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SI-1 Measurement sites location   50 
 51 
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Figure SI-1: Measurement sites location: Google Earth satellite image of the greater Paris 81 
region in the Northeastern part of France.  82 
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SI-2 Bounce efficiency estimation 92 
 93 
The AMS collection efficiency (CE) has been defined as the product of  Eb*E l*Es, where 94 
Eb is the bounce efficiency, El corresponds to the losses in the aerodynamic lenses and Es 95 
represents the losses due to particles shape (non spherical particles are less efficiently 96 
focused compared to spherical ones). Since we assume most of the CE is associated to the 97 
bounce efficiency, in the following we will refer to Eb instead of CE.  98 
The AMS bounce efficiency (Eb) depends on particle transmission through the 99 
aerodynamic lens, their focusing onto the vaporizer, and the probability of flash 100 
vaporization. Therefore Eb depends on both particle aerodynamic size and composition. 101 
For quantitative mass concentrations within the AMS transmission window, the most 102 
important consideration is the vaporization probability. Eb represents the fraction of 103 
particles that are vaporized, with other particles bouncing off the heated surface without 104 
vaporizing, or vaporizing too slowly for detection (Matthew et al., 2008). 105 
For particles near the mode of the mass distribution, Eb is primarily affected by the 106 
particle composition. Typical values for ambient particles are ~0.5, with higher values 107 
observed for acidic particles and particles with high water and/or nitrate content. Eb has 108 
recently been parameterized in terms of these quantities and a parameterization of Eb as a 109 
function of the NO3 content has been calculated in this work for comparison purposes 110 
(Middlebrook, 2012).   111 
Eb can also be estimated by comparison of AMS data to external measurements. Note that 112 
this is not a fully quantitative method of calculating Eb, as the other instruments may have 113 
their own biases or uncertainties. Additionally, such comparisons are complicated by the 114 
differences in size-dependent particle transmission between instruments. Because of these 115 
complications, we adopt Eb=0.5 unless the comparisons provide evidence to the contrary. 116 
Here the AMS inorganic and organic mass concentrations are compared to PILS and off-117 
line filter measurements for the SIRTA and LHVP sites with a cutoff of PM2.5 (Figure SI-118 
2d, Figure SI-2f and Figure SI-4). In addition the AMS estimated volume, calculated 119 
assuming a composition-dependent density for the AMS species (Org=1.27 g/cm3; 120 
SO4=1.78 g/cm3; NO3=1.72 g/cm3; NH4=1.75 g/cm3; Chl=1.4 g/cm3) (Duplissy et al., 121 
2011), has been related to the measured SMPS (scanning mobility particle sizer) and 122 
TDMPS (tandem differential mobility particle sizer) volumes after the subtraction of the 123 
estimated BC volume (assuming a density of 1.77 g/cm3) for the SIRTA and LHVP sites 124 
(Figure SI-2b and Figure SI-2e). The SMPS large-size cutpoint at SIRTA was 453 nm, 125 
while the TDMPS cutpoint at LHVP was ~800 nm. For the GOLF site the AMS mass is 126 
compared to TEOM (tapered-element oscillating microbalance) PM1 measurements 127 
(Figure SI-2a). 128 
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 138 
A comparison between total AMS mass and the PM1 mass concentration measured at the 139 
GOLF site by the TEOM-FDMS has been performed. Although the AMS to (TEOM 140 
minus MAAP) ratio is slightly lower than 0.5, Eb = 0.5 has been adopted for this dataset 141 
due to the higher size cut of the TEOM (PM1) and the AMS intercomparison results 142 
shown in SI-3. In addition, no NO3 dependence of Eb has been identified. 143 
 144 
 145 

 146 
Figure SI-2a: Eb estimation for the C-ToF at the GOLF site. 147 
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 165 
From the AMS vs. SMPS subtracted by the BC contribution volume comparison, the Eb 166 
is estimated to be 0.5. Although the two instruments have relatively similar cut points 167 
(SMPS cut off=453nm), the apparent presence of two Eb values (0.5 and 1) during 168 
different periods of the campaign are most probably associated to the role of the size 169 
