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Abstract

Aerosol characteristics can be measured with different instruments providing observa-
tions that are not trivially inter-comparable. Extended Kalman Filter (EKF) is introduced
here as a method to estimate aerosol particle number size distributions from multiple si-
multaneous observations. The focus here in Part 1 of the work was on general aspects5

of EKF in the context of Differential Mobility Particle Sizer (DMPS) measurements. Ad-
ditional instruments and their implementations are discussed in Part 2 of the work.
University of Helsinki Multi-component Aerosol model (UHMA) is used to propagate
the size distribution in time. At each observation time (10 min apart), the time evolved
state is updated with the raw particle mobility distributions, measured with two DMPS10

systems. EKF approach was validated by calculating the bias and the standard devia-
tion for the estimated size distributions with respect to the raw measurements. These
were compared to corresponding bias and standard deviation values for distributions
calculated with a mathematical inversion method. Despite the assumptions made in the
EKF implementation, EKF was found to be more accurate than the mathematical inver-15

sion in terms of bias, and compatible in terms of standard deviation. Potential further
improvements of the EKF implementation are discussed.

1 Introduction

Atmospheric aerosol particles have significant effects on visibility (Hand and Malm,
2007), cloud formation (McFiggans et al., 2007), atmospheric radiative transfer (Myhre,20

2009), and public health (Pope and Dockery, 2006; Gurjar et al., 2010). According to the
IPCC (Forster et al., 2007), uncertainties related to the direct and indirect climate ef-
fects of aerosols are a significant uncertainty factor in the climate change assessment.
Both particle size and chemical composition largely determine their climatic impacts,
and are thus important to be accurately characterized.25

18854

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 18853–18887, 2012

Estimation of
particle distributions
with Kalman Filtering

– Part 1

T. Viskari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmospheric particles can cover several orders of magnitude in size, and contain var-
ious chemical species in internal and external mixtures. Consequently, there is no sin-
gle instrument capable of measuring the entire range of aerosol quantities (McMurry,
2000). Rather, a number of instruments are needed, each providing information on
measurable quantities, such as particle electrical mobility or light scattering intensity. In5

addition, mathematical techniques are often needed to invert the raw observations into
physical and/or chemical particle properties (e.g. Kandlikar and Ramachandran, 1999;
Fiebig et al., 2005). Therefore, even though obtained particle properties are related
to each other, combining them into a unique conceptual framework which accurately
describes the aerosol state has proven to be very challenging. For example, several al-10

gorithms have been developed to determine the aerosol size distribution state starting
from independently measured quantities from optical, aerodynamic and electrical mo-
bility detectors (Hand and Kreidenweis, 2002; Shen et al., 2002; Khlystov et al., 2010).
However, assumptions on aerosol particle shape, density or chemical composition are
needed to finally obtain the best possible closure between the measurements. In this15

approach, the errors introduced by each instrument are not easily accounted for and
does not guarantee a physically justified continuity of the obtained solution.

Here we will introduce data assimilation as an option in aerosol physics to obtain
a consistent state estimate based on measured aerosol properties. Data assimilation
is a mathematical framework in which information from different sources is blended to20

obtain a maximum-likelihood, or minimum-variance, state estimate. It is widely used
in geosciences and engineering, for example in numerical weather prediction (Lorenc,
1986; Rabier et al., 2000). In atmospheric chemistry and aerosol modeling, data as-
similation has been applied in the context of air quality (Elbern et al., 2001), and en-
vironmental monitoring (Dubovik et al., 2008; Chung et al., 2010). Lately, it has also25

been used to improve aerosol mass, AOD or extinction profile measurements (e.g. Liu
et al., 2008; Tombette et al., 2009; Sekiyama et al., 2010; Schutgens et al., 2010).
In this article, data assimilation is, as far as we know, for the first time introduced as
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a potential unifying framework to estimate the particle number size distribution from
multiple in-situ measurements.

Data assimilation always incorporates time-evolution models which carry the state
estimate forward in time. Consequently, the obtained state tends to maintain a tempo-
ral continuity unlike a pure instrumental closure and is thereby physically more justified.5

In the references above, these models were 3-dimensional chemical transport or gen-
eral circulation models. Focus in this article is on in-situ multi-instrument aerosol mea-
surements. The modeling framework is thus a size segregated 0-dimensional aerosol
microphysical process model (a so-called “box model”). This enables very detailed time
evolution of aerosol processes but lacks the spatial aspects, similar to point-wise at-10

mospheric aerosol measurements.
Here, in Part 1, EKF is only applied with information from similar type of detec-

tors with different measurement ranges that slightly overlap. This limited approach is
chosen for three reasons: it allows (1) to detect how the general aspects of aerosol
size distributions affect the EKF implementation, (2) experimenting on how the EKF15

implementation handles drastic changes in the aerosol size distributions, and (3) ex-
amination of the statistical validity of the EKF implementation. The motivation for this
article is to demonstrate the applications of data assimilation in interpretation of in-situ
observations and to discuss the strengths and weaknesses of this technique relative to
pure mathematical inversion technique.20

In Part 2 (Viskari et al., 2012), the EKF implementation are extended to include infor-
mation also from different instrument types simultaneously measuring different particle
size ranges.

