et al., 2007;10

Baker et al., 2010), demonstrating the data impact of Doppler wind lidar (Masutani
et al., 2010; Tan et al., 2007), defining quantitative trace carbon monoxide measure-
ment requirements for satellite missions (Edwards et al., 2009), comparing the relative
capabilities of two geostationary thermal infrared instruments to measure ozone and
carbon monoxide (Claeyman et al., 2011), evaluating the contribution of column aerosol15

optical depth observations from a future imager on a geostationary satellite (Timmer-
mans et al., 2009), studying the impact of observational strategies in field experiments
on weather analysis and short-term forecasts (Chen et al., 2011).

This paper is organised as follows. Section 2 provides a description of the DA
methodology used in this study. Section 3 describes the experiment setup, i.e. the20

chemistry transport model used and real observations. An OSSE system is built in
Sect. 4. Results of the OSSE are shown in Sects. 5 and 6. Sensitivity studies with
respect to the number and locations of lidar stations are conducted in Sect. 7. The
findings are summarised and discussed in Sect. 8.

2 Choice of DA method25

In an OSSE, DA is performed to couple model with simulated observations. Different
DA algorithms may be used, e.g. OI, reduced-rank square root Kalman filter, ensemble
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Kalman filter (EnKF) and four-dimensional variational assimilation (4D-Var). Wu et al.
(2008) have illustrated their limitations and potentials. They found that in the air quality
context the OI provides overall strong performances and it is easy to implement. In the
EnKF used in air quality, the model uncertainties are approximated by the statistics of
the ensemble generated by perturbing uncertain model parameters. It produces the5

best forecasts at the end of prediction periods. In terms of performance, the reduced-
rank square root Kalman filter is quite similar to EnKF. The strongly constrained 4D-Var
provides a moderate performance, because uncertainties are taken into account only
at the initial date of the assimilation window. On the other hand, the work of Denby
et al. (2008) compared two different DA techniques, the statistical interpolation method10

and EnKF, for assimilating PM10 concentration at the European scale. Denby et al.
(2008) showed that statistical interpolation (similar to OI or three-dimensional varia-
tional method) can be more effective than the EnKF.

In this paper, we use the OI as it is the simpler method for PM10 DA and it performs
well (Denby et al., 2008; Wu et al., 2008). Furthermore, the OI method can be used15

in operational mode for real-time forecast, as the computational cost of OI is low. It
was used by Tombette et al. (2009) and Pagowski et al. (2010) for DA of conventional
aerosol ground observation. In the OI method, DA is performed at the frequency of
measurements to produce analysed concentrations, which are closer to reality (mea-
surements) than forecasts and which are used as initial conditions for the next model20

iteration. The equations to compute the analysed concentrations from the model con-
centrations are given in Tombette et al. (2009). They require the specification of the
background and observation error covariance matrices (see Sects. 4.2, 4.4 and 5).
The background error covariance matrix determines how the corrections of the con-
centrations should be distributed over the domain during DA. The observation error co-25

variance matrix specifies instrumental and representativeness errors. As in Tombette
et al. (2009), after DA of PM10 concentrations, the analysed PM10 concentrations are
redistributed over the model variables following the initial chemical and size distribu-
tions.
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3 Experimental setup

3.1 Model

For our study, the chemistry transport model Polair3D (Sartelet et al., 2007) of the
air-quality platform Polyphemus, available at http://cerea.enpc.fr/polyphemus/ and de-
scribed in Mallet et al. (2007) is used. Aerosols are modelled using the SIze-REsolved5

Aerosol Model (SIREAM-SuperSorgam), which is described in Debry et al. (2007)
and Kim et al. (2011b). SIREAM-SuperSorgam includes 20 aerosol species: 3 pri-
mary species (mineral dust, black carbon and primary organic species), 5 inorganic
species (ammonium, sulfate, nitrate, chloride and sodium) and 12 organic species. It
models coagulation and condensation. Five bins logarithmically distributed over the10

size range 0.01–10 µm are used. The gas chemistry is solved with the chemical mech-
anism CB05 (Carbon Bond version 5) (Yarwood et al., 2005). Polair3D/SIREAM has
been used for several applications. For example, it was compared to measurements
for gas and aerosols over Europe by Sartelet et al. (2007) and Kim et al. (2010), and it
was compared to lidar measurements over Greater Paris by Royer et al. (2011).15

