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Supplementary Information:
1. Contributions to heterogeneous nucleation flux

The separation of the heterogeneous nucleation flux into “drift” and “diffusion in cluster
size space” contributions is described in a number of earlier works in classical nucleation theory
(Frenkel, 1946; Goodrich, 1964; Shizgal and Barrett, 1989; Ruckenstein and Nowakowski, 1990)
and textbooks (Friedlander, 2000; Seinfeld and Pandis, 2006). A similar separation is also given
in McGraw (McGraw, 2001). The separation of the flux following earlier works is briefly
described below (Goodrich, 1964; Ruckenstein and Nowakowski, 1990). The net flux from
clusters with g condensed molecules to those containing g+1 condensed molecules is (Seinfeld
and Pandis, 2006):

Jg =By Ty =7guafgun (S1)

Based on the continuum approximation, J is approximated as a continuous function of g, and the
gradient in Jy with respect to g is given by:
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Performing a second order Taylor expansion of the 2" and third term of the right hand side of
Eqg. (S2) gives:
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Combining Egs (S2) and (S3) gives:
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Integrating the above equation (S4) gives the desired separation of the flux into contributions
from the drift in the force field and diffusion in cluster size space:
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DIFFUSION IN CLUSTER SIZE SPACE (85)
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2. Comparison of GRyrirt and GRong

The size-dependent per-particle condensation rate 3, is given by (Seinfeld and Pandis, 2006):
s 2 _

B, = Z(Dp + Dm) cC. (S6)

The size-dependent per-particle evaporation rate is related to the condensation rate by (Seinfeld
and Pandis, 2006):
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where aq is the surface area of the growing cluster consisting of the initial cluster (seed) and g
monomers of condensate. Letting Ds denote the size of the initial cluster, the size of the growing
cluster is:

3
D, =(D{ + gDy
Given its small volume, addition of a monomer leads to a small increase in cluster diameter.

Employing the continuum approximation at large g, we have:
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Similarly, the gradient of the size of the growing cluster is given by:
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Inserting equation (S8) into equation (S7), v, can be written as:
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= ex ~ ex
T PTa )T e, P
(S10)
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Combining equations (S6), (S9), and (S10), we can show that the traditional condensation

growth rate is essentially the contribution of drift term to the total growth rate:

ORu = (V,0,)(3, —74) = 527 (D, +D) 5
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