2 The Kalman Filter

Extended Kalman Filter (EKF; Kalman, 1960; for text-book treatment, e.g. Kaipio and25

Somersalo, 2004) is a standard sequential state estimation method. It is assumed in
EKF that observation and model errors are Gaussian with zero mean. EKF proceed

18856

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 18853–18887, 2012

Estimation of
particle distributions
with Kalman Filtering

– Part 1

T. Viskari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

from one observation time to the next in two alternating steps: time evolution and ob-
servation updating.

At the time evolution updating, the prior state estimate, also referred to as the back-
ground state estimate, xk at time k is obtained by propagating in time the preceding
state estimate xa,k−1 at time k −1 using5

xk =Mxa,k−1 (1)

Here M is the non-linear time-evolution model. Note, that the prior state estimate xk
is the best estimate at time k before observations are available. The state estimate
xa,k−1 at time k −1, on the other hand, is a posterior estimate after the observations
are available.10

The error covariance Bk of the prior state estimate xk is obtained using

Bk = MBa,k−1MT +Q (2)

The term MBa,k−1MT corresponds to the tangent-linear time-evolution of the error co-
variance. Note, that M is tangent-linear with respect to M. The error source term Q
represents the errors due to system noise, excluded from M.15

At the observation updating, the posterior state estimate xa,k at time k is obtained
by optimally combining the prior state estimate xk and the observations yk at time k
using

xa,k = xk +Kk (yk −Hxk) (3)

Here H is a possibly non-linear observation operator, which produces the observation20

counterpart corresponding to the prior state. The observation minus model counterpart
term is called innovation. The Kalman gain Kk is defined as

Kk = BkHT [HBkHT +Ok ]−1 (4)
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Here Ok is an observation error covariance matrix and H is a tangent-linear version of
H . The Kalman gain optimally weights observations and prior state based on their re-
spective accuracies, and spreads the innovation to the different elements of the vector
xa,k . The error covariance of the state estimate xa,k is

Ba,k = [I−HTKk ]Bk (5)5

The error variances of the posterior state estimate are smaller than in the prior due to
introduction of new information contained in the observations.

In essence, EKF estimates the new state by correcting the time-evolved state with
the recent observations. The relative accuracies of the observations and prior state
determine the impact of the observation. More weight is laid upon the more accurate10

information sources. In EKF, there are two implicit information sources, on top of the
observations: the prior state, and the model. The prior state carries the information of all
the past observations forward in time. The evolution model encapsulates our physical
and chemical insight of the system in a compact way, and the observation operator
characterizes the measurement event.15

3 Information sources

3.1 Observations

Particle number mobility distributions were measured using a Differential Mobility Par-
ticle Sizer (DMPS; Hoppel, 1978). The DMPS classifies particles according to their
electrical mobility as a function of voltage, which can further be related to the char-20

acteristic particle size. A Differential Mobility Analyser (DMA) is used for particle clas-
sification and a Condensation Particle Counter (CPC) for subsequent particle count-
ing. The smallest, 3 to 40 nm, particles were measured using a DMPS consisting of a
10.9 cm long Vienna type DMA (Winklmayr et al., 1991) and a TSI CPC model 3025
(Stolzenburg and McMurry, 1991). The bigger, 10–1000 nm particles, were measured25
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using a DMPS consisting of a 28 cm long Vienna type DMA and a TSI CPC model
3010 (e.g. Quant et al., 1992). The two DMPS systems were operated in parallel with
an overlapping size range from 10 to 40 nm. By changing the voltage step-by-step in
the DMAs, a full particle distribution was obtained every 10 min. Prior to the DMPS in-
struments, a radioactive bipolar neutralizer was used in order to obtain a steady-state5

charge distribution. The charging probability of the particles at different sizes was cal-
culated according to Wiedensohler (1988). Details of the DMPS measurement system
used are presented in Aalto et al. (2001).