distribution and higher mass concentrations which more strongly influence the AMS 170 
because of its transmission function for large particles. No NO3-dependent Eb could be 171 
inferred. In addition the comparison with the PILS measurements (PILS cut off equal to 172 
PM2.5) shows a good agreement between the two instruments after applying Eb=0.5 173 
(Figure SI-2d). The difference between the AMS and SMPS volumetric ratios is 174 
associated to a change in the particles density, as pointed out in Figure SI-2c, affecting 175 
the overlapping range of measurements of the two instruments. 176 
 177 
 178 

 179 
Figure SI-2b: Eb estimation for the HR-ToF-AMS at the SIRTA site. 180 
 181 
 182 
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 183 
Figure SI-2c: Eb estimation for the HR-ToF-AMS at the SIRTA site with the respect of 184 
calculated density.  185 
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Figure SI-2d: Inorganic species comparison at the SIRTA site. 207 
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 212 
A comparison of the AMS-estimated volume (cut off PM1) with the TDMPS (cut-off 213 
around 800 nm) BC volume subtracted is reported. Additional comparisons of AMS 214 
measurements with inorganic species from the PILS (cut off PM2.5) have been performed. 215 
From the agreements with the volume and inorganic species comparisons, the Eb has been 216 
assumed equal to 0.4.   217 
The application of a NO3 dependent Eb which could be inferred from Figure SI-2e 218 
(Middlebrook, 2012) causes a significant underestimation of the inorganic AMS species 219 
during the high mass concentration events when compared to the PILS measurements 220 
(Figure SI-2f).  221 
 222 
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Figure SI-2e: Eb estimation for the HR-ToF-AMS at the LHVP site.  226 
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 255 
Figure SI-2f: Inorganic species comparison at the LHVP site applying a nitrate dependent 256 
Eb to the AMS data. 257 
 258 
 259 
SI-3 AMS intercomparisons 260 
 261 
AMS intercomparison exercises were performed during the Paris campaign to determine 262 
measurement consistency among the different instruments. The intercomparisons were 263 
conducted at the three stationary sites involving also two HR-ToF-AMS deployed in two 264 
mobile laboratories. A detailed characterization of these two mobile laboratories can be 265 
found in Mohr et al. (2011) and in Drewnick et al.(2012). 266 
In the interpretation of the results, it is necessary to take into account the differences in 267 
the inlets and setups (therefore different temperature influence, losses etc.). A similar 268 
exercise was performed by Bahreini et al. (2009), and the total AMS variability was 269 
estimated at 30% (10% for different inlets, 20% for the ionization efficiency calibrations 270 
and 20% for the bounce efficiency).  271 
These comparisons are primarily necessary to identify periods in which significantly 272 
different mass concentration levels were measured at the 3 sites during the campaign. 273 
Moreover, the comparison of the mass spectra is necessary to evaluate if all the 274 
instruments have the same organic fragmentation pattern in order to allow the direct 275 
comparison of PMF results. Figures SI-3a, SI-3b, SI-3c, and SI-3d show the AMS species 276 
time series and mass spectra for each intercomparison exercise. Although it was not 277 
possible to compare directly side by side all the AMS deployed during the campaign, 278 
however it is possible to argue that also indirectly all the AMS agree within 30%. 279 
 280 
 281 
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During the whole campaign stationary measurements were performed at the SIRTA site 282 
deploying also the PSI mobile laboratory (Mohr et al., 2011), mainly over night or during 283 
the not mobile measurements periods. The Eb of the AMS operating in the PSI mobile 284 
laboratory and the one deployed at the SIRTA stationary site were both 0.5. The 285 
agreement of the inorganic compounds and the organics fragmentation is very good 286 
(maximum 10% of deviation), whereas 30% of difference can be identified in the 287 
organics time series.  288 
 289 
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 313 
Figure SI-3a: PSI mobile laboratory vs. SIRTA trailer (SIRTA intercomparison during 314 