3.2 Input data

The modelling domain covers Western and part of Eastern Europe ([10.5◦ W,
23◦ E]× [35◦ N, 58◦ N]) with a horizontal resolution of 0.5◦ ×0.5◦. Nine vertical levels
are considered from the ground to 12 000 m. The heights of the cell interfaces are 0,
40, 120, 300, 800, 1500, 2400, 3500, 6000 and 12 000 m. The simulations are carried20

out for one month from 15 July to 15 August 2001, with a time step of 600 s. Mete-
orological inputs are obtained from reanalysis provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF). Anthropogenic emissions of gases and
aerosols are generated with the EMEP inventory for 2001. For gaseous boundary con-
ditions, daily means are extracted from outputs of the global chemistry-transport model25

MOZART2 (Model for OZone And Related chemical Tracers version 2) (Horowitz et al.,
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2003). For aerosol boundary conditions, daily means are based on outputs of the God-
dard Chemistry Aerosol Radiation and Transport model (GOCART) for the year 2001
for sulfate, dust, black carbon and organic carbon (Chin et al., 2000; Sartelet et al.,
2007).

3.3 Observational data5

In this paper, as in Sartelet et al. (2007) and Tombette et al. (2009), we use the locations
of stations of two ground databases for the comparisons to ground data measurements:

– the EMEP database, available on the EMEP Chemical Co-ordinating Centre
(EMEP/CCC) website at http://www.emep.int/;

– the AirBase database, available on the European Environment Agency (EEA)10

website at http://air-climate.eionet.europa.eu/databases/airbase/. Note that the
traffic and industrial stations are not used, because the simulation horizontal scale
(0.5◦ ×0.5◦) can not be representative of these stations types.

In 2001, PM10 concentrations are provided on a daily basis at EMEP stations, against
an hourly basis at most AirBase stations. Moreover, data are provided at only 27 EMEP15

stations, against 509 AirBase stations. Therefore, the EMEP network is only used for
the performance assessment of the “true” atmospheric state, whereas the AirBase
network is used for the performance assessment of “true” atmospheric state, for as-
similations and for evaluating the results of DA experiments in OSSE. Figure 1 shows
the location of the EMEP and AirBase stations used in this study.20

In this work, a network of 12 ground-based lidar stations is defined, as shown in
Fig. 1, using the nine existing locations of the Lidar Environmental Observations NET-
work (LEONET, http://leo-net.eu/) and adding 3 fictitious stations in order to cover well
Western Europe.
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4 Observing system simulation experiment

4.1 Twin run

An important aspect of observation impact experiments of yet non-existing observing
systems is the need for an atmospheric state for the simulation of the new observ-
ing system. Since the true atmosphere is inherently unknown, a synthetic atmosphere5

state, in the remainder denoted “truth”, needs to be defined. In an OSSE, the “true”
state is used to create the observational data from existing and future instruments. In
this paper, the “truth” is obtained from a simulation, called twin run, performed between
00:00 UTC 15 July to 00:00 UTC 15 August 2001 using the model (Kim et al., 2010,
2011a) and the input data described in the previous section. Here, we first evaluate the10

results of this simulation with the AirBase and EMEP networks.
The statistical indicators used to evaluate PM10 concentrations are: the Root Mean

Square Error (RMSE), the (Pearson) correlation, the Mean Fractional Error (MFE), the
Mean Fractional Bias (MFB). Let {oi}i=1,n and {si}i=1,n be the observed and the mod-
elled concentrations, respectively. Let n be the number of available observations. The15

statistical indicators are defined as follow:

RMSE =

√√√√1
n

n∑
i=1

(oi − si )2, (1)

correlation =

∑n
i=1(oi − ō)(si − s̄)√∑n

i=1(oi − ō)2
∑n

i=1(si − s̄)2

, (2)

MFE =
1
n

n∑
i=1

|si −oi |
(si +oi )/2

, (3)

MFB =
1
n

n∑
i=1

si −oi

(si +oi )/2
, (4)20
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where ō = 1
n

∑n
i=1oi and s̄ = 1

n

∑n
i=1 si .

