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Abstract

This study reports on the exploitation of GNSS for weather forecasts, especially for
nowcasting. We focus on GPS observations (post-processing with a time resolution of
15min) and try to establish typical configurations of the humidity field which charac-
terise convective systems and particularly which supply forerunners of their initiation
associated with deep convection. We show the critical role of GNSS horizontal gra-
dients of humidity to detect small scale structures of the troposphere (i.e. convective
cells), and then we present our strategy to obtain typical water vapour configurations
by GNSS, called “H,0 alert”. These alerts are based on a dry/wet contrast taking place
during a 30 min window before initiation of a convective system. GNSS observations
have been assessed for the rainfall event of the 28—29 June 2005 using data from the
Belgian dense network (baseline from 5 to 30 km). To validate our GNSS H,O alert,
we use the detection of precipitation by C-band weather radar and thermal infrared
radiance of the 10.8-um channel [Ch09] of SEVIRI instrument on METEOSAT Second
Generation. Our H,O alert obtains a score of about 80 %.

1 Introduction

For 20yr, data from ground-based GNSS (Global Navigation Satellite System) re-
ceivers have been used to accurately measure the path delay of the neutral atmosphere
which highly depends on the water vapour content above the associated antenna (Be-
vis et al., 1992). The mean meteorological observation is generally called zenith path
delay or Zenith Total Delay (ZTD) of the neutral atmosphere. This observation (1st or-
der), which describes the mean delay above a GNSS site, can also be associated with

a 2nd order observation of the neutral atmosphere: the horizontal gradient of delay 8
(North-South and East-West components) (Chen and Herring, 1997).

The objective of this work is to show the value of GNSS observations for weather
forecasts, especially for nowcasting. We will focus on GPS observations of ZTD and

20352

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
12, 20351-20382, 2012

Preliminary signs of
the initiation of deep
convection by GNSS

H. Brenot et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/20351/2012/acpd-12-20351-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/20351/2012/acpd-12-20351-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

8 (post-processing with a time resolution of 15min) and try to answer to the following
question:

“Can the detection of water vapour by GNSS allow us to establish typical configura-
tions of the humidity field which characterise convective systems and particularly which
supply forerunners of their initiation associated with deep convection?”

After a brief presentation of the rainfall event of the 28-29 June 2005 (case study
of this paper), we will show the value of horizontal GNSS gradients of delay to detect
small scale structures in the troposphere (Davis et al., 1993; Chen and Herring, 1997;
Gradinarsky, 2002). An improvement of the humidity field observed by GNSS consid-
ering gradients will be shown. Then, using a new detection of humidity structures, we
will present our strategy to obtain a GNSS indicator of the initiation of deep convection.
To validate our typical configurations of the humidity field (based on a dry/wet con-
trast obtained by GNSS), called “H,O alert”, we will use two other indicators of deep
convection obtained by meteorological radar and SEVIRI instruments on METEOSAT
Second Generation. We will present these two indicators (detection of precipitation by
C-band weather radar and thermal infrared radiance of the 10.8-um channel [Ch09] by
SEVIRI instrument) and show statistical results of our H,O alerts for the 28-29 June
2005 rainfall event. Then we will highlight some conditions and perspectives in order to
show how our GNSS H,O alerts can be used an operational nowcasting system.

2 Rainfall event of the 28—-29 June 2005

From the afternoon of the 28 to the evening of the 29 June 2005, a continuous period of
precipitation was observed over the main part of Belgium (see Fig. 1). Between 10:00
and 16:00 UTC on the 29 June, surface analysis indicated a convective episode over
Belgium. Using the Belgian synoptic network (pressure and surface winds), lines of
convergences have been identified during this event. These are associated with a low
pressure trough as shown at 12:00 UTC (29 June 2010) Fig. 2.
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Lines of convergence took place in hot and very wet air which had invaded Belgium
during the night (28—29 June 2005). In a few hours in the neighbourhood of these
lines, several clusters of convective cells were developing (see hourly radar precipita-
tion Fig. 1).

