

1
2
3
4 **SUPPORTING INFORMATION**
5
6

7 **Urban Aerosol Size Distributions over the Mediterranean City of Barcelona,**
8 **Spain**

9
10 **M. Dall’Osto, D.C.S. Beddows, J. Pey, S. Rodriguez, A. Alastuey, R.M. Harrison**
11 **and X. Querol**

12

1

2 Aerosol size distribution clusters presented unique features within the same aerosol category;
3 therefore each individual cluster is presented in this section, whereas a discussion on each
4 category is instead presented in main manuscript (Results and Discussion).

5

6 • Cluster 1 (8%): it presents a bimodal size distribution with a major mode at $26\pm1\text{nm}$ and
7 a smaller accumulation mode at $63\pm8\text{nm}$. Cluster 1 presents intermediate values of
8 gaseous pollutants, but has the feature of being associated with the lowest PM_1 ($14\pm8\text{ }\mu\text{g m}^{-3}$),
9 $\text{PM}_{2.5}$ ($18\pm10\text{ }\mu\text{g m}^{-3}$) and PM_{10} ($32\pm20\text{ }\mu\text{g m}^{-3}$) concentrations. It is also associated
10 with generally low temperature ($16.1\pm6^\circ$), the lowest atmospheric pressure ($1002\pm50\text{mb}$)
11 and the highest WS at ground level ($2.7\pm1.8\text{ m s}^{-1}$). Wind roses for this cluster points to a
12 westerly direction and the diurnal profile is associated with traffic activity. This cluster
13 did not present a clean annual seasonality, but it was found to be strongly associated with
14 Atlantic air masses (64% of the time). We associate this cluster with local pollution
15 diluted by clean Atlantic air.

16

17 • Cluster 2 (4%): it shows a similar aerosol size distribution to cluster 1, but the
18 nanoparticle mode is about 25% smaller ($20\pm13\text{nm}$). Two additional modes can be seen,
19 a broad Aitken mode at $30\pm25\text{nm}$ and an accumulation mode at $69\pm13\text{nm}$. Whilst cluster
20 2 presented similar concentration of CO relative to cluster 1, lower values of NO ($11\pm6\text{ }\mu\text{g m}^{-3}$),
21 NO_2 ($25\pm20\text{ }\mu\text{g m}^{-3}$), NO_x ($41\pm30\text{ }\mu\text{g m}^{-3}$) and SO_2 ($1.6\pm1.5\text{ }\mu\text{g m}^{-3}$) are notable.
22 Compared to cluster 1, cluster 2 presented a lower NO_x/CO ratio (11×10^{-3}) and a higher
23 NO_2/NO ratio (23). By contrast, higher ozone concentrations were seen for cluster 2
24 relative to cluster 1. Generally, similar values of PM loading were seen for cluster 1 and

1 cluster 2. Regarding meteorological parameters, higher temperature ($21.2\pm7^\circ$ - the third
2 highest of all clusters), drier conditions ($58\pm18\%$) and higher solar radiation values
3 ($284\pm300\text{ W m}^{-2}$) were recorded for cluster 2 relative to cluster 1. Wind directions for this
4 cluster were found mainly coming from the westerly sector. In contrast to cluster 1,
5 cluster 2 showed a temporal profile starting to rise during traffic rush hours at 8am but
6 continuing until about 1pm. Air masses associated with this cluster showed a more south
7 westerly origin (Atlantic West and NAF, Table 4) relative to the more North Atlantic air
8 masses associated with cluster 1. Finally, cluster 2 peaked during summer and autumn
9 relative to the colder months of main occurrence of cluster 1. As with cluster 1, we
10 associate cluster 2 with local pollution diluted by Atlantic air.

11

12 • Cluster 3 (16%): it shows a bimodal size distribution with a more dominant Aitken mode
13 at $63\pm3\text{nm}$ and a smaller nanoparticle mode at $22\pm1\text{nm}$. This cluster did not present a
14 close correlation with any gaseous pollutant, nor with particulate mass or meteorological
15 data. It was associated with south-south westerly winds. It was detected mainly during
16 summer and autumn months and was not found to be associated with any specific air
17 mass back trajectory. This cluster was the least well characterised of all the nine.

