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1 Ventilation coefficients, Lewis number

The diffusional growth of a cloud particle (droplet or crystal)
falling in the ambient air is influenced by its relative motion.
The air flow around a particle depends on particle geometry
and the Reynolds number. In all cases, the local gradients
of heat and vapour are increased around the moving particle,
and the diffusional growth rate and latent heat release rate
are enhanced over their corresponding values at rest. The
effect is measured by the ventilation coefficients for vapour
and heat diffusion:

fv =
(dm/dt)

(dm/dt)0
,

fh =
(dQ/dt)

(dQ/dt)0
,

where the subscript 0 refers to the situation when the particle
is stationary relative to the air.

Boundary layer theory predicts that fv and fh should be
proportional to Xv = Sc

1
3 Re

1
2 and Xh = Pr

1
3 Re

1
2 , where

Sc = µ/ρKv , Pr = cpµ/kh and Re = ρU∞D/µ are, respec-
tively, the Schmidt, Prandtl and Reynolds numbers and µ
is the dynamic viscosity. The functional dependency of fv
on Xv is the same as that of fh on Xh since the underlying
mathematical framework is the same. A Schmidt number for
heavy isotopologue can be defined as Sc′= η/ρK ′v ,

From wind tunnel experiments of evaporating drops,
(Beard and Pruppacher, 1971) provide the following expres-
sions for fv:

fv =

{
1+0.108X2

v forXv ≤ 1.4,

0.78+0.308Xv forXv > 1.4.
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For ice crystals, we use Pitter et al. (1974) numerical solu-
tions for oblate spheroids (∼ hexagonal plates):

fv =


1+0.142X2

v +0.054X4
v ln

(
0.893X2

v

)
forXv ≤ 0.71,

0.937+0.178Xv forXv > 0.71.

The calculation of Re for falling drops and droplets is
made after Beard (1976) which distinguishes three regimes
according to the diameter of the particles. For ice crystals,
assumed to be hexagonal plates, we use the procedure given
by Heymsfield and Westbrook (2010).

Some computed values of fv/fh and fv/f ′v are compiled
in Tables 1 and 2, as a function of particle diameter (the max-
imum projected length for an hexagonal plate) and altitude
within the cloud. As expected from the dependency of f on
Re, it is seen that ventilation effects mostly increase with
size. fv/fh and fv/f ′v remain, however, close to unity and
this justifies the approximation made in this study.

If cloud liquid water and cloud ice behave as pure airborne
particles (static relative to the air parcel), then it is obvious
that ventilation effects do not matter for fractionation. In par-
ticular, cloud droplets whose isotopic content re-equilibrate
with that of vapour are small enough to yield values of fv/fh
and fv/f ′v that differ from 1 by less than 0.1%. Moreover, it
can be easily checked (not shown), that absolute values of
fv and f ′v at such sizes are sufficiently close to 1 to leave
the value of τdrop unaltered, such that the criterion for re-
equilibrating droplets is unaffected by ventilation.

Ventilation effects are expected to be more important when
precipitating particles are considered. Although our study
focuses on droplets, let us consider the case of a falling drop
for the sake of comparison. In this case the ratio fv/f ′v differs
from 1 by less than 0.7% but fv/fh may reach about 0.96.
Variations of fv/fh produce variations of the coefficient Al
which are limited to 2.5%. Finally, the extent to which fv/fh
and fv/f ′v modify αkl is respectively 0.006% and 0.015%
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only. By comparison, the relative difference between αl and
αkl is 0.3%. It is clear that ventilation leaves fractionation
factors virtually unaffected, even if actual growth rates and
latent heat release rates are enhanced by a factor of 8 in our
previous computations.