A dynamic coupling between a marked trough centred on North-Western France
and a complex surface depression over Belgium had reinforced air instability. Several
convective cells were observed by the SEVIRI instrument on METEOSAT (InfraRed
channel). Thick cumuli form clouds with high vertical extensions and cold tops were
associated with these cells (see Fig. 3). At the beginning, clusters were distinct with
a spatial extension of about 10 km. But finally clusters were stretched by high altitude
air currents (associated with a depression coming from France) and by the impact of
the vertical shear of the wind. The intensification of convective activity induced a com-
plex meso-scale convective system. Gradually this system covered the major part of
Belgium resulting in downpours and thunderstorms. In the north-west of the country,
the convective activity was limited (see Fig. 1). Neméghaire and Brenot (2010) give
a precise description of this meteorological event.

The forecast of rainfall from this complex convective system, using the ALADIN nu-
merical weather prediction model, data from the Belgian synoptic network and the near-
real time meteorological observations (radar, SAFIR, METEOSAT), was not a success.

3 GNSS Humidity field with geodetic software
3.1 Precise positions and neutrosphere measurements

Since 1992 (Bevis et al., 1992), GNSS has been used to characterise the humidity field.
We have measured ZTD and horizontal gradients of delay with the GAMIT geodetic
software (version 10.4, Herring et al., 2010). To measure such atmospheric observa-
tions, a precise knowledge of the positions of all GNSS stations is required. For this
reason, a primary analysis has been processed to estimate precise coordinates for all

20354

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
12, 20351-20382, 2012

Preliminary signs of
the initiation of deep
convection by GNSS

H. Brenot et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/20351/2012/acpd-12-20351-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/20351/2012/acpd-12-20351-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the local stations (about 70) of the Belgian dense network. Sessions with 24 h of mea-
surements for a period of 5 days have been considered (tropospheric delays estimated
every 2h). An unconstrained daily GAMIT positioning solution has been obtained and
converted into a final global solution in the ITRF2000 reference frame (Altamimi et al.,
2002) where GLOBK Kalman filter (Herring et al., 1990) has been used and in which
the positions of 10 fiducial GPS stations have been constrained. The precision of our
positioning solutions obtained with Niell mapping function (1996) is millimetric, which
is enough for our meteorological application. To obtain our MET observations, a sec-
ondary analysis is processed. Zenith delays and horizontal tropospheric gradients (two
components, north-south and east-west) are calculated considering reference zenith

and gradient variations of 0.02mh™"/? (Herring et al., 2010, Sect. 2.3). Tropospheric
parameters of the ambiguity free solution have been adjusted with baselines greater
than 2000 km. This is a way to decorrelate tropospheric measurements and vertical
position estimations in the double difference process (Tregoning et al., 1998). For more
details see Brenot et al. (2006).

Finally, ZTD measurements have been produced using a sliding window strategy
with 6 sessions of 12 h of data shifted by 4 h for daily measurements (see Chapt. 1,
Brenot 2006). A cut-off angle of 10° has been applied. ZTD and gradient observations
have been assessed with a time resolution of 15 min.

