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Abstract

The multi-angle implementation of atmospheric correction (MAIAC) algorithm makes
aerosol retrievals from MODIS data at 1 km resolution providing information about the
fine scale aerosol variability. This information is required in different applications such
as urban air quality analysis, aerosol source identification etc. The quality of high reso-5

lution aerosol data is directly linked to the quality of cloud mask, in particular detection
of small (sub-pixel) and low clouds. This work continues research in this direction,
describing a technique to detect small clouds and introducing the “smoke test” to dis-
criminate the biomass burning smoke from the clouds. The smoke test relies on a
relative increase of aerosol absorption at MODIS wavelength 0.412 µm as compared10

to 0.47–0.67 µm due to multiple scattering and enhanced absorption by organic carbon
released during combustion. This general principle has been successfully used in the
OMI detection of absorbing aerosols based on UV measurements. This paper provides
the algorithm detail and illustrates its performance on two examples of wildfires in US
Pacific North-West and in Georgia/Florida of 2007.15

1 Introduction

The multi-angle implementation of atmospheric correction (MAIAC) is a new MODIS
algorithm which retrieves aerosol information over land simultaneously with param-
eters of the bidirectional reflectance distribution function (BRDF) model (Lyapustin
et al., 2011a,b, 2012a). MAIAC uses the time series (TMS) analysis and processing of20

groups of pixels which allows to impose physical constraints on the time-space variabil-
ity of aerosols and surface reflectance captured with the MODIS daily global coverage:
namely, aerosols vary slowly in space but may change between consecutive MODIS
observations, whereas the land surface reflectance has a high spatial variability but low
rate of change at short time intervals (see also Dubovik et al., 2011; Govaerts et al.,25

2010). MAIAC features an independent cloud mask algorithm which uses TMS analysis
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to identify clear conditions based on stable spatial pattern from surface over time as
opposed to generally random pattern created by clouds (Lyapustin et al., 2008).

A distinctive feature of MAIAC is a high 1 km resolution of aerosol product. While
high resolution is in great demand for urban air quality analysis and other applications,
it also raises the standards for the accuracy of cloud detection. The recent paper of Lya-5

pustin et al. (2012b) explored ways to reduce cloud contamination in MAIAC aerosol
retrievals. Specifically, we used analysis of spectral residuals between the measured
and computed (based on retrieved parameters) top of atmosphere (TOA) reflectances
to identify additional clouds. We have also adapted the histogram filtering approach
of the current MODIS operational “Dark Target” algorithm MOD04 (Levy et al., 2007)10

which screens data below the 20th and above the 50th percentiles in a 10 km window
as probably contaminated by shadows and clouds, respectively. In MAIAC, similar filter-
ing approach was applied to 1 km AOT retrievals in the 25 km window with the dynamic
upper threshold being a function of the cloud fraction. A limited testing showed a dra-
matic improvement in the aerosol product quality without big impact on retrievals with15

spatially variable aerosols.
A subsequent large scale analyses of MODIS data, however, revealed a more com-

plex picture. First, it showed that the introduced “spectral residual” test is redundant
and can be omitted in favor of a more universal and generic “histogram” test. Second,
regardless of specific implementation, the histogram test was found to filter retrievals20

with high AOT gradient which often present a particular interest for analysis. In the
end, this is not a surprise given that the histogram test implies a certain level of spatial
homogeneity of aerosol in the atmosphere, and its success in filtering clouds directly
translates into its failure to preserve AOT data with high spatial variability. In general,
high AOT gradients at a scale of several kilometers and less are generated by two main25

types of aerosol emission near its sources, namely fire smoke, usually associated with
biomass burning, and dust storms. This further work highlighted the need for develop-
ing “smoke” and “dust” tests to help protect aerosol data with strong heterogeneity from
being filtered out. The current paper presents further development of algorithm MAIAC:
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it describes the new small cloud filter in Sect. 2 and the “smoke” test in Sect. 3. Sec-
tion 4 provides an illustration of achieved data processing quality with two examples of
wildfires in US Pacific North-West and in Georgia/Florida of 2007.

