Supporting Information for

Cost Effective Determination of Vehicle Emission Factors using On-Road Measurements

Neelakshi Hudda¹, Scott Fruin¹, Ralph J. Delfino² and Constantinos Sioutas^{3*}

¹Department of Preventive Medicine, Environmental Health Sciences, University of Southern California, Los Angeles CA 90089

²Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92617

³Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089

*Corresponding Author Email: sioutas@usc.edu

Civil & Environmental Engineering University of Southern California 3620 South Vermont Avenue Los Angeles, CA, 90089 Tel: 213-740-6134 Fax: 213-744-1426

Number of pages- 11

Number of figures- 04

Number of tables- 03

S.1 Instruments used, sampling routes, days and meteorological conditions

Instrument	Parameter measured	Instrument Flow Rate (L min ⁻¹)	Response Time (s)	Resolution	Detection Limit
TSI portable CPC (Ethanol- based) model 3007	UFP count, 10 nm - 1 um	0.8	<9 sec for 95% response	1 particle/cm^3	10 nm, <0.01 particles/cm ³
Magee Scientific Aethalometer AE 51	Black carbon (BC)	150 mL/min	~5	0.001 µg BC/m3	±0.1 μg BC/m ³ , 1 min avg., 150 mL/min flow rat
LI-COR model LI-820	CO ₂	1	<1	>4% of the reported value	3.0 ppm
2-B Technology Model 408	NO	1	8	Greater of 3 ppb or 3% of reading	
2-B Technology Model 401-410	NOx	1	8	Higher of 1.5 ppb or 2% of reading	
EcoChem PAH analyzer, model PAS 2000	Particle-bound Polycyclic Aromatic Hydrocarbons (PB-PAH)	2	< 10	~ 0.3 -1 g /m ³ PB-PAH per picoamp	3 ng/m ³
Garmin GPSMAP 76CSx	GPS location, speed	N/A	1	3 m	

Table S.1: Instruments used in this study

Figure S.1: Freeway segments where measurements were conducted (generated using Google Maps).

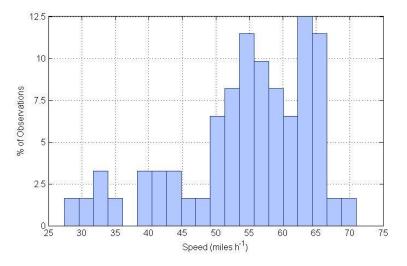


Figure S.2: Speed during runs on mixed-fleet freeways.

Freeway	Hour	Date(MM/DD)	Temp	WS	WD	Freeway	Hour	Date(MM/DD)	Temp	WS	WD	
	6	06/8	16	2	SE		5	05/26,06/08	16,16	2,3	NE,S	
	7	05/20, 06/1, 06/8	19,21,16	1,2,2	N,N,S		6	05/26,06/08	16,16	2,3	E,S	
	8	05/17, 05/20, 06/1	12,21,18 5,1,2 N,N,S		7	05/26,06/02,06/08	18,19,17	1,1,3	SE,S,S			
	9	06/2	21	5	W		8	05/26,06/02,06/08	18,19,17	2,1,3	S,S,S	
	11	06/14	26	4	SW		9	05/17,05/20	13,17	4,4	E,SE	
SR-110	12	06/14	25	5	W		10	05/17,05/20,06/14	13,17	2,4	NE,S	
	13	06/3, 06/4	24,22	4,4	SW,S	I-710	11	06/03,06/04	17,18	5,4	S,SW	
	14	06/3	24	4	SW		12	06/03,06/04	18,18	4,4	W,S	
	15	04/27	28	3	SW		13	06/03	18	4	SW	
	16	04/27	28	2	S		14	06/03	19	5	S	
	18	01/25,	20	2	Ν		15	06/03	21	4	S	
	19	05/30, 01/31	18,13	4,2	W,S		18	05/30	20	3	NW	
	20	01/25	17	2	Ν		19	05/30	17	3	W	
	21	01/25	16	2	Ν		20	06/01	15	3	W	
	10	06/02,06/04	21,20	4,3	W,SW		21	05/19	15	1	SW	
	11	06/02,06/04	21,21	4,4	W,SW		22	05/19	14	2	Ν	
	12	06/02,06/14	21,26	5,3	W,W	I-405	10	06/02	19	1	W	
1 1 1 0	13	06/02,06/14	22,25	5,3	W,W		11	06/02,06/04	20,18	1,3	W,SE	
I-110	14	06/14	24	3	W		12	06/02	20	2	W	
	16	06/01,06/15	19,22	5,3	W,W		13	06/14	24	3	SW	
	17	06/01	18	5	W		14	06/14	23	3	SW	
	18	06/01,06/15	16,18	4,3	W,W		16	06/15	19	3	SW	
	10	06/02,06/04	19,18	1,3	W,SE		18	06/01	18	5	W	
SR-91	11	06/04	18	3	SE	January measurements were conducted in 2012. All other						
SK-91	13	06/14	23	3	SW	measurements were conducted in 2011. Temperature (Temp) is in degree Celsius, wind speed (WS) in miles h ⁻¹ and WD refers to wind direction.						
	17	06/01,06/15	18,19	5,3	W,SW							
	18	06/01,06/15	16,17	5,3	W,SW							