According to Boylan and Russel (2006), if both the MFB (%) and MFE (%) are in
[−30%, 30%] and [0, 50%], respectively, then the model performance goal is met; if
both the MFB and MFE are in [−60%, 60%] and [0, 75%], respectively, the model
performance criterion is met. As shown in Table 1, for PM10, the model performance5

criterion is met for the two networks, whereas for PM2.5 (particulate matter with a di-
ameter smaller than 2.5 µgm−3) both the model performance goal and criterion are
met for the two networks, suggesting that this simulation compares well to observa-
tions. Furthermore, as shown in Fig. 2, the spatial distribution of PM10 concentration
corresponds to previously published results (Sartelet et al., 2007). Even though, for an10

OSSE study, the accuracy of the twin run compared with real observations is usually
not a major concern, the twin run should produce typical features of the phenomena
of interest. This “true” simulation is subsequently used for the creation of observations
from the observing system under investigation and will also be used to evaluate the
results of DA experiments (see Sects. 5, 6 and 7).15

4.2 Simulated observations and error modelling

After defining the “truth”, it is used to calculate the “true” states (e.g. concentrations)
of the future ground-based lidar network and the existing network AirBase. For exam-
ple, Fig. 3 shows the “true” state of PM10 at two arbitrary chosen lidar stations: Madrid
(Perez et al., 2004) and Saclay (Raut et Chazette, 2009). We find that the high PM1020

concentrations in Madrid are mostly made of Sahara dust. The “true” state at each
station is perturbed depending on estimated observation errors. For the network Air-
Base, the observation errors correspond to the representativeness errors, and they
are estimated to be about 35 %. For the ground-based lidar network, the observation
errors include the representativeness errors (about 35 %) and the instrumental errors,25

which are estimated to be about 25 % for PM10 concentrations obtained from lidar ob-
servations (Raut et Chazette, 2009). These instrumental errors are linked to errors in
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estimating the extinction coefficients using the inversion of the lidar signal (Klett et al.,
1981) and extinction coefficient cross sections. The covariance between the represen-
tativeness and instrumental errors is set to zero since they are independent. Finally, the
observation errors of the concentrations obtained from the lidar network are estimated
to be about 43 % (the square root of the sum of the representativeness error variance5

and the instrumental error variance,
√

35%2 +25%2).
After defining the observation errors, the observations obtained from the “true” state

are perturbed as now explained. For each station, let x be a vector, whose compo-
nent xi is a hourly mean concentration and i depends on vertical level and time. The
perturbation is implemented as follows:10

– Define the observational error covariance matrix Σ by the Balgovind approach
(Balgovind et al., 1983). The error covariance between two points is

f (dv,dt) = e
(

1+
dv

Lv

)
exp

(
−
dv

Lv

)
×
(

1+
dt

Lt

)
exp

(
−
dt

Lt

)
, (5)

where e is the observational error variance, dv is the vertical distance between the
2 points, dt is the temporal difference between the 2 points, Lv = 200 m and Lt = 215

h are the vertical and temporal correlation lengths. Clearly, each component of
the covariance matrix depends smoothly on the altitude of the points and time.

– Use the Cholesky decomposition:

Σ = CCT, (6)

where C is a lower triangular matrix with strictly positive diagonal entries.20

The perturbation of x is then

x′ = x+Cγ, (7)
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where γ is a random vector whose components are a standard normal distribution.
Figure 4 shows an example of perturbations at an arbitrary chosen station. We can see
that the perturbations depend continuously on the vertical level and the time thanks to
matrix C. The perturbed observations are subsequently used for the assimilation of the
ground-based lidar network and AirBase.5

4.3 Control run

The control run is a simulation that stands the best modellers’ effort to represent the
atmosphere with their model. If the same model is used for both the twin run and the
control run, this is called an identical twin OSSE; if the twin run model is a different
version of the control run model, the OSSEs are called fraternal twin OSSEs (Liu et al.,10