2 Detection of small clouds

The MAIAC cloud mask (CM) algorithm was described earlier (Lyapustin et al., 2008).5

In brief, the CM algorithm is based on the notion that the spatial pattern of a given scene
is stable and reproducible for short time periods under cloud-free conditions, whereas
clouds randomly disturb this pattern. The algorithm uses covariance analysis to identify
cloud-free regions. On this basis, it builds a reference clear-sky image of the surface,
which is used for pixel-level cloud masking. The reference image is updated each time10

clear conditions are detected, and thus it dynamically adapts to changing state of the
land surface. The algorithm has an internal land-water-snow dynamic classification,
which detects surface changes and guides MAIAC processing.

The reference clear-sky TOA reflectance, available for every 1 km pixel, significantly
increases confidence of detecting both cloudy and clear pixels. This gives a particular15

advantage in difficult conditions, e.g. in tropical regions of Amazonia characterized by
high cloudiness especially during the wet season (Hilker et al., 2012). Also as a conse-
quence, MAIAC does not use “probably clear” and “probably cloud” categories which
are common to the operational cloud mask algorithms.

In general, it is easy to identify bright and cold clouds and difficult to detect the low20

and small (sub-pixel) clouds as they do not display sufficient brightness temperature
or reflectance contrast. In MAIAC CM algorithm, this problem may be exacerbated by
the use of 1 km gridded data obtained from the original MODIS 500 m measurements
(nadir resolution). The 1 km gridding is required for the time series analysis used in
both aerosol retrieval and atmospheric correction algorithms of MAIAC as well as in25

CM. However, it obviously reduces the reflectance contrasts which otherwise could
be found in the original 500 m data. As an example, Fig. 1a illustrates the difference
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between the 1 km and 500 m grid resolution in the RGB MODIS Aqua image for the
150×150 km2 area in Georgia, USA, the latter showing significantly more contrast and
fine level detail. The arrow points at a small cloud which is still observable at 500 m
resolution but becomes indistinguishable at 1 km. This discussion highlights the idea of
using the 500 m resolution data to improve cloud masking.5

After trial and error, we implemented an approach based on the standard deviation
of four 500 m gridded pixels nested in each 1 km grid cell. Similarly to the reference
clear sky image, the standard deviation image (σi j ) is created for the clear conditions
and stored in the Queue memory (q.σ) for each 1 km pixel. The q.σ-image is dynam-
ically updated with the latest data thus adapting to changing surface conditions over10

time. Using a pixel-specific value has a strong advantage over the use of generic global
thresholds as it automatically accounts for the surface heterogeneity helping cloud de-
tection.

A specific σ-test is implemented for each 1 km pixel as follows:

If σi j >
√
µq.σi j +Thresh → Cloud. (1)15

Here, the multiplier
√
µ, where µ is a cosine of view zenith angle, approximately takes

into account the pixel growth with scan angle, higher overlap between scan lines, and
the resulting reduction of contrast. The term Thresh is a threshold value in the σ-test.
It depends on surface variability, and is obtained as a function of the maximal contrast
over a given pixel and its nearest neighbors (σmax):20

Thresh = 0.005+0.66 · (σmax −0.005), and 0.005 ≤ Thresh ≤ 0.015. (2)

This approach mitigates the effect of the MODIS pixel growth with the scan angle which
becomes important over heterogeneous regions, and helps avoid the impact of high
contrast borderlines such as seashore.

Figure 1 gives examples of the MAIAC cloud mask performance for selected days in25

June and August of 2003, characterized by complex cloudy conditions with large num-
ber of small clouds. The bottom panel shows additional MAIAC products including the
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RGB bidirectional reflectance factors (BRF), commonly called surface reflectance, and
AOT images which allow a more complex evaluation of the total algorithm performance
including cloud mask. The lack of obvious cloud-related artifacts in the BRF and AOT
data indicates a good quality of cloud detection.