The mathematical DMPS data inversion from raw observations to the geophysical
quantities is performed as follows. The particle number size distribution x is obtained10

as a solution of the equation

yr = Rx (6)

In the equation yr is the vector of raw measurements and R is an instrument spe-
cific kernel matrix. Essentially, R takes into account the particle charging probabilities
(Wiedensohler, 1988), transfer functions of each DMPS channel (Stolzenburg, 1988)15

and particle size dependent losses, such as the calibration based CPC detection effi-
ciencies and diffusion losses (Aalto et al., 2001). Different approaches (e.g. Stratmann
and Wiedensohler, 1996; Stolzenburg and McMurry, 2008; Stolzenburg, 1988) for mod-
eling and handling of the DMA transfer functions can be used in the DMPS inversion,
but they lead to qualitatively similar results. Here, the theoretical transfer functions20

taking into account the diffusional broadening in the DMA (Stolzenburg, 1988) were
utilized.

The solution for x in Eq. (6) is determined through the following steps: (i) the size
distribution diameters are calculated as transfer function peak diameters for DMPS
1 and 2. The diameters for the overlapping size range are taken from DMPS 1 only.25

(ii) Transfer functions for both DMPSs are integrated separately for this diameter grid
and combined as a transfer matrix. (iii) The best solution for concentrations is found
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using a least-square nonnegative pseudo-inverse method where solutions in the over-
lapping region are averaged from the two information sources.

The DMPS measurements deployed here are a part of the EUSAAR network,
thereby following the network quality standards (Wiedensohler et al., 2012). It is im-
portant to note that the DMPS measures each channel at a separate time instant over5

a 10 min measurement period. The particle size distribution, however, evolves during
this period and we assume here that the observations at different channels are made
simultaneously at the nominal observation time.

3.2 The time-evolution model

The University of Helsinki Multi-component Aerosol model (UHMA; Korhonen et al.,10

2004) is a size-segregating aerosol dynamical box model of the state evolution of a
particle size distribution. It contains the major microphysical atmospheric aerosol pro-
cesses. The activation scheme (Sihto et al., 2006; Kulmala et al., 2006) and the ad-
justed Fuchs-Sutugin method (Fuchs and Sutugin, 1971; Lehtinen and Kulmala, 2003)
were used to determine nucleation and condensation rates, respectively. The coagu-15

lation kernel is calculated with the Fuchs equation (Fuchs, 1964). The dry deposition
velocity is determined according to Rannik et al. (2003) for 10–500 nm and extrapo-
lated to particles smaller than 10 nm. Here, the model is discretized such that the size
distribution is presented with 50 size bins, evenly spaced according to the logarithm of
particle diameter. The smallest (largest) size bin is chosen to be 1.5 nm (2 µm) in di-20

ameter. For this study, the UHMA model variables are the particle number and volume
concentrations in each size bin. The new particle formation is due to the nucleation
process. Sudden changes in the particle size distribution due to external causes, such
as precipitation, air mass change or external influx of particles, are not included in the
UHMA.25

18860

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 18853–18887, 2012

Estimation of
particle distributions
with Kalman Filtering

– Part 1

T. Viskari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.3 The observation operator for the DMPS instrument

The observation operator H computes the observed quantity corresponding to the
model state, that is, the particle number concentration within a size bin. In the model
output, the number concentration is given for discrete particle diameters according to
the model discretization. The DMPS measures electrical mobility for a defined voltage5

which can be converted to a characteristic diameter corresponding to geometrical di-
ameter for a spherical particle. The observation operator for DMPS HDMPS is therefore

HDMPS = RP (7)

where an interpolation matrix P interpolates the model output to the characteristic10

diameters of the DMPS, i.e. interpolates from the model grid to the instrument grid.
The instrument kernel matrix R converts the interpolated number concentrations at the
characteristic diameters to number concentrations at the electrical mobilities of corre-
sponding voltages. The kernel matrix used here is constant in time.

The interpolation matrix P is resolved using a cumulative distribution function (CDF)15

of the number concentration. The CDF for each model size bin is obtained by a simple
summation of number concentrations in the model grid. Then, 4th order Lagrange poly-
nomials are used to interpolate the CDF values to the characteristic diameters of the
instrument. Finally, particle number concentrations in the instrument grid are computed
by differentiating the CDF. We note that both matrices in Eq. (7) are linear, and thus H20

is also a linear.
The observation operator was tested and validated by comparing raw observations

to the values computed by H from a size distribution obtained with a mathematical
inversion.
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4 Implementation of EKF

4.1 Time evolution updating

The non-linear UHMA model is used to propagate the state estimate xa,k−1 from time
k −1 to k. The tangent-linear UHMA model, used in the error covariance evolution,
has been shown to be valid for time ranges up to about 30 min (Viskari et al., 2008),5

thus covering the 10 min observation intervals of this study. Auxiliary measurements
of ambient sulphuric acid and non-volatile organic vapour concentrations were used
to support the simulation (Petäjä et al., 2009; Paasonen et al., 2010). The ambient
vapour concentrations are required by the UHMA model for the intermediate times be-
tween measurements and these were computed from the measurements using linear10

interpolation. A volatile organic vapour was included in the simulation with concentra-
tions parametrized from the non-volatile organic vapour concentrations according to
Vuollekoski et al. (2010). Ambient atmospheric conditions (e.g. temperature, pressure)
were specified as constant values due to the model being not particularly sensitive to
these values.15