the whole campaign). 315 
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During the whole campaign, at the GOLF site several comparisons between the AMS 328 
operating at the fixed site and the one deployed in the MPI mobile laboratory (Von der 329 
Weiden-Reinmüller, in preparation) were performed. Eb is for both instruments 0.5. The 330 
correlations of the times series and mass spectra are within the uncertainty range (30%). 331 
The low ion transmission efficiency of the C-ToF-AMS deployed at the GOLF stationary 332 
site has been taken into account with a scaling factor of 1.3 for the organic concentrations 333 
after the comparison with contemporary measurements performed with the HR-ToF-334 
AMS deployed at the same location.  335 
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Figure SI-3b: GOLF site comparisons (during the whole campaign). 361 
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During this exercise the MPI mobile laboratory and the LHVP stationary AMS were 374 
compared. Eb equal to 0.4 has been assumed for the LHVP AMS and 0.5 for the MPI 375 
mobile laboratory instrument. The AMS species time series agree within the uncertainty 376 
range (30%) (Bahreini et al., 2009), whereas the organics mass spectra are perfectly 377 
coherent. 378 
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Figure SI-3c: First intercomparison at LHVP site (25 Jan 2010).  405 
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A second intercomparison was performed at the LHVP site between the AMS deployed 420 
in the PSI mobile laboratory and the LHVP instrument located into the stationary trailer. 421 
The applied Eb for the PSI mobile van AMS is 0.5 and for the LHVP instrument is 0.4. 422 
The correlations of the AMS species time series and mass spectra are within 20% of 423 
deviation. 424 
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Figure SI-3d: Second intercomparison at LHVP site (1-2 Feb 2010). 451 
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SI-4 Organic carbon (OC) comparison between AMS and  filter 466 
measurements 467 
 468 
In Figure SI-4 comparison between the organic carbon (OC) evaluated using high 469 
resolution AMS data and the OC measured with the filter samples with 12 hours time 470 
resolution (PM2.5) is presented for the LHVP and SIRTA sites. In both cases the influence 471 
of the different size cut between the AMS and filters have to be taken into account. The 472 
two scatter plots present a very good linear correlation between the AMS and the filter 473 
data (R2=0.85 for the SIRTA site and R2=0.92 for the LHVP one). The AMS Eb assumed 474 
from the previous comparisons (0.5 for the SIRTA site and 0.4 for the LHVP instrument) 475 
has been applied to the AMS OC concentrations. 476 
 477 

 478 
Figure SI-4: Eb estimation: OC from AMS and filter measurements.  479 
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SI-5 PMF results in the f44 vs f43 triangle 490 
 491 
 492 
The identified source profiles from the PMF analysis for each measurement site are 493 
represented within the triangular space defined in figure SI-5.1 (Ng et al., 2010), where 494 
f43 and f44 are the organic fractional signals at masses 43 and 44.   495 
The purpose of Fig. SI-5.1 is to show that the identified organic sources can be grouped 496 
in different region of this triangular space, although some of the differences within each 497 
group of sources might be due to the deployment of different types of instruments (e.g. C-498 
ToF vs HR-ToF-AMS), different ion transmission and fragmentation etc. 499 
The BBOA components lie outside the left side of the triangle, the hydrocarbon 500 
components stay at the bottom base of the triangle due to their low oxidation state, 501 
whereas the cooking factors are in between the HOA and BBOA. Analogous results for 502 
the primary sources have been obtained through smog chamber experiments (Heringa et 503 
al., 2011). 504 
Oxidized OA moves upwards and to the left with age and oxygenation, while the OOA2-505 
BBOA fractions are less oxidized. Uncertainties associated with the deployment of three 506 
different AMS resulting in a variability of the mass spectra of each source separated by 507 
PMF at the three sites must be taken into account in the interpretation of the f44 vs. f43 508 
ratios (see also SI-6.6).  509 