3.2 Isotropic and anisotropic contributions of humidity by GNSS

ZTD represents the mean isotropic contribution of the neutral atmosphere mapped in
the zenith direction using a mapping function (Niell, 1996). This means zenith contri-
bution is obtained resolving ambiguities of the two phases of bi-frequencial GNSS sig-
nal (Bock et al., 1985; Leick, 1989) and considering a priori Zenith Hydrostatic Delays
(ZHD) combined with Zenith Wet Delays (ZWD) adjustments established from slant de-
lay variations recorded in the direction of each visible satellite (Tregoning and Herring,
2006); see Brenot et al. (2006) for a description of ZHD and ZWD.
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Double difference of delays of the ionosphere-free combination (Brenot and War-
nant, 2008) are used to assess ZTD (least-square adjustment). In addition horizontal
gradients of delay are resolved to improve the slant delay reconstruction (Chen and
Herring, 1997). GNSS gradients, described by two components NS and EW, estimate
the mean local anisotropic contribution of slant path delay around a GNSS antenna;
GAMIT normalised this contribution at 10° of elevation (centimetric values of NS and
EW components). Contributions of GNSS gradients to slant delays (Chen and Herring,
1997) can be mapped in the zenith direction (Niell ,1996); millimetric values can be ob-
served and will be used in this study. Figure 4 shows time series of ZTD and (NS, EW)
gradient components for two Belgian GNSS stations (ERPE and NAMR), as well as the
time series of radar precipitation. We can see that strong precipitation was observed
during the 28-29 June 2005 event, which often coincided (63 %) with high variations
of ZTD (increase or decrease of 8 mm) associated with high values of gradient com-
ponents (amplitude 2 times over mean amplitude); see Fig. 1. Nevertheless we found
a low Pearson correlation between radar precipitation and GNSS gradient amplitudes
for all GNSS stations.

3.3 Improvement of humidity field by GNSS gradients

Using the Belgian dense network of GNSS stations (baselines from 5 to 30 km) and
observations with a time resolution of 15 min, it is possible to characterise the humidity
of the neutrosphere. The initiation of a convective system takes place for some cases in
an area of few square kilometres, for this reason we have combined ZTD and gradients
to improve the spatial resolution of our humidity field assessments. Our strategy is the

following: considering the axis indicated by a gradient 8 two additional ZTD pseudo-

observations have been considered (one wetter in the direction of the vector and an

other one drier in the opposite direction). Our tests on the Belgian dense network

(Neméghaire and Brenot, 2010) have shown that 10 km on either side of the GNSS

site is the most relevant distance to detect small scale tropospheric structures of the

troposphere (like a convective system of few kilometres). GNSS gradients (differential
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values in the zenith direction) can be propagated horizontally by multiplying this contri-
bution by the distance in kilometres (Walpersdorf et al., 2001). Then additional pseudo-
observations of ZTD can be considered in our 2-D interpolated field with an adjustable
tension continuous curvature surface gridding algorithm (Smith and Wessel, 1990). To
avoid the signature of orography in ZTD measurements, we have applied an altitude
correction (hydrostatic correction) to sea level as introduced by Saastamoinen (1972)
and improved by Vedel et al. (2001). In Fig. 5, we can clearly see an improvement of
the resolution of humidity field observed by GNSS.

The meteorological situation and the location of water vapour bubbles observed by
GNSS are in a good agreement with radar precipitation. We can see in Fig. 1 that
strong horizontal GNSS gradients are observed when significant hourly precipitation
is recorded by meteorological radar from 12:00 to 16:00 UTC. This is evidence that
the humidity field was characterised by a strong anisotropy during this period (see
Fig. 5). The next step of our study is to implement H,O alerts according to a specific
configuration of the GNSS humidity field.

4 Implementation of H,O alert by GNSS

A meticulous observation of ZTD and gradient time series has shown that for some
regions a typical configuration can be observed before initiation of deep convection.
This configuration is described by a significant local decrease of ZTD (drier region)
following by a strong increase of ZTD (wetter region). This dry/wet contrast evolution
is illustrated in Figs. 5b and 6 around 12:00 UTC for 4 stations of the Belgian dense
network.

ZTD and gradients are estimated in the zenith direction considering all visible satel-
lites. For a tropopause around 10 km of altitude and a cut-off angle of 10°, the radiu_)s
of the tropospheric area considered by GNSS does not exceed 50km. A gradient G
with an amplitude of 0.01 m in the east direction means that the ZTD in the East direc-
tion is higher (for example about 0.01 m at 25km). We can easily see in Fig. 6 what
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are the ZTD values around Erpe (ERPE), Namur (NAMR), Geraardsbergen (GERA)
and Buggenhout (BUGGQG) stations in the direction of a gradient, because ZTD and the
gradient are plotted on the same scale.