According to Eq. (2), the error covariance Bk of the prior state is a sum of the time-
evolved error covariance Ba,k and the error source term Q. There are no tools available
to properly estimate the source term, which was therefore neglected here. This sim-
plifying assumption, though, does have adverse effects. In EKF, the posterior error
covariance decreases at each observation updating. If the error source is neglected,20

the decrease due to observations may exceed the increase due to time-evolution of the
error covariance. As a consequence, the state error covariance may become gradually
smaller and smaller, as was the case here. This is both unrealistic and undesirable:
observations will have less and less weight, and the filter eventually diverges from the
observations. Proper inclusion of the source term would increase the prior state error25

covariance.
In absence of a sound method to account for the source term, an ad hoc solution

is developed. Here, we scale the prior state error variances before the observation
18862
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updating. A minimum relative error was chosen for the background error. If the relative
error value of the background error is smaller than this limit, the relative background
error in that particle size is increased to the set limit, preventing the background error
variance from becoming too small. By choosing this limit to be larger than the relative
error of the observations, it is ensured that EKF will not trust the model information5

more than the observations. The downside of the approach is that the chosen limit
will not accurately represent the relative errors of the background state. During the
scaling, the background error covariances are adjusted so that the background error
correlations remain unchanged.

Next, we will elaborate the definition of the observation error in the context of EKF.10

Let us consider the difference between observations and the model state in observation
space (Eq. 3). Obviously,

εk = yk −Hxk (8)

where εk is the perceived mismatch, or “error” at time k. In addition to the background
state error, it is composed of three components: (i) the observations contain instrument15

noise, (ii) the xk is not representative of all the phenomena contained in the observa-
tions, and (iii) the observation operator cannot exactly reproduce the instrument re-
sponse. These three components form the observation error. It is possible to estimate
the instrument error before forming the EKF, but representativeness and observation
operator errors need statistical material, i.e. innovation sequences produced with EKF.20

In this study, we assume the observation error to be relative to the measured number
concentration, specifically 15 % for DMPS I and 12 % for DMPS II (P. Aalto, personal
communication, 2012). The prior state error is scaled such that the relative error for any
particle size in the measurement range cannot be smaller than 20 %. This specification
ensures that the observations will always be weighted more than the background state25

in the posterior state estimate. Refinements of this aspect are left for future work.
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4.2 Observation updating

The observation updating is implemented without major simplifications. In order to com-
pute the Kalman gain, Singular Value Decomposition (SVD) was applied for the matrix
inversion. Additionally, in order to avoid numerical instabilities, both the observation
error covariance and the prior state error covariance in the observation space were5

normalized such that their error standard deviations were divided by the correspond-
ing observed number concentration, i.e. the errors are relative to the corresponding
observed values.

The errors in the smallest particle sizes, where newly formed particles are observed,
and in large particle sizes, where the influence on the ambient vapour concentration is10

the strongest, i.e. where the condensation sink value is the highest, are strongly cor-
related (Viskari, 2010). At the beginning of a nucleation event, there is usually a large
difference between the background and observed state, which due to the strong corre-
lation cause a large deviation in the estimated number concentration for the particles in
the size range of the highest condensation sink value. This deviation, in turn, reinforces15

the initial difference in the smaller particle sizes during the observation updating via the
background error covariance. The EKF implementation ultimately becomes unstable.
To avoid this, the “length scale” of the prior state error covariance was artificially re-
stricted at the observation update to 15 closest size bins in maximum. In other words,
a large innovation can only affect the size distribution to a maximum distance of 15 size20

bins.
No observation quality control was applied, except that negative observations were

discarded as erroneous during the observation updating. The main reason for this
omission is that the mathematical inversion, our benchmark, has no built-in quality
control either.25
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5 Results and analysis

We report here a case study utilizing measurements from 7 May 2007 from the SMEAR
II-station in Hyytiälä, Finland (Hari and Kulmala, 2005). The measurements were a
part of the EUCAARI project (Kulmala et al., 2009). The date was chosen because the
measurements show different dynamical events, such as a strong nucleation event,5

and non-dynamical events, such as an apparent change in the air mass. The ambient
sulphuric acid and non-volatile organic vapour concentrations used in the EKF imple-
mentation were also measured and are presented in Fig. 1.