18

19 • Cluster 4 (26%): The major mode is in the nanoparticle range, dominating both N and V
20 concentrations. This cluster is associated with the most polluted conditions, with highest
21 concentrations of CO ($0.6\pm0.5\text{ mg m}^{-3}$) and NO₂ ($42\pm25\text{ }\mu\text{g m}^{-3}$), but the lowest ozone
22 concentrations ($29\pm24\text{ }\mu\text{g m}^{-3}$). Concentrations of PM₁ and PM_{2.5} were generally high
23 with the second highest mean PM₁₀ concentration ($40\pm27\text{ }\mu\text{g m}^{-3}$) associated. This cluster
24 presented the lowest temperature ($15.9\pm5^\circ$) and the lowest solar radiation values

1 (136±222W m⁻²). Easterly wind directions and diurnal temporal profiles associated with
2 traffic, along with higher occurrence during winter months and Atlantic air masses (66%)
3 were further characteristics of this cluster. We attribute this cluster to winter traffic
4 emissions.

5
6

7 • Cluster 5 (27%): this cluster is the most frequent of all, with a bimodal size distribution
8 peaking at 29±1 and 78±5 nm, respectively. It is associated with high gaseous pollutant
9 concentrations, the second highest of all clusters after cluster 4. Similar trends can be
10 seen for the PM loadings. Relative to cluster 4, cluster 5 was associated with slightly
11 higher temperatures (16.9±6°), RH (70±15%), solar radiation (145±200 W m⁻²) and
12 atmospheric pressure (1006.4±38 mb). Winds were found to be mainly from the west and
13 north east. Diurnal profiles were similar to cluster 4, and slightly less pronounced during
14 traffic rush hours. It did not present a clear seasonality nor a clear air mass back trajectory
15 trend. Like cluster 4, we associate cluster 5 with traffic emissions.

16

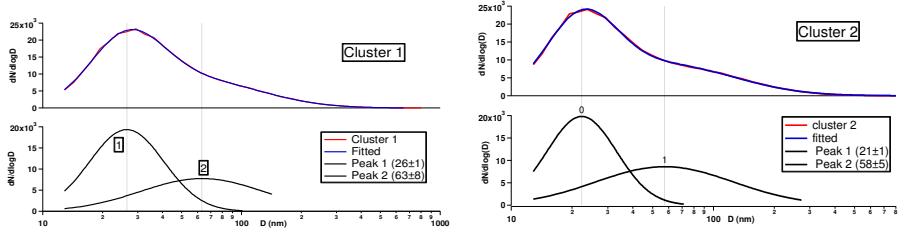
17 • Cluster 6 (2%): This cluster presented unique properties. It was associated with the
18 lowest gaseous primary pollutant concentrations (0.3±0.1 for CO, 6±5 for NO, 18.9±10
19 for NO_x, 1.5±1.6 for SO₂; CO in mg m⁻³, all others in µg m⁻³) and the highest ozone
20 concentrations (73±21 µg m⁻³). Masses of PM₁ and PM_{2.5} (18±7, 22±7 µg m⁻³,
21 respectively) were the third lowest of all clusters whilst coarse PM₁₋₁₀ was the lowest of
22 the nine clusters (17±7 µg m⁻³). Cluster 6 presented the highest average temperature
23 (27.2±4°) and the strongest solar radiation (487±300 W m⁻²), and the second strongest
24 WS at the Fabra Observatory (5.9±2.2 m s⁻¹). Wind roses were found strongly pointing
25 south west, typical of sea breeze conditions. The diurnal temporal variation was found to

1 spike between 1pm and 4pm, with major occurrence during the months of July and
2 August (68%). Additional unique features of this cluster were the highest occurrence
3 during daylight of all the clusters (95%), the highest ratio weekend over weekdays of all
4 clusters, the highest NO_2/NO ratio (2.5 ± 0.3) and the lowest NO_x/CO ratio ($50 \pm 10 \times 10^{-3}$).
5 Finally, 48% of the time this cluster was detected it was associated with regional summer
6 air masses. We attribute this cluster to photochemical nucleation events occurring during
7 summertime.