Using improvement by horizontal GNSS gradients of 2-D fields of ZTD which are
equivalent to the humidity field (Brenot et al., 2006), we have established a gridded
map of GNSS alerts with a high resolution (pixels of 3km x 3.5 km). The conditions to
obtain a H,O alert for a pixel at time T are the following: a ZTD-decrease of 0.008 m
from T-30 min to T-15min followed by a ZTD-increase of 0.015m from T-15min to T.
H,O alerts are shown by blue lines in Fig. 6. GNSS observations have been calculated
every 15 min.

5 Indicators of deep convection

We have considered two external meteorological indicators of deep convection. The
first one is based on reflectivity observations from a C-band weather radar located at
Wideumont in the south of Belgium. The radar performs a 5-elevation scan every 5 min
and a 10-elevation scan every 15min. The latter is used to derive echo top values,
which gives for a given threshold the maximum height where reflectivity values at least
equal to this threshold are measured (Delobbe and Holleman, 2006). In this study we
use a 38-dBZ threshold and we consider that a 38-dBZ echo top higher than 5km
represents a good indicator of deep convection.

During the rainfall event of the 29 June 2005, we can see that at 12:05 UTC radar
echoes top indicate deep convection for 3 cells around Brussels (see Fig. 7). We have
seen in Sect. 3.2 refering to Figs. 1 and 6 that a strong activity has been recorded
by radar hourly precipitation and GNSS horizontal gradients. At the same time (Fig. 6
and 7) high values of the GNSS horizontal gradients point in direction of the convective
cells where the maximum of humidity and convection occurred.

Figure 8 shows a vertical cut of radar reflectivity. GNSS gradient of the BUGG station
points the local tropospheric anisotropy towards the convective cell located between
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Brussels and Buggenhout. This convective cell had a vertical extension of more than
12 km. The least-square adjustment of GNSS gradients considers all the visible GNSS
satellites; note that for the station of Brussels located close to several convective sys-
tems (see Fig. 8), no significant anisotropy is observed by the gradient. By contrast
the GERA station observes a strong local anisotropy. We can see in Fig. 8 that all high
values of the gradients point in the direction of cells identified by radar (see for example
NAMR station).

The second indicator of deep convection that we use is infrared radiance from the
SEVIRI instrument on METEOSAT Second Generation. If the effective radiance (chan-
nel 09) is less than 200 digital counts (DC) (~ 30.55 Wm=2sr™ cm_1) we consider that
deep convection took place.

Over Belgium, the SEVIRI resolution is about 3 km (E-W) x 5km (N-S). The infrared
10.8 um channel has been selected because the channel presents the best correlation
with the cloud top height. In the weather office of most national meteorological services,
this channel is usually used to detect and track convective systems. Humidity detected
by GNSS gradients does not always point strictly in the direction of convective cells
and clouds with the highest top identified by SEVIRI. Nevertheless high GNSS gradi-
ents always point in the direction of cloud with high top altitude and humidity detected
by SEVIRI (Fig. 9). We find a good correspondence between low IR radiances and high
gradient amplitudes; 65 % of GNSS sites with gradient amplitudes higher than 0.02m
show IR radiances under 220 DC (~ 34.65Wm™2sr" cm_1) that is a sign of convec-
tion. A Pearson anti-correlation of 0.36 is obtained between IR radiance and horizontal
GNSS gradient amplitudes.