3 Smoke test5

3.1 Absorption and size parameters

The biomass burning aerosols contain carbonaceous compounds such as black carbon
(BC) and organic carbon (OC) which are efficient absorbers of light in the atmosphere.
While the BC absorption, e.g. imaginary part of refractive index, is known to be spec-
trally neutral, different studies indicate that the OC absorption increases at short wave-10

lengths, namely in the Blue-UV spectral region (e.g. Kirchstetter et al., 2004; Bergstrom
et al., 2007; Russell et al., 2010). The UV wavelengths have been successfully used
in the OMI Aerosol Index (AI) algorithm to detect absorbing aerosols (smoke, min-
eral dust, volcanic ash) and discriminate them from clouds and from weakly absorbing
aerosols such as sea salt, sulphates etc. (e.g. Torres et al., 1998, 2007). This detection15

relies on the fact that adding absorbing aerosols in atmosphere reduces its TOA radi-
ance as compared to that from the purely Rayleigh atmosphere. At short wavelengths,
the number of scattering events is considerable due to high Rayleigh and aerosol op-
tical thickness, with energy absorbed in each interaction with aerosol particle, which
ultimately reduces the reflected radiance. In the case of smoke, an additional absorp-20

tion may be caused by an enhanced UV light absorption by OC.
In this work, we are using a similar principle based on the MODIS Red, Blue and

Deep Blue (DB) bands B1 (0.646 µm), B3 (0.466 µm) and B8 (0.412 µm). The devel-
oped test (1) isolates aerosol reflectance, and (2) compares the measured reflectance
at shortest wavelength (0.412 µm) with that predicted from the Red-Blue region. Specif-25

ically, an aerosol reflectance is first computed in the Red, Blue and DB channels by
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subtracting the Rayleigh (path) reflectance and the full surface-reflected signal at TOA
from the measurement:

RAer
λ = RMeas

λ −RMolec
λ −RSurf

λ (τa). (3)

The last term is evaluated using AOT (τa) initially retrieved with the background aerosol
model and spectral surface BRDF known from the previous MAIAC retrievals. The so5

defined aerosol reflectance represents the atmospheric aerosol backscattering (path
reflectance) and aerosol-molecular interactions. Next, we assume that the aerosol re-
flectance has a power law spectral dependence typical of the optical thickness,

RAer
λ ∼ λ−b. (4)

While Eq. (4) is only an approximation because of the multiple scattering, aerosol-10

molecular interactions, and spectral dependence of both single scattering albedo and
aerosol phase function, it is quite adequate for our purpose. With this assumption, the
equivalent Angstrom exponent b is computed next using the Red and Blue channels.
Finally, using parameter b, we compute predicted aerosol reflectance at 0.412 µm, and
compare it with the measured aerosol reflectance via the absorption parameter (AP):15

AP = RAer,Meas
0.412 /RAer,Pred

0.412 , where RAer,Pred
0.412 = RAer

0.466(
0.466
0.412

)−b. (5)

This test is implemented after the aerosol retrieval with the background aerosol model
and before the cloud filter. Despite the different implementation, the idea behind this
spectral test is similar to the one behind the OMI aerosol index: to the first order approx-
imation, the clouds, which have spectrally neutral behavior, or non-absorbing aerosols,20

would give the AP values close to unity, whereas the absorbing aerosols would result in
the lower AP values. The reduction of AP for absorbing aerosols is expected because
of the additional multiple scattering and, in case of smoke, additional OC absorption at
0.412 µm as compared to the Red-Blue spectral region.
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3.2 Theoretical simulations

To understand the capability and sensitivity of the proposed test, we conducted a theo-
retical analysis of smoke-cloud separability based on the introduced absorption param-
eter. The liquid water cloud was modeled using a lognormal size distribution with radius
5 µm and standard deviation 0.5 µm using refractive index of Hale and Querry (1973). It5

is worth noting that since clouds practically do not absorb solar radiation in the blue-red
spectrum, the exact properties of clouds do not matter, and the selected cloud model
will provide generally representative results. To model the biomass burning aerosol,
we selected the value of Absorption Angstrom Exponent AAE=2 and the imaginary
refractive index ni = 0.01 at 0.466 µm. While the value AAE=2 is slightly higher than10

those (∼1.4–1.5) based on several field campaign studies and AERONET data com-
piled in Russell et al. (2010), it is well within the range of the reported AAE values (up to
3–5) observed in the controlled burning experiments (see Russell et al., 2010 and refer-
ences therein). For the selected MODIS channels (0.412, 0.466, and 0.646), this gives
ni = 0.0113, 0.01 and 0.0070, and the single scattering albedo SSA=0.9219, 0.924615

and 0.9245, respectively. In addition, we have also tested the case with spectrally-
neutral imaginary index of 0.01 (more representative of BC) which gives SSA=0.9294,
0.9246, and 0.8981, respectively.