2007; Masutani et al., 2010). The identical twin OSSEs are easy to set up. Under the
identical twin scenario, the numerical model becomes perfect (i.e. no model error); this
is counter to what happens in reality (i.e. models are never perfect) and the identical
twin OSSEs usually overestimate the impact of observations on model forecasts (Chen
et al., 2011). We follow a “perfect model” OSSE setup, in which the model used to15

generate the “true” observations is the same as the one used in the control run and
DA. Input data, such as meteorological fields, emissions (Edwards et al., 2009) or
initial conditions (Liu et al., 2007) have therefore to be perturbed. In order to be able
to interpret more easily the results, we choose to perturb only initial conditions. This
allows us to avoid the complications of defining model errors, and the only source of20

forecast errors comes from the initial conditions.
Because of the identical twin relationship between the twin and control runs, the im-

pact of PM10 DA may be over-optimistic, but it will be so for both ground observations
and lidar observations. As in Sect. 4.2, we use the Balvogind approach (Balgovind
et al., 1983), the Cholesky decomposition and the normal distribution to perturb all25

model concentrations (gaseous and aerosols). In air quality models, the impact of ini-
tial conditions on PM10 concentrations lasts for a few hours to a few days at most.
Perturbing both initial gaseous and aerosol of species allow us to increase the duration
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of this impact. As shown in Fig. 5, there are higher differences between “true” and
perturbed PM10 concentrations in certain parts of Europe than others. The principal
reason is the normal distribution. It can produce very high or low concentrations in one
grid cell. The perturbed initial conditions are not necessarily consistent with the true
state of atmosphere, but they are suitable for our experiments with DA.5

4.4 Parameters of the DA runs

The experiments consist of two steps: the DA analysis part and the forecast. During
the assimilation period, say between [t0, tN ], at each time step, the observations are
assimilated. During the subsequent forecast period, say between [tN+1, tT ], the aerosol
concentrations are obtained from the model simulations initialised from the analysed10

model state at tN .
Since only the initial conditions are perturbed in our experiments (see Sect. 4.3),

the difference between two forecasts initialised with different initial conditions only lasts
for a few days. For the choice of tN , Fig. 6 compares the RMSE between the true
observations and the forecast concentrations from 18 July at 01:00 UTC to 20 July at15

00:00 UTC, obtained for different assimilation periods varying from 6 h to 3 days and
always ending at 00:00 UTC 18 July. The longer the assimilation period is, the lower
the RMSE is. An assimilation period of 12 h seems a good compromise between a low
RMSE and a short assimilation time.

Two DA runs are performed in our OSSE, depending on whether ground or vertical20

observations are assimilated. The simulations use the same setup as the one of the
control run. We use the perturbed PM10 observations that are produced by the twin run
(see Sect. 4.2). The first DA run uses only simulated data at AirBase stations. DA is
performed from the first level (20 m above the ground) to the sixth level (1950 m above
the ground) of the model. The second DA run uses only the ground-based lidar network25

simulated data. DA is performed from the third level (210 m above the ground; Raut et
Chazette, 2009; Royer et al., 2011) to the sixth level (1950 m above the ground).
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In this paper, DA experiments are carried out for 27 five-day experiments between
15 July 2001 and 15 August 2001. The first experiment is from 15 to 19 July 2001,
the second one is from 16 to 20 July 2001, and so on until 15 August 2001. For each
experiment, the observation data are assimilated from 01:00 UTC to 12:00 UTC every
hour, thereafter the model runs and produces a forecast for the next four and half days.5

In the OI method, the background and observation error covariance matrices need to
be set and are crucial for the success of the method. The observation error covariance
matrix depends on the observational error variance, which varies with vertical levels.
For ground measurements, we set the error variance to be 20 µg2 m−6, the square of
35 % (see Sect. 4.2) of PM10 concentration averaged over AirBase stations. For lidar10

measurement, we set the error variance to be the square of 43 % (
√

35%2 +25%2,
see Sect. 4.2) of PM10 concentration averaged over lidar stations for each level from
the third level to the sixth level, which is respectively 28, 24, 16 and 5 µg2 m−6.

In the Balgovind parametrisation of the background error covariance matrix (Wu
et al., 2008; Tombette et al., 2009), the variance v is set to 60 µg2 m−6, which is obtained15

from the difference between the twin run and the control run. The correct specification
of the background error correlations is crucial to the quality of the analysis, because
they determine to what extent the background fields will be corrected to match the
observations. The horizontal correlation length and the vertical correlation length are
two parameters of the Balgovind approach. The next section details the choice of the20

horizontal and vertical correlation length.