6 First results of GNSS H->0 alert validation

To estimate the score of our H,O GNSS alerts we consider that an alert is validated
if an indicator of deep convection (by radar and/or by SEVIRI) is observed during the
next 50 min. To validate our H,O alert, the altitude of the 38 dBZ radar echo and the
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SEVERI infrared radiance have been determined for the same grid. For this study, we
have considered radar and SEVIRI observations every 15 min (at 05, 20, 35 and 50 min
each hour). GNSS measurements and alerts are obtained every 15min (at 00, 15, 30,
45 min).

The more active period of this event was between 11:00 and 16:00 UTC on the
29 June 2005. To show the application for nowcasting of our alert system, our improved
ZTD 2-D fields, our GNSS H,O0 alert 2-D fields, radar echoes top, and 2-D fields of SE-
VIRI radiances from 10:45 to 13:30 UTC are presented in Fig. 10. GNSS gradients are
plotted on our interpolated ZTD fields (see Sect. 3.3). For H,O alert, radar echoes top,
and SEVIRI IR radiance fields, a grid of 3 km x 3.5km (size of pixel) is used to obtain
images. 12 times are shown in this figure (every 15min). We will give a description of
these times using all 2-D fields presented in Fig. 10.

Period a and b: No GNSS alert was observed at 10:45 and 11:00 UTC, but we noted
that a strong decrease of humidity took place around NAMR station at 11:00 UTC. To
the east of the NAMR region, a bubble of humidity was observed, which was initiated
by a dry-wet dipole in this region.

Period ¢ (11:15UTC): There were 25 pixels with GNSS H,O alerts around NAMR.
We noted an increase of humidity on the north-west side of NAMR.

Period d (11:30 UTC): There were 24 pixels with H,O alerts around ERPE (on the
north and the south-east side). We observed an increase of humidity in this region.
Humidity (associated with the formation of cloud over a deep vertical extent) coming
from the north was confirmed by IR radiance from SEVIRI. Instability was shown by
radar echoes top for this zone. A strong decrease of humidity was observed to the
south of ERPE (dry-wet dipole).

Period e (11:45UTC): There were 62 GNSS alerts around GERA (strong increase
of humidity). We observed an increase of humidity for all stations located on the east
side of the GERA-NAMR line. Convection started around NAMR.

20360

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
12, 20351-20382, 2012

Preliminary signs of
the initiation of deep
convection by GNSS

H. Brenot et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/20351/2012/acpd-12-20351-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/20351/2012/acpd-12-20351-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Period f (12:00 UTC): GNSS gradients observed strong humidity to the south-east
of ERPE. Strong precipitation and convection are shown by radar with a high vertical
extension (see Fig. 8).

Period g (12:15 UTC): There were 6 GNSS alerts on the south side of ANTW, and 14
alerts on the east side of MOHA. A strong increase of humidity was observed around
ANTW and MOHA stations. We can see evidence of a dry-wet dipole between BUGG
and ANTW regions. BUGG station measured a strong GNSS gradient.

Period h (12:30UTC): There were more than 80 alerts around BUGG which took
place after a dry-wet contrast and a strong increase of humidity. There were also more
than 80 alerts around ONHA station with an increase of humidity in this region. We
noted a dry-wet dipole between OLLN and NAMR. Strong horizontal gradients of delay
pointed in the direction of this wet area. Humidity and clouds are observed by SEVIRI
around ANTW, MECH and BERT stations.

Period i (12:45UTC): There were about 60 alerts around OLLN, with a dry-wet
dipole between ONHA and MOHA stations. We observed strong humidity and gra-
dients around MECH-BUGG and MOHA stations. Convection was detected by SEVIRI
around GERA station.

Period j (13:00 UTC): There were about 50 alerts around OSTI with a strong in-
crease of humidity in the triangle OSTI-NIKL-MECH. On the other hand, a dry patch
was shown (ZTD field) around MECH station. A dry-wet dipole was observed between
this patch and the wet triangle. About 50 alerts are generated around ONHA with an in-
crease of humidity in this region. Convection was detected by echoes top radar around
BERT, OLLN and MOHA stations. Convection was also detected by IR radiance around
OSTI and GERA stations.