The results of simulations performed with the radiative transfer code SHARM (Lya-
pustin and Wang, 2005) are shown in Fig. 2. The top panel (a) shows simulated ab-20

sorption parameter (AP) and the bottom one (b) shows the size parameter (SP) given
by the ratio SP = RAer

0.646/R
Aer
0.466 which is equivalent to parameter b. The results are pre-

sented as a function of the optical thickness. In each panel, the rows show different
solar zenith angles (SZA=0, 45, 60◦), and columns show different relative azimuths
(ϕ = 35, 90, 145◦). The range of selected azimuthal angles is typical of MODIS obser-25

vation geometries. The line color represents different view zenith angles (red, green,
blue for µ=1, 0.75, 0.5, respectively).
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Each plot shows results for an optically thick cloud (horizontal dashed lines), thin
clouds corresponding to a given optical thickness (dotted lines) and two aerosol types
with solid lines representing aerosols with AAE=2 (Aerosol(λ)) and open circles show-
ing simulations with constant ni = 0.01 (Aerosol). As expected, the “size parameter” for
clouds is close to unity indicating a near-neutral spectral dependence, whereas the typ-5

ical aerosol values are in the range of 0.6–0.8 indicating much smaller particle size. The
aerosol SP values grow with AOT and atmospheric airmass, nevertheless the aerosol
SP is distinguishably lower than the cloud value for the analyzed AOT range 0–2. The
top panel (AP) shows a separation of non-absorbing clouds (e.g. horizontal dashed
lines for optically thick clouds) and absorbing smoke (solid lines), which increases with10

aerosol optical thickness and airmass. A robust separation is achieved for all view ge-
ometries at AOT0.47 > 0.5. At smaller AOT, especially with low SZA and VZA, this test
becomes less reliable due to additional uncertainties from the knowledge of spectral
surface BRDF.

As specific aerosol absorption is a function of many parameters including type of the15

burning material and smoldering to flaming fraction ratio, we implemented a smoke test
based on separation from the “cloud AP” as follows:

If APi j < APCloud −0.03 → Aerosol, (6)

where APCloud
∼= 0.97−0.06(2−µ−µ0) is approximately parameterized in terms of

cosines of the view and solar (µ0) zenith angles. The size parameter is additionally20

used in the mineral dust detection, which will be described separately.

4 Examples of MODIS processing

A detailed example illustrating current MAIAC retrieval capability is shown in Fig. 3 for
the case of forest wildfires in the US Pacific North-West in 2007. Shown is the area
of 150 km in the Rocky Mountains centered at 45.5◦ N, 115.1◦ W. Fires started about25

DOY 193 and lasted for over two months. Figure 3 displays 10 different columns for
18659

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/18651/2012/acpd-12-18651-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/18651/2012/acpd-12-18651-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 18651–18670, 2012

Discrimination of
biomass burning

smoke and clouds in
MAIAC algorithm

A. Lyapustin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

each of the 10 days shown, including MODIS Aqua RGB top of atmosphere (TOA)
data, MAIAC cloud mask, RGB NBRF (theoretically computed Normalized BRDF for
a fixed geometry of nadir view and SZA=45◦ which can be considered as a back-
ground surface image) and BRF (bidirectional reflectance factor often called surface
reflectance), AOT0.47, absorption parameter (AP), brightness temperature (BT), re-5

flectance in MODIS cirrus channel (1.38 µm), and measured and predicted, based on
BRDF model, reflectance in band 7 (2.1 µm).

