Supplementary material

Indirect radiative forcing by ion-mediated nucleation of aerosol

Fangqun Yu¹, Gan Luo¹, Xiaohong Liu², Richard C. Easter², Xiaoyan Ma¹, Steven J. Ghan²

¹Atmospheric Sciences Research Center, State University of New York at Albany

²Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory

Effects of ionization on [H₂SO₄], nucleation rates, and CN at different altitudes

In Figure 1 of the main text, we show the impacts of ionization on annual mean column burdens of H₂SO₄ vapor, column integrated nucleation rate (J), and total condensation nuclei (CN) number burden. Figure S1 gives the annual mean zonally averaged values of H₂SO₄ vapor concentration ([H₂SO₄]), J, and CN number concentrations for the two cases (IMN and BHN). Based on zonal averaged results, IMN reduces [H₂SO₄] al all altitudes and enhanced J and CN concentration almost at all altitudes except in the tropical upper troposphere above ~ 200 mb. The larger J for BHN case (compared to IMN case) in the tropical upper troposphere above ~ 200 mb is due to higher [H₂SO₄] and cold temperature there. There exists substantial difference in the vertical distribution of CN concentrations for IMN and BHN cases.

Figure S1. Annual mean zonally averaged values of H_2SO_4 vapor concentration, nucleation rate (J), and total condensation nuclei (CN) number concentrations based on IMN (a, c, e) and BHN (b, d, f).