Period k (13:15UTC): There were more than 70 alerts around MECH, with an in-
crease of humidity to the east of this station. Wet regions detected by ZTD corre-
sponded to regions with low IR radiances (convection identified by SEVIRI). More than
70 alerts took place around MOHA with an increase of humidity in this region. Strong
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precipitation and convection are detected by radar around MOHA, OLLN and BUGG
stations.

Period | (13:30 UTC): No alerts. At this time several cells with strong vertical exten-
sion are observed by the radar. Humidity, instability and clouds are detected on the
south side of Belgium, as well as between ROOS and OSTI stations and on the north-
east side of Belgium.

The analysis of Fig. 10 is a bit exhaustive, but there is considerable information for
nowcasting. To summarise, the analysis of these periods shows that GNSS H,O alerts
are the result of dry-wet contrasts in time (strong increase and decrease) and dry/wet
contrasts in space (dipole). That means a dry region is close to a wet region and there
is a transfer of water vapour in this region. We observed strong amplitudes of gradients
pointing towards wet areas with a strong instability. This shows the application of these
observations for nowcasting. Statistical results and validation of our GNSS H,O alerts
generated, are shown in Table 1. We can see that 72 % of our alerts are validated by
radar and SEVIRI (score of 39 % for radar and 56 % for SEVIRI) for this period.

The location of convection indications from radar and SEVIRI do not always corre-
spond. Table 2 shows statistical results for the whole period under study. Using obser-
vations with a time-resolution of 15 min, we have interpolated linearly ZTD and gradient
measurements for a time-resolution of 5min. We can follow precisely the evolution of
the humidity field and the application of our GNSS alerts for nowcasting. When no me-
teorological activity and deep convection is present, no alert was generated. Rain was
recorded by rain gauges and radar on the 1 and 2 July (passage of a front of cloud
system). No GNSS alert took place for these days. No dry/wet dipole and no strong
contrast in time of humidity was observed by GNSS. We can see that the linear in-
crease of ZTD and gradient time-resolution can improve our GNSS alert system. In
fact, the number of alerts increased and in some cases, alerts took place earlier.
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7 Conclusions

The aim of this paper was to see if preliminary signs of the initiation of deep con-
vection can be established from post-processed meteorological GNSS observations
(zenith total delay of the neutrosphere, called ZTD or commonly “tropospheric delay”,
and horizontal gradients of delay or commonly called “wet gradients”). Our study was
focused on the rainfall event of the 28—29 June 2005 over Belgium. An overview of this
meteorological event is presented. The time-resolution of our calculations of GNSS
observations (from the 26 June to the 2 July 2005) used in this study is 15min. The
Belgian GNSS dense network (about 70 stations) has baselines from 5 to 30 km. The
strategy used to measure our GNSS observations is presented.