 Table S.2: Sampling days, hours and meteorological conditions

S.2 Emission factor calculations

S.2.1 Heavy Duty Vehicle contribution apportionment

On other freeway links other than SR-110, the distribution of ratio of increase in pollutant concentration to CO₂ concentration from SR-110 was used to attribute the correct fraction to light-duty vehicles (LDVs), and the remainder was attributed to heavy-duty vehicles (HDVs). The following equations summarize the technique.

Equation S.1: Elevation in pollutant concentration due to diesel fuel combustion

$$\Delta[P]_{d} = \Delta[P] - \Delta[CO_{2}]_{g} \left(\frac{\Delta[P]_{SR \ 110}}{\Delta[CO_{2}]_{SR \ 110}}\right)$$

where $\Delta [CO_2]_g$ is the fraction of CO₂ attributed to gasoline and can be apportioned using Equation S.2 (below), which takes into account the difference in gasoline and diesel vehicle fuel economies, fuel density and carbon fraction.

Equation S.2: CO₂ Apportionment

$$\Delta [CO_2]_g = \Delta [CO_2] \left(\frac{(1 - f_d) \times (\frac{1}{FE_g}) \times \rho_g \times w_g}{(f_d) \times (\frac{1}{FE_d}) \times \rho_d \times w_d + (1 - f_d) \times (\frac{1}{FE_g}) \times \rho_g \times w_g} \right)$$

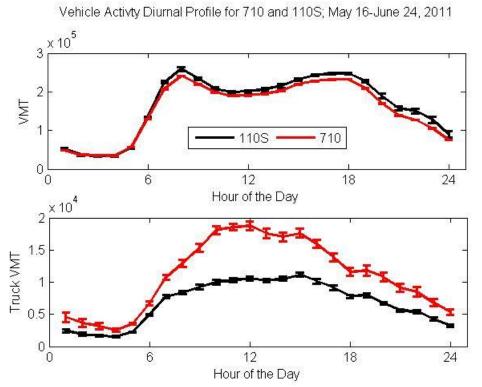
where f_d represents the fraction of vehicles using diesel fuel, FE is the fuel economy (mile L⁻¹), ρ Is the density of fuel (kg L⁻¹), and w_g and w_d are the mass fraction of carbon in gasoline and diesel. f_d or f_{HDV} was calculated using Equation S.3, where VMT_{HDV} and VMT_{LDV} are vehicle-miles traveled (VMT) by HDV (assumed to be completely diesel) and gasoline vehicles (assumed to be completely gasoline), during the measurement period on the freeway segment under consideration.

Equation S3: Fraction of fuel consumed that was diesel

$$f_{HDV} = \frac{VMT_{HDV}}{VMT_{HDV} + VMT_{LDV}}$$

The values for fuel economy used in this study were 5.1 miles L⁻¹ and 2.0 miles L⁻¹ for gasoline and diesel fuel engines, respectively, based on Los Angeles fuel usage figures. The input data for VMT and subcategory fuel economies was obtained from CARB EMFAC2011 emission rates inventory (EMFAC, 2011) (Table S3). Fuel density values were 0.74 kg L⁻¹ and 0.84 kg L⁻¹ for gasoline and diesel fuel, respectively, similar to other studies (Ban-Weiss et al., 2008)

S.2.2 Traffic Characterization


Many traffic related parameters (for example, speed, vehicle count, vehicle miles travelled per lane) are recorded at vehicle detection stations (based on single loop detectors) and reported by PeMS, a real-time traffic data tool made available by California Department of Transportation (CALTRANS) (Caltrans 2009). PeMS offers the advantage of obtaining HDV estimates at a much finer spatial resolution, since there are hundreds of detectors on a freeway, averaging approximately one every mile. In contrast, weigh-in-motion sensors (only one each is present on each side of I-710, I-405 and I-91 in Los Angeles) cannot

provide the necessary spatial resolution needed to resolve real time pollutant data.

Overall, 53.4 % of VMT in LA are travelled using passenger cars, 23.9 % using light duty trucks and 13.2 % using medium duty vehicles. These three categories constitute LDV categorization in this study and are overwhelmingly fueled by gasoline engines. The remaining HDV VMT were assumed to be all diesel powered and to occur in the two right most lanes. PeMS assigns VMT_{HDV} based on an algorithm that takes vehicle-to-vehicle distance into account as opposed to axle weights and estimates truck traffic volume to within 5.7% of the values reported by weight-in-motion sensors (Kwon et al., 2003). A correction factor was applied to VMT_{HDV} estimates from PeMS on account of possible inability of PeMS to assign the light-heavy duty diesel truck (HDDT) correctly to HDV category. As much as 22% of HDDT VMT in LA results from light-HDDT, i.e., 40% of heavy-HDDT VMT, so a correction factor of 1.4 was applied to the VMT_{HDT}. The details of the VMT breakdown in Los Angeles County and correction factor calculations are presented in the following Table S.3.