Applicability of EKF in estimating particle size distributions was tested as follows.
A size distribution obtained with the mathematical inversion method was used as an10

initial state for EKF. The error standard deviation of the initial state was set to 30 % of
the number concentration at 00:00 local winter time (LT) and uncorrelated errors were
assumed. Due to the relative large initial error, the observations weight relatively more
in EKF at the very beginning.

The particle size distributions obtained with EKF (denoted as xEKF) and the mathe-15

matical inversion, (xINV) are presented in Fig. 2 from 00:00 to 23:00 LT for 7 May 2007
in Fig. 2. Solutions for xEKF (Fig. 2a) and xINV (Fig. 2b) are qualitatively close to each
other, although xEKF appears smoother and less erratic compared to xINV. The total
number concentrations for particles larger than 3 nm for both size distributions are pre-
sented in Fig. 2c. The differences in the total number concentrations are partially due20

to the diameters for xEKF and xINV not being the same, which makes it difficult to limit
xEKF to the same diameter range than xINV. At approximately 15:00 and 17:00 LT, the
total number concentration is significantly larger for xEKF than for xINV.

In order to quantitatively analyze the results, both xEKF and xINV were converted with
the observation operator to the DMPS measurement channels at every measurement25

time (i.e. every 10 min) and compared to the raw DMPS measurements. The bias (the
systematic difference between the estimated size distribution and the raw measure-
ments; Fig. 3a) and standard deviation (the random difference between the estimated

18865

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 18853–18887, 2012

Estimation of
particle distributions
with Kalman Filtering

– Part 1

T. Viskari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

size distribution and the raw measurements; Fig. 3b) are shown for both solutions over
the time window 00:00 to 23:00 LT. The bias for xEKF is largest in the size range of 10
to 40 nm, which is the area where DMPS I and II overlap (hereafter called the overlap
region). The bias of the xEKF with respect to the DMPS I and II are roughly equal but of
opposite sign in this region. Our interpretation is that the biases are a consequence of5

the instruments not completely agreeing in the overlap region. For the rest of the size
range, there is a relatively small positive bias for DMPS I at particle sizes 8 to 11 nm
and a small negative bias at 50 to 200 nm for DMPS II. At other particle sizes the bias
is virtually zero. In comparison, the bias for xINV is generally larger than for xEKF. In the
overlap region, the bias of xINV is positive for both DMPS I and II. In addition, for xINV10

there are large positive biases at particle sizes 60 to 80 nm and 600 to 800 nm and a
large negative bias at 80 to 500 nm.

The standard deviation (Fig. 3b) is broadly equally large in xEKF and xINV for the
smallest (below 10 nm) and largest (above 300 nm) particles. With respect to DMPS
I, the two solutions are of about equal quality. With respect to DMPS II, xEKF has a15

smaller (larger) standard deviation than xINV for particles smaller (larger) than 40 nm.
Especially, at 50 to 200 nm, xEKF has notably larger standard deviation than xINV.

To better understand these results, the data set is divided into four specific time win-
dows: 00:00–09:00 LT (the aerosol system state is quasi-stationary), 09:00–17:00 LT (a
nucleation event affects the size distribution), 17:00–19:00 LT (a sudden change in the20

size distribution), and 19:00–23:00 LT (a possible recovery phase). These correspond
to time windows I, II, III and IV (Fig. 2). The time separation is only to facilitate the data
analysis; it allows a more detailed data analysis, but due to shorter time windows, there
are less data in each window which somewhat decreases the statistical reliability.

5.1 Common aspects for all time windows25

The bias and standard deviation for each time window are presented in Fig. 4. Both
quantities are generally large in the overlap region. This is related to the fact that the
measurements of DMPS I and II are different in this region. In all the cases the bias
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of xEKF is smaller than the bias of xINV, especially in I and IV. It is our interpretation
that the xINV is not the optimal solution in the overlap region. This indicates that xEKF
performs very well in the overlap region, and this is very promising regarding the multi-
instrument retrievals.

For xINV, the bias with respect to DMPS I changes between time windows, whereas5

for DMPS II it remains approximately the same. There are positive biases at 60 to 80 nm
and 600 to 800 nm ranges and a negative bias at 80 to 500 nm. The standard deviation
for xINV is very small outside the overlap region, except in time window I, where there
are large values in 80 to 300 nm range. In contrast, the standard deviation of xEKF
is significant for large particles outside the overlap region. This is mainly because of10

(1) large random errors in observations which are filtered out from xEKF but included
in xINV, and (2) a sudden change in state for which xINV readily adjusts to, unlike xEKF
which carries forward also the past information. These aspects will be discussed below.