Previous work by Walpersdorf et al. (2001) has shown the use of GNSS to describing
the approach of a front towards Marseille in the south-east of France in 1998. lwabuchi
et al. (2003) have also shown that the temporal and spatial variations of GNSS gradi-
ents matched well with the moisture field determined by ZTD and with the meteorolog-
ical condition in summer 1996 over the Japan Islands (in particular during the passage
of a weather front). In our study we validate the application of GNSS for meteorology
by comparison with synoptic observations, weather radar and SEVIRI instrument on
METEOSAT satellite. We have shown that GNSS gradients with high amplitudes point
in the direction of tropospheric wet structures identified by radar and SEVIRI (corre-
spendence of 65 % between high values of each techniques). This paper shows how to
use gradients to improve the resolution of ZTD and humidity fields by GNSS. Note that
GNSS delay variations are driven by humidity variations and integrated water vapour
(IWV). In this paper we prefer to use initial GNSS ZTD measurements rather than IWV
conversion (Brenot et al., 2006). A meticulous observation of ZTD and gradient time
series has shown that a typical configuration of humidity field can be observed before
the initiation of deep convection. A dry-wet contrast in time (strong increase and de-
crease) and in space (dry/wet dipole formed by two regions a few kilometres distant)
can take place a few ten of minutes before. This dry/wet contrast of GNSS ZTD field
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allows us to establish H,O alerts based on a substantial decrease of ZTD followed by
a strong increase of ZTD. To validate our GNSS alert, we present two external me-
teorological indicators of deep convection. The first one uses C-band weather radar
(5.64 GHz frequency) and echoes top measurements (reflectivities larger or equal to
38dBZ at an altitude higher than 5km), which represents a good indicator. The sec-
ond one uses infrared radiance from the SEVIRI instrument on METEOSAT Second
Generation. If effective radiance (channel 09) is less than 200 Wm™2 we consider that
deep convection has taken place. To estimate the score of our H,O alert by GNSS we
consider that an alert is validated if an indicator of deep convection (by radar and/or
by SEVIRI) takes place 50 min after this alert. Alerts and indicators are established for
the same grid (pixel 3km x 3.5km). The score obtained is more than 80 % during the
week of our case study. We can see that a linear increase of ZTD and gradient time-
resolution can improve our GNSS alert system. In fact the number of alerts increased,
and in some cases, alerts took place earlier.

Strong amplitudes of horizontal gradients point to wet areas with strong instability.
These measurements represent a real opportunity for nowcasting. We have shown the
key role of GNSS horizontal gradients in detecting water vapour bubbles and associ-
ated contrasts of humidity which are forerunners of deep convection. The rainfall event
of 2005 is an unusual situation with the creation of a significant number of convective
cells. We plan to test our alert for other weather situation.

Our study considers post-processed observations estimated with the final orbits of
satelites provided by the International GNSS Service (http://igscb.jpl.nasa.gov). Our
GNSS measurements have a high sensitivity to humidity in comparison to near real-
time (NRT) observations. The next step of this study is to validate our alert with NRT
ZTD measurements in the frame of EUMETNET GPS Water Vapour (EGVAP project,
2004-2008, 2009-2012), see Haan et al. (2006). Clearly the score can not be as good
as with post-processed observations. NRT gradients clearly need to be considered.
The use of improved mapping functions (Boehm and Shuh, 2004; Boehm et al., 20063,
2006b) and the increase of positioning solutions (Tregoning and Watson, 2009, 2011)
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show that the quality of NRT ZTD measurements is increasing as well as the time-
delay (about 5 min after the observation times) to obtain NRT observations (Haan et al.,
2009).

It is important to combine good quality ZTD and gradient observations (high sensitiv-
ity to humidity) with a time-delay less than 10 min after observation time (for operational
use). We are considering using such a GNSS alert system in Belgium to support fore-
casters, as shown in Fig. 11. The quality of measurements depends on the precision
of the positions of stations and meanly on the quality of orbits as well as on the num-
ber and the spatial distribution of stations. On the other hand, the time of calculations
increases unlinearly with the number of stations. A good balance between the time
of calcultations and the quality of measurements is required to generate NRT GNSS
H,0 alerts. In addition to a good ratio of quality/time delivery of observations, improve-
ment of such a service in NRT could also come from the combination of our alert with
numerical weather prediction. More precise forecasts of locations of deep convection
initiation could be expected with such an approach.
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Table 1. Statistics results between 10:45 and 12:00 UTC the 29 June 2005. For each H,O alert the initiation of deep
(pixel), if deep c_onvection ig in(_:lica_ted by radar and/or SEVIRI, one count is obtained. Final convection by GNSS
scores are set with a normalisation in percentage. g
= H. Brenot et al.
Number of  Score Score Final &
Periods H,O alert (radar) (SEVIRI) Score ©
29 Jun 2005 11HOO 0 - - - @
29 Jun 2005 11H15 32 50.0 % 94% 531% ! !
29 Jun 2005 11H30 24 62.5% 0.0% 62.5% -
29 Jun 2005 11H45 63 52.4% 57.1% 62.0 % O ! !
29 Jun 2005 12H00 6 100.0% 83.3% 100.0% 3
29 Jun 2005 12H15 21 52.4 % 333% 85.7% é ! !
29 Jun 2005 12H30 181 19.4% 43.6% 50.3% <}
29 Jun 2005 12H45 80 76.3% 450% 91.3% .30 ! !
29 Jun 2005 13HO0 115 32.17 % 948% 95.7% =
29 Jun 2005 13H15 167 33.1% 67.0% 76.8% g ! !
29 Jun 2005 13H30 0 - - - - ! !
all this period 689 % 39.1% 56.1% 722% o _
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Table 2. Number and score of our H,O alert (GNSS observations from 26 June 2005 to 2 July
2005). Time resolution of GNSS observations is 15 min. In brackets are shown results when