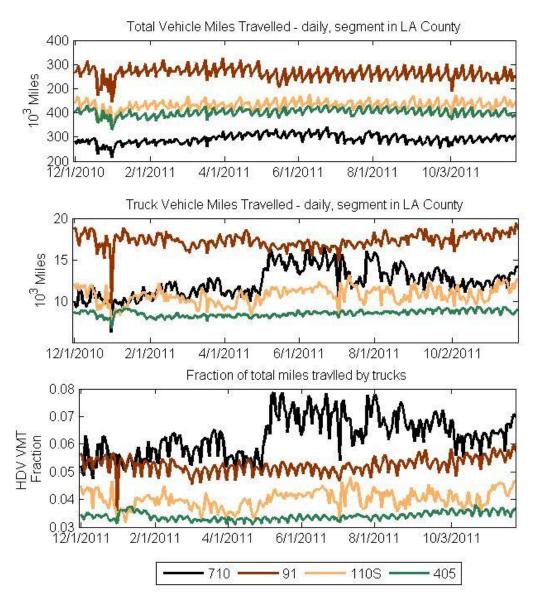

	Fuel Ec (miles/	gallon)	% of Total VMT in LA County - EMFAC 2011 Fuel Type		Classification in this study	Fuel Type assumption in this study, based on Caltrans PEMS classification as trucks			
Vehicle Type	DSL	GAS	DSL	GAS		trucks			
PC	29.5	22.0	0.16%	53.21%	LDV	GAS			
LDT	28.1 16.7		0.01%	23.86%	LDV	GAS			
MDV	30.1	12.7	0.01%	13.20%	LDV	GAS			
HDGT									
LHDGT	-	12.9	-	3.54%	LDV	GAS			
MHDGT	IHDGT - 12.3		-	0.31%	indeterminate	indeterminate			
HHDGT	-	11.5	-	0.06%	HDV	DSL			
HDDT				-					
LHDDT	19.0	-	0.99%	-	LDV	GAS			
MHDDT	8.7	-	1.12%	-	indeterminate	indeterminate			
HHDDT	5.6	-	2.32%	-	HDV	DSL			
Other			0.68%	0.14%	none	none			
Correction Facto Calculations adjust for misclass HHDGT category		า							
	00/			IDV or truck VM	T by				
HHDGT/HHDDT 2% multiplying by 0.98 adjust for misclassification in LHDDT category									
LHDDT/HHDDT	400/			ncrease HDV or truck VMT by					
	43%		multiplying by 1.43						
Resultant Correction factor 1.4 PEMS classification as trucks, which is sum of HHDGT &									
Correction Factor applied on HHDDT and an indeterminate fraction of MHDDT & MHDGT									
FUEL EFFCIENCY USED IN THIS STUDY		abed ave	race of	DSL/HDV/Truc	GAS/LDV/r cks truck	not			
miles/gallon	miles/gallon VMT weighed average PC, LDT & MDV cate VMT weighted average			7.4	4 19.2				
miles/liter	HDDT	ynted ave	erage for	2.0	5.1				

Table S.3: EMFAC 2011 VMT distribution and PEMS correction factor calculations

S.4 Vehicle Activity Trends on freeways

Figure S.3: Diurnal vehicle activity trend on two Los Angeles freeways, representative of general trend on all freeways.

Figure S.4: Vehicle miles travelled, truck vehicle miles travelled and fraction of total miles traveled by truck on four Los Angeles freeways in LA County during 12/1/2010 – 30/11/2011.

References

Ban-Weiss, G.A., McLaughlin, J.P., Harley, R.A., Lunden, M.M., Kirchstetter, T.W., Kean, A.J., Strawa, A.W., Stevenson, E.D. and Kendall, G.R. (2008). Long-Term Changes in Emissions of Nitrogen Oxides and Particulate Matter from On-Road Gasoline and Diesel Vehicles. *Atmospheric Environment*, *42*, 220-232.

California Department of Transportation (CALTRANS) Traffic Data Branch, (2009). Annual Average Truck Counts, http://trafficcounts.dot.ca.gov/2009all/docs/2009truckpublication.pdf

Kwon J., Varaiya P. and Skabardonis, A. (2003). Estimation of truck traffic volume from single loop detectors with lane-to-lane speed correlation. *Freeways, High-Occupancy Vehicle Systems, and Traffic Signal Systems, 1856,* 106-117.