5 Choice of the horizontal and vertical correlation lengths

While the definition of background error correlations are relatively trivial, since they
correspond to the difference between the background state and the true state, the
true atmospheric state is never exactly known. For the choice of the horizontal cor-25

relation length Lh and the vertical correlation length Lv, the National Meteorological
Center (NMC) method (Parrish and Derber, 1992) is thus used. The background error
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is estimated by the differences of PM10 concentrations between two simulations. The
two simulations start with the same initial conditions and last 24 h. A 24 h forecast is
performed in the first simulation, while AirBase data of PM10 concentrations are assim-
ilated hourly in the second simulation. In the analysis, the background error covariance
matrix is assumed to be a diagonal matrix to avoid making an issue of special error5

correlations used in the NMC method. In order to eliminate potential bias due to the
diurnal cycle, 24 h forecasts are issued at 00:00 UTC and 12:00 UTC. This estimation
of the background error is performed for 27 consecutive days from 15 July 2001 at
00:00 UTC and 12:00 UTC.

To estimate the horizontal correlation length, at each model level, we calculate the10

covariance value for each grid point pair. We then obtain a cloud of covariance values.
The covariance clouds are averaged within continuous tolerance regions. The length
of the tolerance region is set to 4 grid units, so that there are enough grid point pairs
for each tolerance region. Thus, Lh is estimated at all model levels by a least-square
fitting of Balgovind functions to the curves of the regionalized covariances. Figure 715

shows the horizontal correlation length Lh of the background error covariance matrix
at 00:00 UTC and 12:00 UTC. The variation of the horizontal correlation length is com-
parable to meteorology (Daley, 1991). The horizontal correlation length is relatively
constant in the boundary layer, and it is about 4 grid units (200 km). Above the bound-
ary layer, the horizontal correlation length decreases rapidly. In the DA experiments,20

we should therefore use a horizontal correlation length scale of 200 km. Similarly to
the horizontal correlation length, we find that the vertical correlation length Lv is about
250 m at the ground level.

Although the NMC method gives us estimates of the horizontal and vertical corre-
lation lengths, DA tests with different correlation lengths are performed to assess the25

optimum lengths, i.e. the lengths which lead to the best forecast. The different tests
performed are summarised in Table 2. Assimilation is performed with three different
horizontal lengths: Lh = 50 km, Lh = 200 km and Lh = 400 km. For AirBase DA, assim-
ilation is also performed with three different vertical correlation lengths: Lv = 250 m,
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Lv = 1500 m and Lv varying between nighttime and daytime. Because lidar can give
us aerosol vertical profiles, we do not consider Lv in the background error covariance
matrix (we assume Lv = 0). Moreover, column DA tests with different Lv show that
Lv 6= 0 does not lead to a better forecast for the column DA run. The scores (RMSE
and correlation) calculated over land grid points from the ground level to the sixth level5

(1950 m above the ground) are shown in Fig. 8. For AirBase DA, choosing Lv = 1500 m
(DA test 3) leads to better scores (lower RMSE and lower correlation) than choosing
Lv = 250 m (DA test 2), as estimated from the NMC method. Choosing Lv = 50 m in the
nighttime and Lv = 1500 m in the daytime (DA test 4) does not lead to better scores
than Lv = 1500 m (DA test 3). A possible explanation is that the particles are mixed by10

turbulence more effectively in the model than in the true state of the atmosphere. The
comparison of DA tests 1, 3 and 5 for AirBase and DA tests 6, 7 and 8 for the lidar
network shows that Lh = 200 km, as estimated from the NMC method, leads to good
scores. The scores are better than with Lh = 50 km, and similar to those obtained with
Lh = 400 km.15

We also studied the sensitivity of the results to the maximum altitude at which PM10
DA is performed during the column DA. We tested the column DA until the eighth level
(4750 m above the ground) instead of the sixth level (1950 m above the ground). We
found a limited difference in the PM10 forecast at the ground level. It is mostly because
the planetary boundary layer (PBL) is usually less than 2000 m, and PM10 concentra-20

tions above the PBL have limited impacts on surface PM10. PM10 concentrations at
higher levels are low (Royer et al., 2011).