 510 
 511 
 512 
 513 

514 
 Figure SI-5.1: PMF factors in the f44-f43 triangular space.  515 
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SI-6 PMF results  516 
 517 
SI-6.1 Q/Qexp criterion 518 
 519 
Q/Qexp plots show diminishing of this ratio around 3-4 factors. The theoretical Q/Qexp 520 
value is equal to 1.  521 
 522 
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 530 
 531 
Figure SI-6.1: Q/Qexp criterion for the choice of the number of factors.  532 
 533 
Figure SI-6.1: Q/Qexp for the three sites. 534 
 535 
 536 
SI-6.2 PMF solutions discussion 537 
 538 
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Figure SI-6.2.1: Mass spectra and time series associated with the 4 factors solution 555 
(SIRTA site). 556 
 557 
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Figure SI-6.2.2: Mass spectra and time series associated with the 5 factors solution 580 
(SIRTA site). 581 
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Figure SI-6.2.3: Mass spectra and time series associated with the 4 factors solution 599 
(GOLF site). 600 
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Figure SI-6.2.4: Mass spectra and time series associated with the 5 factors solution 625 
(GOLF site). 626 
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SI-6.3 Rotational ambiguity: fpeak variation 654 
 655 
The rotational ambiguity of the selected PMF solutions are explored for each site via the 656 
fpeak parameter in the range ±1. Fig. SI-4.3 shows the mean factor contributions for the 657 
convergent solutions within this range. Concerning both the GOLF and LHVP data, only 658 
fpeak ≤ 0 produced source profiles showing good agreement with literature spectra, 659 
whereas positive fpeaks were acceptable for the SIRTA dataset. 660 
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Figure SI-6.3: Relative factors contribution as function of the fpeak parameter. 683 
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SI-6.4 Local minima investigation: seeds variation 700 
 701 
 702 
To investigate the possibility of local minima in the PMF solution space, the algorithm 703 
was initialized using 50 different starting points (“seeds”). Figures SI-6.4.1, SI-6.4.2 and 704 
SI-6.4.3 show the variation of the relative sources contributions and of the Q/Qexp 705 
parameter as a function of seed for the SIRTA, LHVP and GOLF sites respectively. 706 
 707 
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Figure SI-6.4.1: Relative factors contribution as function of different seeds (SIRTA site). 738 
The solution is stable using 50 different starting points. 739 
 740 
The GOLF station seed analysis provided 2 groups of solutions characterized by different 741 
values of the ratio Q/Qexp, as shown in Fig. SI-6.4.2. The two groups of solutions are 742 
mostly similar (Fig. SI-6.4.3). However, those with “higher” Q/Qexp values are 743 
characterized by higher org44 in the HOA spectrum compared to the other group. In 744 
addition the switch between the 2 groups of solutions is associated also with different 745 
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interpretation of the PMF factors. Considering the “lower” Q/Qexp solutions the 746 
interpretation of the source spectra is OOA, HOA, BBOA, OOA2-BBOA and split of 747 
OOA2-BBOA moving from factor1 to factor5, whereas it is OOA, OOA2-BBOA, HOA, 748 
BBOA and split of OOA2-BBOA for the “higher” Q/Qexp ratios.  749 
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Figure SI-6.4.2: Relative factors contribution as function of different seeds (GOLF). 785 
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Figure SI-6.4.3: Mass spectra comparison of different Q/Qexp solutions (GOLF). 813 
 814 
 815 
 816 
 817 
 818 
The analysis of the seeds variation for the LHVP dataset gave 2 groups of solutions 819 
characterized by different values of the ratio Q/Qexp shown in Fig. SI-6.4.4. 820 
The solutions with “higher” Q/Qexp values are not completely physically meaningful 821 
since the BBOA spectrum does not show org44 in the mass spectrum and the OOA2-822 
BBOA profile is less clear than the one from the other group (Fig. SI-6.4.5). In addition a 823 
different interpretation of the PMF factors can be seen between the 2 groups of solutions. 824 
Considering the “high” Q/Qexp solutions the interpretation of the source spectra is OOA2-825 