The above results are largely a consequence of Kv/K
′
v

and Le = Re/Pr = Kh/Kv being close to unity. If we
had Le = 1, then we could rigorously set fh = fv (the non-
dimensional fields of temperature and vapour density around
the particle would exactly coincide). The fact that Le∼ 1 for
a vapour-air mixture is to some extent fortuitous. The kinetic
theory of gas for rigid elastic spherical molecules (Chapman
and Cowling, 1970) can be used to derive the following ap-
proximate expression for the Lewis number:

Le =
1

12

(
21
cp
cv
−5

)
25

68

√
2

(
1+

ΓH2O

Γair

)2

×
(

1+
mair

mH2O

)− 1
2

, (1)

where ΓH2O, Γair, mair and mH2O are respectively col-
lisional diameters and molecular masses of water and air
molecules. In deriving the above expression, we have ne-
glected the contribution of vapour to thermal conductivity,
and used a modified Eucken factor 1

12

(
21

cp
cv
−5
)

as suitable

for weakly polar diatomic gases. Taking ΓH2O = 2.65×10−8

cm (Hirschfelder et al., 1967), Γair = 3.6×10−8 cm (Glass-
man and Hariis, 1952), mair/mH2O = 29/18, we find Le∼
0.8. A direct calculation (from the expressions of Kv and kh
given in appendix C of the main text) yields 0.87. It is clear
that Le∼ 1 is a result of the particular ratios of collisional
diameters and molecular masses for water and air, and it is
not obvious that this result can be transposed to other gases
mixtures (such as in the problem of sulphuric acid deposition
for instance).

2 Thermal relaxation time and freezing time

The characteristic time of freezing tf is computed for
droplets freely falling in air. We follow the approach of John-
son and Hallett (1968) and briefly summarize their argument
here.

Consider a droplet initially supercooled to the tempera-
ture of its surrounding environment T (∞). The initial stage
of freezing corresponds to the very fast growth of ice den-
drites within the supercooled droplet, until the release of
latent heat inside the droplet increases its temperature up
to the freezing equilibrium value T (eq) = 0◦C. This stage
is assumed to happen instantly, and turns the droplet into
a mixture of liquid water and ice, with a liquid fraction
1−cl

(
T (eq)−T (∞)

)
/Li.

A spherical shell of ice then appears from the surface of
the droplet and thickens as the freezing front propagates in-
ward. The rate of freezing at this stage depends on the rate

of heat transfer to the environment, by heat conduction and
evaporation to environmental air. The ice water (inner) inter-
face where freezing happens is assumed at radial distance r
from the centre of the droplet and at T (eq) = 0◦C. The ice air
(outer) interface is at radial distance a (initial radius) and its
temperature T (s) is not much below T (eq) = 0◦C. Hence, ice
evaporation should occur at the freezing droplet surface even
when the environment is ice supersaturated at temperature
T (∞).

Then, the rate of release of latent heat by freezing is equal
to the rate of heat conduction through the ice shell, itself
equal to the rate of heat loss by conduction and evaporation
to environmental air. These conditions yields (Mason, 1956,
Eq.(1)):

−Lfρlr2
dr

dt

(
1−cl

T (eq)−T (∞)

Lf

)
=−kiar

T (s)−T (eq)

a−r
, (2)

−kiar
T (s)−T (eq)

a−r
= akhfh

(
T (s)−T (∞)

)
+Li4πaKvfv

(
ρ(s)−ρ(∞)

)
, (3)

where ki is the heat conductibility of ice, Lf is the latent heat
of fusion, ρl is the density of liquid water and cl is its heat
capacity.

For the sake of simplicity, we assume that the environment
is saturated over ice, and we set ventilation coefficients fh
and fv to unity (droplets of negligible fall velocity). Then,
using Eq. (A4) of the main text and eliminating T (s) between
Eqs. (2) and (3) yields:

a2ρlLf

(
1−cl T

(eq)−T (∞)

Lf

)
k′h|i

(
T (eq)−T (∞)

) dy

dt
=− 1

(1−m)y2 +my
(4)

where y = r/a, k′h|i =
(
kh+ LiKv

T (∞)

(
Li

R∗vT
(∞) −1

)
ρisat

)
and

m= k′h|i/ki.
Integrating Eq. (4) from (t= 0,y= 1) to (t= tf ,y= 0)

yields the expression for the freezing time tf :

tf =
a2ρlLf

(
1−cl T

(eq)−T (∞)