GNSS observations are interpolated linearly every 5 min.

Number of Score

Score Final

Periods H,O alert (radar) (SEVIRI) Score

26 Jun 2005 0 (0) -
27 Jun 2005 0 (0) -

28 Jun 2005 798 (1853) 34% (31%) 70% (71%) 78% (75%)
29Jun 2005 2821 (6384) 48% (44%) 82% (84%) 89% (87 %)

30 Jun 2005 0 (0) - - -
01 Jul 2005 0 (0) - - -
02 Jul 2005 0 (0) - - -
All days 3619 (8237) 45% (41%) 79% (81%) 86% (84 %)
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Fig. 3. SEVIRI image (IR channel) the 29 June 2005 at 12:00 UTC. Tops of coldest clouds are
shown by colour patterns scaled from blue, orange to red according to decreasing temperature.
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g

black stars); (b) improvement of this field by GNSS gradients. These gradients G are plotted
by grey arrows at each GNSS site. BUGG, ERPE, GERA and NAMR stations are plotted.
Locations of 9 major cities (red circles) and meteorological radars (yellow triangles) are also
plotted on these 2-D maps.
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Fig. 6. Time series of ZTD and gradients (a) for NAMR, (b) ERPE, (¢) GERA, and (d) BUGG
stations (29 June 2005). GNSS H,O alerts are shown by blue dotted lines. Altitudes of the

ERPE GNSS station
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highest 38 dBZ radar echoes are plotted for values over 5 km (black dash line).
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Fig. 7. Altitude of the highest 38 dBZ radar echo on the 29 June 2005 at 12:05UTC. The
black line shows the location of the vertical cut of radar reflectivity presented in Fig. 8. GNSS
gradients are plotted with red arrows on stations (small black circles). The main Belgium cities
are shown by big black circles and the Wideumont weather radar with a green circle.
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Fig. 8. Radar imaging of a vertical cut of reflectivy (in dBZ up to 15 km) from Wideumont radar
to a distance of 200 km in the north-west direction (12:05 UTC, 29 June 2005). Projections of
the BRUS and BUGG stations (respectively 6 km and 13 km distant) on this axis are plotted on

this graph.
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Fig. 10. 2-D fields of ZTD and horizontal gradients (in m) on the left column, followed by GNSS
H,O alerts (0 or 1), and by altitudes of the highest 38 dBZ radar echo (in km). The right column
shows infrared radiances from SEVIRI in digital counts (DC). There is a time delay of 15 min
between each 12 lines (GNSS fields start at 10:45 a.m.; echo top radar and SEVIRI radiance
start at 10:50 UTC on the 29 June 2005).
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Fig. 10. Continued.
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Fig. 11. GNSS H,0 alert (11:20 and 11:30 UTC) and radar echoes top (altitude of the highest
38 dBZ radar echo) at 11:35 and 12:05 UTC, the 29 June 2005.
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