6 Comparison between AirBase and 12 lidars network DA

In the following, we compare the DA test 3 for AirBase (Lh = 200 km and Lv = 1500 m)
and the DA test 7 of Fig. 8 for lidar network (Lh = 200 km and Lv = 0).25

Globally, the simulations with DA lead to better scores (lower RMSE and higher cor-
relations) than the simulation without DA. But as shown in Tombette et al. (2009), the
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assimilation procedure has almost no impact on PM10 concentrations after several days
of forecast, because assimilation influences only initial conditions and the influence of
initial conditions on PM10 concentrations does not last for more than a few days. The
AirBase DA forecast has always better scores than the column DA forecast in the first
several hours of assimilation (to the left of the black line). This may be explained by the5

fact that the AirBase DA run assimilates from the first level of the model (20 m above
the ground) to the sixth level (1950 m above the ground) and the column DA run assim-
ilates from the third level (210 m above the ground) to the sixth level (1950 m above the
ground). It takes several hours for the column DA to influence ground concentrations.

However, during the forecast period, the RMSE of the column DA run decreases10

faster than the AirBase DA run (to the right of the black line). After 24 h forecast, the
column DA has better scores than the AirBase DA run. It is mostly because the impact
of the column DA run is higher than the AirBase DA run’s at high levels.

Figure 9 shows the RMSE for the PM10 forecast without DA, with the AirBase DA
and with the column DA for each one-day forecast period between 15 July and 10 Au-15

gust. Assimilation improves the forecast RMSE for each forecast. The averaged RMSE
over all forecasts is 9.1 µgm−3 without DA, 3.7 µgm−3 (decreased about 59 %) with the
AirBase DA and 4.2 µgm−3 (decreased about 54 %) with the column DA. Although the
AirBase DA leads to lower RMSE than the column DA for most forecasts, the column
DA can also lead to lower or similar RMSE as the AirBase DA for some forecasts, e.g.20

the forecasts starting 19, 20, 21, 23, 26 July and 3, 5, 8 August. It is mostly because
the lidar network provides more accurate informations than AirBase on those days at
high altitude, e.g. Sahara dust in Madrid as shown in Fig. 3 (upper panel). Figure 10
shows the RMSE for the PM10 forecast without DA, with the AirBase DA and with the
column DA during the second forecast day for each experiment between 15 July and25

10 August. The averaged RMSE over all forecasts is 6.1 µgm−3 without DA, 2.7 µgm−3

(decreased about 56 %) with the AirBase DA and 2.6 µgm−3 (decreased about 57 %)
with the column DA. Moreover, the column DA leads to lower or similar RMSE as the
AirBase DA for most forecasts. The results show a potentially powerful impact of lidar

23307

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/23291/2012/acpd-12-23291-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/23291/2012/acpd-12-23291-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 23291–23331, 2012

Data assimilation

Y. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

networks (12 stations) compared to ground networks (488 stations) to improve PM10
forecast. We will study the sensitivity to the number and to the lidars locations in the
next section.

7 Sensitivity to the number and position of lidars

In this section, we study the sensitivity of the results to the number and to the locations5

of lidars. Forecasts after DA with four different lidar networks are compared to DA with
the previously-used lidar network (blue discs in Fig. 11). DA is performed with another
lidar network of 12 lidar stations (denoted Network 1, yellow discs in Fig. 11), with
a lidar network of 26 stations (denoted Network 2, magenta diamonds in Fig. 11), with
a lidar network of 76 stations (denoted Network 3, cyan thin diamonds in Fig. 11) and10

DA with a lidar network made of all AirBase stations over Western Europe (denoted
Network 4, the red triangles in Fig. 1).