BBOA, COA, HOA, BBOA and OOA moving from factor1 to factor5, whereas it is 826 
COA, OOA2-BBOA, OOA, HOA and BBOA for the lower Q/Qexp ratios.  827 
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Figure SI-6.4.4: Relative factor contributions as function of different seeds (LHVP). 864 
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Figure SI-6.4.5: Mass spectra comparison of different Q/Qexp solutions (LHVP). 899 
 900 
 901 
 902 
SI-6.5 PMF solution residuals 903 
 904 
Figures SI-6.5.1, SI-6.5.2, SI-6.5.3 represent the residuals of the PMF algorithm in terms 905 
of time series and mass spectra. Significantly important to evaluate the performance of 906 
the model are the scaled residuals graphs (both in terms of time series and mass spectra) 907 
which represent what the model was not able to describe. At all the three stations PMF 908 
residuals are on average quite low.  909 
 910 
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 911 
 912 
Figure SI-6.5.1: Residual time series and mass spectra (SIRTA). 913 
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Figure SI-6.5.2: Residual time series and mass spectra (GOLF). 962 
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Figure SI-6.5.3: Residual time series and mass spectra (LHVP). 969 
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SI-6.6 Tracers of cooking and biomass burning sources  976 
 977 
 978 
The relative contribution of the biomass burning factor separated by PMF at the three 979 
sites is compared with the fraction of organic60 to the total organic mass (f60), as 980 
sensitive quantity for BBOA.   981 
 982 
 983 

 984 
 985 
Figure SI-6.6.1: Relative contribution of organic60 as tracer of biomass burning aerosols. 986 
 987 
 988 
 989 
 990 
The relative contribution of the cooking factor separated by PMF at the SIRTA and 991 
LHVP sites is compared with the organic ratio at mass 55 to organic at mass 57 992 
(org55/org57). The ratio org55/org57 represents a robust marker for COA as introduced 993 
by Mohr et al. (2012). The contributions at organic masses 55 and 57 apportioned to the 994 
OOA factors have been subtracted when calculating the ratio org55/org57. 995 
 996 
 997 
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 998 
 999 
 1000 
Figure SI-6.6.2: Ratio of organic55 to organic57 as tracer of cooking aerosols. 1001 
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SI-6.7 Intercomparison of PMF solutions at the 3 si tes 1027 
 1028 
 1029 
A comparison of the PMF results obtained at the three sites in terms of mass spectra and 1030 
time series is represented in Figure SI-6.7.1. The mass spectra of the identified sources 1031 
are quite stable among the sites; however the differences at masses 15, 29 and 44 are 1032 
most probably associated to the use of several AMS, as discussed in section SI-3. 1033 
Oxidized organic aerosols indicate a homogeneous temporal variation over the Parisian 1034 
region, while the role of local primary emission sources can be identified in the time 1035 
variability of HOA and COA. The wood burning emissions appear to have a regional 1036 
behavior, although several local spikes can be identified. 1037 
 1038 
 1039 
 1040 

 1041 
 1042 
Figure SI-6.7.1: PMF results over the Paris region. 1043 
 1044 
 1045 
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SI-7 Comparison of black carbon measurements at SIR TA and in a remote 1050 
rural site 1051 
 1052 
 1053 
 1054 
 1055 
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 1061 
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 1070 
 1071 
Figure SI-7: Comparison of the black carbon absorption coefficients measured at the 1072 
SIRTA site and in a remote rural location by two aethalometers. 1073 
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SI-8 Back trajectories for specific events 1096 
 1097 
 1098 

Back trajectories ending at the SIRTA site have been evaluated using HYSPLIT (Hybrid 1099 
Single Particle Lagrangian Integrated Trajectory Model) at an initial altitude of 500 meters with 1100 
a total run time for each day trajectory of 48 hours (Draxler, 1997, 1998). The vertical motion 1101 
was considered isobaric and the meteorological information has been obtained from the GDAS 1102 
database. 1103 
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