8 • Cluster 7 (10%): it shows a bimodal size distribution for this cluster with two modes at
9 32 ± 1 and 90 ± 3 nm, respectively. Generally, it presented the fourth highest concentrations
10 for CO ($0.5 \pm 0.3 \text{ mg m}^{-3}$), NO ($32 \pm 35 \text{ mg m}^{-3}$), NO_x ($83 \pm 10 \mu\text{g m}^{-3}$) and NO_2 ($34 \pm 26 \mu\text{g m}^{-3}$)
11 but the second strongest SO_2 concentration ($4.7 \pm 7 \mu\text{g m}^{-3}$). It presented the highest
12 PM loadings of all twelve clusters: PM_1 of $32 \pm 18 \mu\text{g m}^{-3}$, $\text{PM}_{2.5}$ of $38 \pm 21 \mu\text{g m}^{-3}$ and
13 PM_{10} of $52 \pm 30 \mu\text{g m}^{-3}$. The generally low temperature ($17 \pm 7^\circ$) was coupled with the
14 highest RH and the highest atmospheric pressure of all clusters ($70 \pm 15\%$ and
15 $1010 \pm 50 \text{ mb}$, respectively). Whilst the wind rose was not well defined for this cluster, the
16 diurnal profile was heavily biased towards nighttime hours. Fig. SI2 shows a seasonality
17 peaking during colder months, with the highest regional winter episode air masses
18 associated with this cluster. Finally, this cluster was found to present the lowest day time
19 occurrence (40%) among all clusters as well as the highest $\text{PM}_1/\text{PM}_{10}$ ratio (0.62). We
20 attributed this cluster to regional winter pollution events.

21

22 • Cluster 8 (2%): it shows the lowest particle number concentrations associated with this
23 cluster, with a tri-modal distribution at 20 ± 1 , 80 ± 1 and 237 ± 22 nm. However, the major
24 mode is represented by the middle Aitken one. This cluster presents similar properties to
25 cluster 6: very low concentrations of primary gaseous pollutants (0.3 ± 0.1 for CO , 10 ± 20


1 for NO, 12 ± 10 for NO_2 and 1.4 ± 1.2 for SO_2 ; CO in mg m^{-3} , all others in $\mu\text{g m}^{-3}$) and the
2 second highest ozone concentration ($66\pm21 \mu\text{g m}^{-3}$). Generally low values of PM
3 loadings are associated with this cluster. The meteorological parameters associated with
4 this cluster also reflect the ones encountered for cluster 6, with the second highest
5 average temperature ($24.1\pm6^\circ$), the second highest average solar radiation ($322\pm300 \text{ W m}^{-2}$) and the strongest WS ($6.3\pm3 \text{ m s}^{-1}$). It was associated with wind roses identical to
6 cluster 6 (south west) and again a strong seasonality with highest occurrence during the
7 months of July and August. It was associated with regional summer air masses (35%) and
8 was detected 75% of the time during daylight reflecting again features of cluster 6.
9 However, the diurnal profile of this cluster 8 spikes later than cluster 6, at around 3-6pm.
10 As with cluster 6, we attribute this cluster to photochemical nucleation events although
11 this cluster likely is associated with growth events as discussed in the next section.
12

13

14 • Cluster 9 (5%): This cluster was the only one of all twelve presenting a unimodal aerosol
15 size distribution peaking at $55\pm1\text{nm}$. This cluster had the highest gas phase pollutant
16 concentrations for CO ($0.6\pm0.6 \text{ mg m}^{-3}$), NO ($47\pm70 \mu\text{g m}^{-3}$), NO_x ($111\pm40 \mu\text{g m}^{-3}$) and
17 SO_2 ($5.6\pm5 \mu\text{g m}^{-3}$). It was associated with the second highest concentrations of PM_1
18 ($22\pm6 \mu\text{g m}^{-3}$) $\text{PM}_{2.5}$ ($28\pm14 \mu\text{g m}^{-3}$) and PM_{10} ($44\pm17 \mu\text{g m}^{-3}$), respectively.
19 Meteorological data did not show any specific trends whereas wind roses pointed to the
20 south east. The diurnal profile for this cluster is shifted towards daylight hours.
21 Interestingly, cluster 9 presented a clear seasonality profile peaking during summer
22 months. Among with cluster 7, it presented the highest NO_x/CO ratio (about 140×10^{-3}).
23 We attribute this cluster to summer regional pollution events.