The top three images (DOY 194, 199, 212) show initial fires of relatively low intensity
in different conditions. Areas of enhanced smoke absorption are clearly identifiable by
low values of the absorption parameter (AP), in contrast to high AP values from clouds10

or the background aerosol. The last four columns are shown to help discriminate clouds
from smoke. For example, usually higher and colder clouds have lower brightness tem-
perature and higher reflectance in the cirrus channel 1.38 µm as compared to a clear
land or a near-ground smoke. The MODIS narrow cirrus channel (band 26) is located in
the water vapor band with strong absorption such that a small amount of column water15

vapor (0.3–0.5 cm) is usually sufficient to absorb most of radiation reflected by the sur-
face and aerosols into space. Usually, this channel is very dark measuring a low signal,
however it becomes bright when the scattering layer (aerosol or cloud) raises above the
bulk of column water vapor. These effects are clearly visible in the top three rows of im-
ages. The first day (194) shows a sub-visible thin cirrus with low optical depth detected20

based on lower BT and higher R1.38 as compared to the cloud-free background.
The last two columns show the measured MODIS reflectance at 2.1 µm and pre-

dicted reflectance based on surface BRDF model retrieved by MAIAC. One can see
that in the absence of optically thick clouds the two fields (R2.1 and RTLS2.1) are spa-
tially well correlated (e.g. DOY 194). The correlation at 2.1 µm usually remains robust25

even in conditions of thick smoke plumes. The biomass burning smoke is mostly rep-
resented by the fine mode particles and thus has little effect on the 2.1 µm reflectance
(Kaufman et al., 2005; Eck et al., 1999, 2009).
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The fire reaches its maximal strength on days 224–225. On day 224, the BT and R1.38
fields show that smoke rises well above the boundary layer. Based on the brightness
temperature contrast of 25–35 ◦C, the height of the plume can be roughly evaluated
as 4–5 km above the ground. The AP index shows the lowest values among all days
indicating high absorption by carbonaceous (BC and OC) aerosols.5

The bottom images show the last four days of the fire, which were followed by the
cloudy period and the onset of the cold season. These very interesting images (TOA,
AOT0.47, and AP) show that a significant fraction of the smoke is concentrated along
the mountain valleys making them visibly very bright. At the same time, the nearby
elevated areas often have a much better air quality with lower AOT.10

These examples show that with the introduction of smoke discrimination, MAIAC no
longer filters out fire plumes, including those with the high reflectance and AOT con-
trast. The cloud mask images show that some excessive filtering (yellow color) may still
occur on the plume boundaries, in transitional zones to clear areas with AOT0.47 ∼0.3–
0.6, where smoke detection becomes less reliable.15

Figure 4 shows several large-scale examples of MAIAC aerosol retrievals for the
South-Eastern USA using MODIS Aqua for 2007. The top two rows of images show
triplets of consecutive days for the Georgia–Florida fires of 2007, the largest fires in
the history of both states. These fires, caused by an extreme drought of 2007, started
in the second half of April and raged through the end of June (e.g. Christopher et al.,20

2009). Images for days 119–121 show several strong fire sources in the two states, and
another large fire in Alabama magnified in the inset. Days 141–143 illustrate conditions
of increasing cloudiness, and reliable identification of the source and of progressively
north-western transport of smoke under high cloudiness (DOY 142–143). Finally, the
last three days (230–232) show gradual removal of polluted air by the weather system25

in the northern direction.
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5 Conclusions

High resolution aerosol data from space observations offer a unique prospective for
different disciplines and operational applications focusing on aerosol sources and their
emission power. One important application is detection and characterization of the wild-
fires that affect global population, and the assessment of the air quality in affected5

areas. This work described a continued development of the MAIAC algorithm by im-
proving the quality of the 1 km aerosol product with reliable cloud filtering.

MAIAC combines a specialized cloud masking approach with an aerosol screening
technique based on the histogram analysis following the MODIS Dark Target opera-
tional algorithm (Levy et al., 2007). The histogram-based aerosol filter is a very robust10

tool based on an assumption that the spatial variability of aerosols is significantly lower
than that from clouds. This assumption works well in most cases except when in close
proximity to strong aerosol sources, e.g. fire smoke plumes, resulting in filtering the
areas of the real aerosol signal, usually the most interesting for analysis.

In the current work, we have augmented MAIAC cloud mask with the spatial variance15

analysis to improve detection of small sub-pixel clouds. The variance σ is computed for
every 1 km pixel from four original MODIS pixels at 500 m resolution, and is compared
to the dynamically updated clear-sky value for the same pixel stored in the memory.