5.2 Specific aspects

5.2.1 Sudden changes in the system state15

The bias of xEKF outside the overlap region is mainly due to the “memory” of EKF, which
is caused by inclusion of the prior state estimate (and thereby past observations) into
the solution. This implies a reduced sensitivity to sudden changes in observations. It
tends to filter out measurement noise and produce dynamically consistent solutions
from one observation time to another and from one particle size to the next. However,20

there may appear sudden changes in the measured size distribution by external causes
(i.e. atmospheric processes not included in the 0-dimensional evolution model) and
the system may continue to evolve from the new state. In this kind of a step-wise
evolution, the “memory” of the previous observations delays the adjustment of xEKF to
new observations. In such cases, xEKF is biased, and due to the gradual adjustment,25

this bias is a function of time. Additionally, this “drift” appears both in the bias and in the
standard deviation as a time dependent bias cannot be statistically removed from the
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data when determining standard deviation. The results presented here, especially for
time window III, include this phenomenon. Note how the bias of xEKF at 40 to 200 nm
range (Fig. 4, time window III) coincides with the large standard deviation. The sudden
change in the system state in time window III is possibly due to an air mass change.

This phenomenon also explains the significantly large standard deviation of xEKF in5

time window IV. Figure 2b reveals how the number concentration at 50 to 300 nm range
suddenly increases and then decreases again shortly after. Because of the two sudden
changes of opposite sign within the time window IV, there are two short-term biases of
opposite signs within the time window. They average each other out, which leads to the
small bias but large standard deviation of xEKF. Better error estimation might alleviate10

this feature of our EKF implementation, especially in case we have over-estimated the
observation errors and thereby increased the relative weight of the prior estimate. The
drift is also partially responsible for the standard deviation for particles smaller than
20 nm in time window II, as the system adjusts to the nucleation event. We remind that
our estimates of observation versus background errors are very preliminary.15

The impact of sudden changes in the system state tends to be smaller in the overlap
region. This is due to the fact that two independent instruments measure the same
particle sizes, and provide mutually supporting evidence of the change in the number
concentration. This accelerates the adjustment of EKF to the changes.

5.2.2 Measurement noise20

Raw measurements contain random noise due to a variety of reasons. It is characteris-
tic to EKF to filter out this noise whereas the mathematical inversion technique aims to
closely fit the solution to the measurements. We illustrate this point as follows. Figure 5
presents raw measurements from DMPS I and DMPS II for three consecutive mea-
surement times (12:00, 12:10, and 12:20 LT). The measurements reveal large number25

concentration changes in particle sizes of about 10 nm and 100 nm, whereas in other
particle sizes, the measurements remain far more stable. This implies that the air mass
was broadly the same over this half an hour period. It is impossible to definitely partition
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these changes to measurement errors, temporary particle emissions, or other effects.
In this particular case, xINV closely follows the measurements (not shown) while xEKF
is, as expected, far more conservative and smoother. Therefore, the standard deviation
of xEKF with respect to raw measurements would be larger than of xINV.

The measurement noise is present in all time windows. In time window II, at about5

15:00 to 15:30 LT, the measurements for DMPS I and II in the overlap region disagree
significantly due to random noise (not shown). In this case, xINV systematically under-
estimates both measured particle number concentrations, while xEKF is a compromise
between the two measurements. This leads to larger values in the overlap region for
xEKF than for xINV, with xEKF being closer to the observed state. Also in time window10

II, the significant standard deviation in xEKF in particle sizes above 30 nm, and some
of the standard deviation in particles smaller than 20 nm, is due to the measurement
noise. The same is also true in time window I for particles smaller than 20 nm and at
100 to 200 nm range.

We conclude by noting that our analysis covered about two months of EUCAARI15

measurements in April–May 2007. A simultaneous analysis of several days is difficult
due to the bias being time-sensitive and the differences between the observed and
estimated size distribution values depending on the absolute particle number concen-
tration. To provide comparison with the results here, the bias and standard deviation
for six days (2, 9, 13, 16, 18 and 28 April 2007) are presented in Fig. 6. These days20

were chosen because they contained noticeable events in the particle size distribu-
tions. Common to all days in Fig. 6 is: (i) in the overlapping measurement range of 10–
40 nm the bias for xEKF is smaller than for xINV, (ii) in particle diameters of 50–200 nm
the standard deviation for xEKF is noticeably larger than for xINV, and (iii) for particles
smaller than 10 nm the statistics for xEKF and xINV are near each other despite the25

large changes in those particle sizes due to nucleation events. Detailed results pre-
sented here for 7 May 2007, though, are representative of the entire period regarding
the general behaviour of measurement inversion techniques, including those results
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shown in Fig. 6. In particular, they high-light the merits and challenges of statistical
state estimation in dynamical systems by the EKF technique.