Figures 12 and 13 show the time evolution of the RMSE and the correlation respec-
tively, averaged over all land grids and the vertical for the different tests. Comparing the
previously-used lidar network with Network 1 in Fig. 11, we can see that although they15

have the same number of stations, the locations are very different. Network 1 stations
are better spread out over Europe than the previously-used lidar network. Network 1
leads to better scores in the first forecast day than the reference network. This shows
that the lidar stations need to be regularly distributed over Europe to globally improve
the PM10 forecast. The lidar networks 2, 3 and 4 which have more lidar stations perform20

better (lower RMSE, higher correlation) than the two others. The lidar network 2 DA run
has less than 0.15 µgm−3 of RMSE higher than AirBase DA at the beginning of forecast
window and has better score than AirBase DA run after several hours forecast. If one
increases the number of lidar stations from 26 to 76, the lidar network 3 DA run has
better scores than AirBase DA run at the beginning of forecast window and has better25

scores than AirBase DA during the forecast days. One introduces the lidar network 4 to
show that increasing the number of lidars from 76 to about 500 can always improve the
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forecast scores. Although increasing the number of lidar gives better forecast scores,
such lidar networks may be too expensive.

8 Conclusions

In order to investigate the potential impact of a ground-based lidar network on short-
term forecasts of PM10, an OSSE has been implemented. We have compared the5

impacts of assimilating ground-based lidar network data to assimilating the AirBase
surface network data. The results shown in this paper suggest that the assimilation of
lidar observation would improve PM10 forecast over Europe. Because we made sev-
eral simplifying assumptions: we used an identical twin scenario (perfect model) and
assumed uncorrelated observational errors, the PM10 improvements from assimilating10

lidar and ground observations may be over optimistic. The RMSE between one-day
forecast and the truth states is improved on average over the summer month from 15
July to 15 August 2001 by 54 % by the lidar DA if 12 lidars are used, against 59 % by the
AirBase DA. During the second forecast day, the RMSE is improved on average over
the summer month from 15 July to 15 August 2001 by 57 % by the lidar DA, against15

56 % by the AirBase DA.
A sensitivity analysis has also been conducted on the number and locations of lidars.

We found that spreading out the lidars regularly over Europe can improve the PM10
forecast. The RMSE between one-day forecast and the truth states is improved on
average over the summer month from 15 July to 15 August 2001 by 57 % by the lidar20

DA if 12 lidars optimised are used, against 59 % by the AirBase DA. Although increasing
the number of lidar improves the forecast scores, a lidar network with many stations
may be too expensive.

The main purpose of this work was to demonstrate the potential impact of a ground-
based lidar network on short-term forecasts of PM10. Because we did not have enough25

available lidar observations in Western Europe, we did not perform DA with a combina-
tion of real lidar and AirBase observations. A relation between mass concentration and
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optical properties of aerosols was used. Such relation has been determined for pol-
lution aerosols over Greater Paris. However, it needs to be generalised to other mea-
surement sites. For future works, we will use real measurements from lidar stations,
directly assimilating the lidar signals in the chemistry transport model and performing
DA with a combination of lidar and AirBase observations.5
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Table 1. Statistics of the simulation results for the AirBase and EMEP networks from 15 July
to 14 August. Ammon. stands for ammonium. Obs. stands for observation. Sim. stands for
simulation. Corr. stands for correlation.

Species Database Stations Obs. mean Sim. mean RMSE Corr. MFB MFE
µgm−3 µgm−3 µgm−3 % % %

PM10 AirBase 419 22.5 12.7 17.3 35 −47 69
EMEP 27 18.8 12.3 9.6 67 −39 48

PM2.5 AirBase 3 11.2 13.1 8.7 45 7 44
EMEP 18 13.2 11.5 7.2 64 −16 45

Sulfate AirBase 11 2.2 3.0 1.7 59 41 60
EMEP 51 2.9 2.6 1.7 61 −3 45

Nitrate AirBase 8 2.8 5.1 4.0 51 23 72
EMEP 13 1.7 2.2 1.9 20 −16 78

Ammon. AirBase 8 1.7 2.5 1.3 62 28 43
EMEP 8 1.6 1.8 1.1 39 6 47

Sodium EMEP 1 1.4 2.4 1.6 82 44 52
Chloride AirBase 7 0.6 2.2 1.9 70 1 1
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Table 2. DA tests with different configurations for Balgovind Scale Parameters.