We have also introduced a smoke test based on analysis of measured reflectance
in the MODIS Red, Blue and Deep Blue channels. This test detects absorbing smoke20

aerosols based on higher absorption at shorter wavelengths, which is a result of multi-
ple scattering and increased absorption by organic carbon released during combustion.
Using two examples of forest fires in the US Pacific Northwest and Georgia/Florida
in 2007, we show for the first time that robust discrimination of the biomass burning
aerosol can be achieved using visible set of wavelengths rather than the UV range, the25

latter being the mainstream approach with long history of successful operational use.
The developed smoke test fully leverages MAIAC synergistic processing by us-

ing available spectral BRDF information. This facilitates reliable smoke detection in
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relatively clear conditions. It should be mentioned, however, that at high optical depth,
sensitivity of TOA radiance to the surface is low, therefore the same approach can be
successfully used to detect dense plumes without a priory knowledge of the surface
reflectance.

It should be noted that examples of AOT retrievals, presented above, give a low es-5

timate of the optical thickness for smoke regions and should be considered qualitative
as current MAIAC results were produced using a single low absorption aerosol model
typical of the East Coast USA (Lyapustin et al., 2011b). With the developed smoke
discrimination capability, however, the realistic biomass burning aerosol models will be
included in MODIS MAIAC retrievals in the near future.10
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TOA CM NBRF BRF AOT

Fig. 1. (Top) effect of spatial resolution on detection of small clouds. The left and right images
show the MODIS Aqua RGB image of the 150×150 km2 area in Georgia, USA, for 29 June
2003 at gridded resolution of 1 km and 500 m, respectively. The MAIAC cloud mask is shown
in the middle with the following legend: blue – clear, red/yellow – cloud. (Bottom) illustration
of MAIAC performance for the same area in 5–7 August 2003. The five columns show the
MODIS Aqua TOA data and MAIAC products including cloud mask, RGB NBRF (bidirectional
reflectance computed from the BRDF model for a fixed view geometry of nadir view and 45◦

solar zenith angle), BRF (or surface reflectance) and aerosol optical thickness (AOT0.47) with
scale shown below.
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Fig. 2. Simulated absorption parameter (top) and size parameter (bottom) for different view ge-
ometries and optical thickness (OT) for absorbing aerosols and clouds. The rows show different
solar zenith angles (SZA=0, 45, 60◦), and columns show different relative azimuths (ϕ = 35,
90, 145◦). The color of lines and symbols represents different view zenith angles (red, green,
blue for µ = 1, 0.75, 0.5, respectively). The horizontal dashed and dotted lines correspond
to thick and thin (with given OT) clouds, respectively. The solid lines and circles correspond
to aerosols with AAE∼2 (Aerosol(λ)) and spectrally independent imaginary refractive index
(Aerosol), respectively. The parameters of simulations are provided in the text.
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Fig. 2. Continued.
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256256

Fig. 3. Illustration of MAIAC algorithm performance for case of forest wildfires in Pacific North-
west, Rocky Mountains, USA, 2007. The images show MODIS Aqua RGB TOA data, MAIAC
cloud mask, RGB NBRF and BRF, AOT0.47, absorption parameter (AP), brightness tempera-
ture (BT), reflectance in MODIS cirrus channel (1.38 µm), and measured and predicted, using
retrieved BRDF model, reflectance in B7 (2.1 µm). The results are shown for 150 km tiles for
days of year from 194 to 256, as indicated in the 4th column. The blue color of the cloud mask
correspond to clear pixels, and red-yellow show detected clouds. The following scales were
used for columns 5–10 (based on displayed rainbow palette): 0–3 (AOT0.47), 0.7–0.91 (AP),
273–305 (BT), 0–0.035 (R1.38), 0–0.3 (R2.1 and RTLS2.1).
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Fig. 4. Examples of MAIAC large-scale aerosol retrievals for the South-Eastern US using
MODIS Aqua 2007 data. The numbers show the day of the year. The scale of AOT0.47 is 0–3.
The top two rows of images show triplets of consecutive days for the Georgia–Florida fires of
2007. An additional large fire on day 121 in Alabama is magnified in the inset. Days 141–143
illustrate conditions of increasing cloudiness with reliable identification of the fire source and
north-western transport of smoke. The last three days (230–232) show a gradual removal of
polluted air by the weather system in the northern direction.
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