6 Discussion

The initial results concerning the application of EKF in estimation of aerosol particle
size distributions are promising, but also reveal limitations of the method and raise5

questions about their interpretation. First, the encouraging results and opportunities for
EKF are summarized below.

i. Enhanced accuracy : despite the approximations made in this implementation of
EKF, the results are promising. Especially the treatment of the overlap region of
DMPS I and II is very good, and promising regarding the multi-instrument re-10

trievals. Improvements in microphysical modeling, for instance, will directly im-
prove the accuracy of the solution. In the so-called controlled chamber experi-
ments (Sipilä et al., 2010; Brus at al., 2010) the ambient variables and conditions
are well known. Measurements from such experiments provide useful test data
and opportunities to improve error estimation.15

ii. Multi-instrument retrievals: there are no principal obstacles to include new mea-
surements in the EKF inversion, as long as an observation operator and an esti-
mate of observation error variance can be provided. The focus here has been on
a single variable, the particle number concentration. However, it is possible in prin-
ciple to extend EKF to simultaneous estimation of a multi-variate state, for exam-20

ple particle number concentration, particle composition, and ambient vapour con-
centration. The included measurements can be from size sensitive-instruments
(e.g. DMPS, Optical Particle Counter or Aerosol Particle Sizer) and integral sen-
sors (e.g. Nephelometer or Surface Area Monitor).

iii. Constraints: the EKF constraints the variable state estimate with the previous25

state and observations over the measurement range based on the error covari-
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ances. This reduces the impact of random noise and thus smoothens out the state
estimate. It can also fill in data gaps due to for example missing measurements.

iv. Applicable to any model : although in this study the UHMA model was used, EKF
is not limited to any particular model. More appropriate models and processes
for different cases or environments can be used to propagate the state estimate.5

Improvements in the modeling of the state evolution also improve the inversion
results obtained with EKF.

v. Benefitting from improved error estimation: the inclusion of proper error covari-
ance for background size distribution and observations should increase the accu-
racy of the EKF implementation. This could enable more optimal solution during10

changes in air mass, for instance.

vi. Additional information on the system: EKF provides a minimum-variance state
estimate, and also the associated error covariance. This aspect is missing from
the mathematical inversion.

vii. Insensitivity to the initial state: EKF does not appear to be very sensitive for the15

choice of initial state or the associated error covariance at the very beginning of
the filtering.

The challenges concerning the current implementation of EKF are listed below.

I. Discontinuities in measurements: in EKF, the background state is a prediction
from the previous observation time. The limitation is that the state evolution only20

includes the dynamical processes of the model. When the system state suddenly
changes due to external reasons, there will be a gradual adjustment toward the
new state, lagged by the past information. Such situations are related to, for in-
stance, air mass changes, precipitation, or particle influx from external sources.

II. Model microphysics: the time evolution updating benefits of an accurate and uni-25

versal forward model, in our case the UHMA model. There are numerous ways
18871

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 18853–18887, 2012

Estimation of
particle distributions
with Kalman Filtering

– Part 1

T. Viskari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

to describe microphysical processes to different conditions and environments, but
some parametrizations are not necessary applicable to all situations. Accuracy of
EKF is sensitive to the choices made regarding modelling of different processes,
but it is very hard to quantify this sensitivity.

III. Model input data: external quantities (i.e. boundary conditions) influence the evo-5

lution of resolved state variables. Regarding particle number size distribution, for
instance, the ambient vapour concentrations significantly affect nucleation and
condensation processes. In this article, measured ambient vapour concentrations
were used as boundary conditions. These are, however, not always available.

IV. Error estimates: EKF relies on estimates of the observation and background error10

covariances. In this article, the errors were not estimated but specified in a manner
which is very likely to be sub-optimal.

7 Conclusions

Extended Kalman Filter (EKF) was introduced to estimate particle number size distri-
butions in a box-model context using observations from a DMPS instrument. Motivation15

for the research lies in the fact that it is generally hard to estimate size distributions from
multiple observations, even of the same measured variable, using a pure mathematical
inversion technique. Here, a limited EKF implementation was applied to estimate the
particle number size distribution by adjusting the time-evolved background state with
observations from two DMPSs, which measure on different but partly overlapping par-20

ticle size ranges. This allowed focus on how the general aspects of aerosol physics
impact the EKF implementation.