Simulation name AirBase DA Column DA Lh (km) Lv (m)

DA test 1 × 50 1500
DA test 2 × 200 250
DA test 3 × 200 1500
DA test 4 × 200 50 (nighttime)

1500 (daytime)
DA test 5 × 400 1500
DA test 6 × 50 0
DA test 7 × 200 0
DA test 8 × 400 0
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Fig. 1. The green squares show the locations of EMEP stations, the red triangles show the
locations of AirBase stations, and the blue discs show the locations of the lidar network.
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Fig. 2. Mean concentrations of PM10 over Europe (in µgm−3). It ranges from 6 µgm−3 (dark
blue) to 34 µgm−3 (dark red).
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Fig. 3. The “true” state of PM10 from 01:00 UTC 15 July to 00:00 UTC 15 August 2001 at the
lidar stations Madrid (upper panel) and Saclay (lower panel). Dark and red colours correspond
to high and low PM10 concentrations, respectively.
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Fig. 4. Perturbation at a random AirBase station from 15 July to 15 August 2001 at from first
to last vertical level of the model. The blue lines show the “true” PM10 concentrations (µgm−3).
The green lines show the simulated PM10 concentrations (µgm−3).
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Fig. 5. Differences between “true” and perturbed PM10 concentration at 00:00 UTC 15 July
2001 from first to last vertical level of the model. Differences (µgm−3) vary from negative values
in dark blue colour to positive values in dark red colour.
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Fig. 6. RMSE (in µgm−3) between the real observation and forecast concentrations from 18 July
to 20 July against assimilation period (in days).
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Fig. 7. The blue (resp. red) line shows the horizontal correlation length Lh at 00:00 UTC (resp.
12:00 UTC) versus altitude. Note that a grid unit is about 50 km.
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Fig. 8. Top (resp. bottom) figure shows the time evolution of the RMSE (resp. correlation) of
PM10 averaged over the different DA tests from 15 July to 10 August 2001. The forecast is
performed either without DA (red lines), or after AirBase DA or after column DA. Tests 1 to
5 correspond to AirBase DA, while tests 6 to 8 correspond to column DA. The correlation
lengths are Lh = 50 km and Lv = 1500 m for test 1 (magenta lines), Lh = 200 km and Lv = 250 m
for test 2 (blue lines), Lh = 200 km and Lv = 1500 m for test 3 (green lines), Lh = 200 km and
Lv = 50 m in the nighttime and Lv = 1500 m in the daytime for test 4 (grey lines), Lh = 400 km
and Lv = 1500 m for test 5 (black dashed lines), Lh = 50 km and Lv = 0 for test 6 (cyan lines),
Lh = 200 km and Lv = 0 for test 7 (yellow lines), Lh = 400 km and Lv = 0 for test 8 (black lines).
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Fig. 9. RMSE (in µgm−3) for PM10 one-day forecast without DA (white columns), with the Air-
Base DA (grey columns) and with the column DA (blue columns).
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Fig. 10. RMSE (in µgm−3) for PM10 second forecast day without DA (white columns), with the
AirBase DA (grey columns) and with the column DA (blue columns).
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Fig. 11. Four potential lidar networks in Europe. The blue discs in the top figure show the
locations of the reference lidar network. The yellow discs in the top figure show the locations
of the lidar Network 1. The magenta diamonds in the bottom figure show the locations of the
lidar Network 2. The cyan thin diamonds in the bottom figure show the locations of the lidar
Network 3.
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Fig. 12. Hourly evolution of the RMSE (in µgm−3) of PM10 averaged over the different experi-
ments from 15 July to 10 August 2001. The runs are performed without DA (red line), with Air-
Base DA (green line), with the reference lidar network DA (12 stations, blue line), with Network
1 DA (12 stations, yellow line), with Network 2 DA (26 stations, magenta line), with Network 3
DA (76 stations, cyan line) and with Network 4 DA (488 stations, black line).
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Fig. 13. Hourly evolution of the PM10 correlation averaged over the different experiments from
15 July to 10 August 2001.The runs are performed without DA (red line), with AirBase DA
(green line), with the reference lidar network DA (12 stations, blue line), with Network 1 DA (12
stations, yellow line), with Network 2 DA (26 stations, magenta line), with Network 3 DA (76
stations, cyan line) and with Network 4 DA (488 stations, black line).
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