Lf

)
3k′h|i

(
T (eq)−T (∞)

) (
1+

m

2

)
. (5)

As Johnson and Hallett (1968) note, m� 1 in air. Thus,
Eq. (5) finally yields:

tf =
a2ρlLf

(
1−cl T

(eq)−T (∞)

Lf

)
3k′h|i

(
T (eq)−T (∞)

) . (6)

This corresponds to Eq. (5) of Johnson and Hallett (1968)
and has been cross-checked against observations in the same
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work. Freezing time is thus governed by the rate of extraction
of latent heat by conduction and evaporation to environmen-
tal air while heat conduction through the ice phase occurs
over a negligible time (hence m� 1).
tf is infinite in the limit T → 0◦C. However, at small

supercoolings
(
T (eq)−T

)
, other mechanisms extract heat

more efficiently than conduction and evaporation to air.
Namely, in the vicinity of the 0◦C level, droplets freeze to
a large extent by contact with precipitating ice crystals, in
which case latent heat extraction happens very fast by con-
duction through ice. Thus, Eq. (6) must be considered as
a lower bound on the freezing relaxation time, and used to
show, when it is smaller than the isotopic relaxation time,
that freezing does not lead to isotopic fractionation.

The definition of thermal relaxation time th is provided
by Mason (1956) assuming for simplicity a spherical droplet
or ice crystal freely suspended in the environmental air at
temperature T (∞). The ventilation factors are again set to
unity (negligible fall velocity). The droplet or crystal temper-
ature is further assumed to have homogeneous temperature
T . Then, the enthalpy of the droplet or crystal may change
as a result of heat conduction to air and evaporation or con-
densation. This enthalpy budget yields, using Eq. (A4) of the
main text in the same way as above:

4

3
πa3ρl,icl,i

dT

dt
=−4πak′h|l,i

(
T (∞)−T

)
, (7)

where k′h|l is defined as k′h|i but for liquid Ll and ρlsat.
The thermal relaxation time for droplets or ice crystals th

immediately follows:

th =
ρl,icl,ia

2

3k′h|l,i
. (8)

One notices from Eq. (8) that th is smaller for ice crystals
than for droplets. The fact that thermal relaxation times are
much smaller than isotopic relaxation times means that it is
safe to derive the evolution of isotopic ratios by assuming
steady-state solutions of heat transfer equations as we did in
Appendix B of the main text.
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alt. [km] fv/fh
diameter 10 µm 30 µm 50 µm 100 µm 200 µm 400 µm 800 µm

2
drop 0.99999 0.99964 0.99841 0.98989 0.97621 0.96752 0.96127

crystal

6
drop 0.99999 0.99975 0.99889 0.99257 0.97892 0.97044 0.96418

crystal 0.99999 0.99987 0.99959 0.99818 0.99324 0.9879 0.98124

10
drop 0.99999 0.99983 0.99923 0.99467 0.99643 0.97414 0.96818

crystal 0.99999 0.99991 0.99972 0.99871 0.9945 0.98994 0.98403

14
drop

crystal 1 0.99994 0.99981 0.9991 0.99585 0.99231 0.98759

Table 1. Tabulated values of fv/fh as a function of particle diameter and altitude within the cloud.

alt. [km] fv/f
′
v

10 µm 30 µm 50 µm 100 µm 200 µm 400 µm 800 µm

2
drop 1 0.99994 0.99974 0.99834 0.99597 0.99445 0.99335

crystal 1

6
drop 1 0.99996 0.99981 0.9987 0.99621 0.99465 0.99348

crystal 1 0.99998 0.99993 0.99968 0.9988 0.99784 0.99664

10
drop 1 0.99997 0.99985 0.99897 0.99643 0.99483 0.99361

crystal 1 0.99998 0.99995 0.99975 0.99892 0.99801 0.99683

14
drop 1

crystal 1 0.99999 0.99995 0.99978 0.99899 0.99812 0.99696

Table 2. Tabulated values of fv/f ′
v (for the HDO/H2O system) as a function of particle diameter and altitude within the cloud.