The two inversion approaches, EKF and a pure mathematical inversion, were val-
idated by calculating bias and standard deviation for the estimated size distributions
with respect to the raw measurements. This was possible by applying the observa-25

tion operators that are used in EKF to compute the observation counterpart of the
18872
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model state vector. Despite the assumptions made in the EKF implementation, EKF
was found to be more accurate than the mathematical inversion method in terms of
bias, and compatible in terms of standard deviation. The analysis covered about two
months of EUCAARI measurements in April–May 2007. The detailed results were pre-
sented for 7 May 2007 which was selected as a representative example of the entire5

period regarding the overall behaviour of these inversion techniques.
Generally, the limited EKF implementation was found to be satisfactory, and justifies

the more extensive EKF implementation examined in Part 2 of this work. Potential
further improvements of the EKF implementation include more accurate estimation of
error covariance of the measurements and the background state.10
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Karlsson, H., Hansson, H.-C., Väkevä, M., Koponen, I.K., Buzorius, G., and Kulmala, M.:
Physical characterization of aerosol particles during nucleation events, Tellus, 53, 344–358,
2001.20

Brus, D., Hyvärinen, A.-P., Viisanen, Y., Kulmala, M., and Lihavainen, H.: Homogeneous nucle-
ation of sulfuric acid and water mixture: experimental setup and first results, Atmos. Chem.
Phys., 10, 2631–2641, doi:10.5194/acp-10-2631-2010, 2010.

Chung, C. E., Ramanathan, V., Carmichael, G., Kulkarni, S., Tang, Y., Adhikary, B., Leung,
L. R., and Qian, Y.: Anthropogenic aerosol radiative forcing in Asia derived from regional25

models with atmospheric and aerosol data assimilation, Atmos. Chem. Phys., 10, 6007–
6024, doi:10.5194/acp-10-6007-2010, 2010.

18873

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-10-2631-2010
http://dx.doi.org/10.5194/acp-10-6007-2010


ACPD
12, 18853–18887, 2012

Estimation of
particle distributions
with Kalman Filtering

– Part 1

T. Viskari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Dubovik, O., Lapyonok, T., Kaufman, Y. J., Chin, M., Ginoux, P., Kahn, R. A., and Sinyuk,
A.: Retrieving global aerosol sources from satellites using inverse modeling, Atmos. Chem.
Phys., 8, 209–250, doi:10.5194/acp-8-209-2008, 2008.

Elbern, H., Schmidt, H., Talagrand, O., and Ebel, A.: 4D-variational data assimilation with an
adjoint air quality model for emission analysis, Environ. Modell. Softw., 15, 539–548, 2001.5
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Fig. 1. The ambient vapour concentrations for sulphuric acid (blue), non-volatile organic com-
pound (red) and volatile organic compound (green) as applied in the EKF implementation for
7 May 2007.
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Fig. 2a. Particle size distribution obtained with EKF (xEKF) on 7 May 2007 from SMEAR II in
Hyytiälä, Finland. Note that the particle number concentrations are only presented from 106

to 109 1 m−3. The color bar values are given as exponents of 10. The particle size distribution
divided in to time windows I (00:00–09:00 LT), II (09:00–17:00 LT), III (17:00–19:00 LT) and IV
(19:00–23:00 LT). The black vertical lines represent the time division.
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Fig. 2b. As in (a), but for mathematical inversion (xINV).
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Fig. 2c. The total number concentrations for particles larger than 3 nm for xEKF (solid; blue) and
xINV (dashed; green).

18882

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18853/2012/acpd-12-18853-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 18853–18887, 2012

Estimation of
particle distributions
with Kalman Filtering

– Part 1

T. Viskari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3a. The bias of xEKF (blue) and xINV (red) as compared to the raw measurements from
DMPS I (solid) and II (dashed) on 7 May 2007. The bias is on the y-axis [1 cm−3] and particle
diameter on the x-axis [m]. Note that the results are presented in the characteristic diameters.
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Fig. 3b. As in (a), but for the standard deviation.
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Fig. 4. The bias and standard deviation of xEKF (blue) and xINV (red) as compared to the raw
measurements from DMPS I (solid) and II (dashes) for time windows I to IV. The bias and
standard deviation are on the y-axis [1 cm−3] and particle diameter on the x-axis is [m]. Note
that the results are presented for the characteristic diameters.
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Fig. 5. Observations from 12:00 (blue), 12:10 (red), and 12:20 LT (green) on 7 May 2010 from
SMEAR II in Hyytiälä, Finland for DMPS I (solid) and DMPS II (dashed). Observed number
concentrations are on the y-axis [1 cm−3] and particle diameter on the x-axis [m]. Note that the
observations are presented in the characteristic diameters.
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Fig. 6. The bias and standard deviation of xEKF (blue) and xINV (red) as compared to the raw
measurements from DMPS I (solid) and II (dashes) for 6 days in April. The bias and standard
deviation are on the y-axis [1 cm−3] and particle diameter on the x-axis [m]. Note that the results
are presented for the characteristic diameters.
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