1

2

3

4

(a)

(b)

5

6

(c)

(d)

7

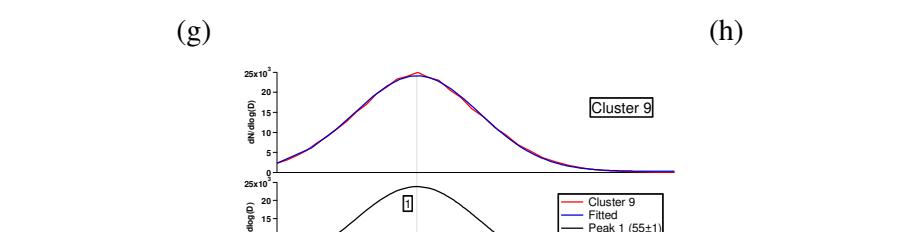
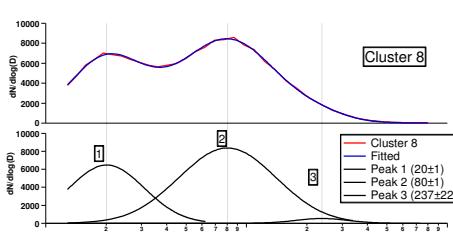
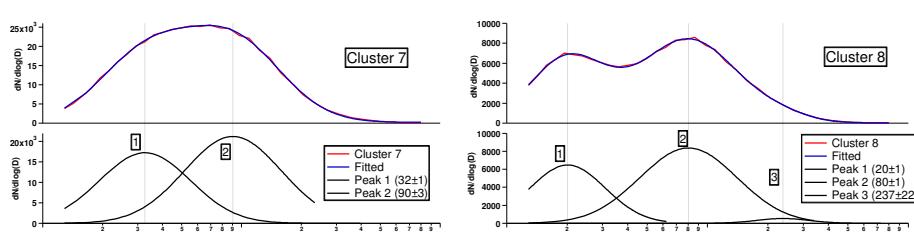
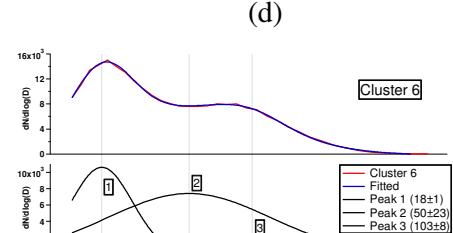
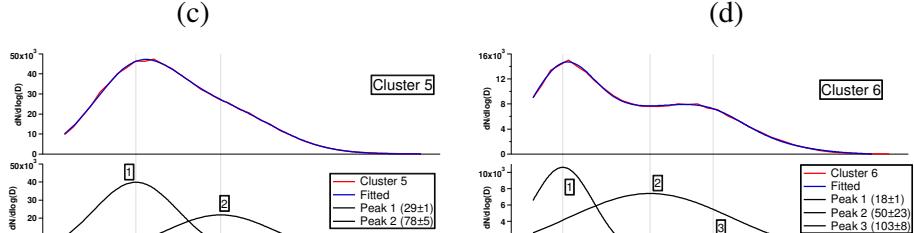
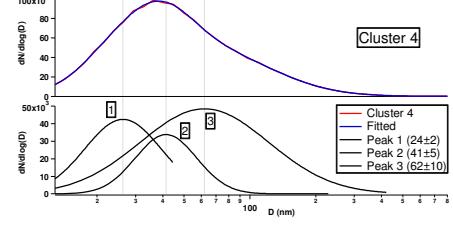
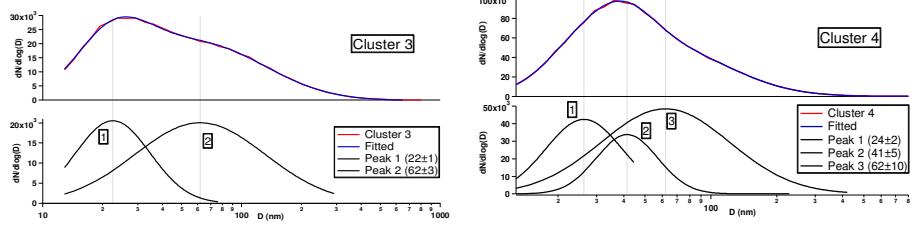
8

(e)

(f)

9

10








(g)

(h)

11

12

13

(i)

1 **Figure SI1(a-i).** Disaggregation of the aerosol size distributions of the nine SMPS clusters
2 ($dN/d\log(D) - \text{cm}^{-3}$). Top shows the real (red) and the fitted (blue) total aerosol size
3 distributions, bottom the log-normal peak fittings. Brackets of each peak fitting represents log
4 normal peak location and precision (nm)

5

6

7

8

9

10

11

12

13

14

15

16

17

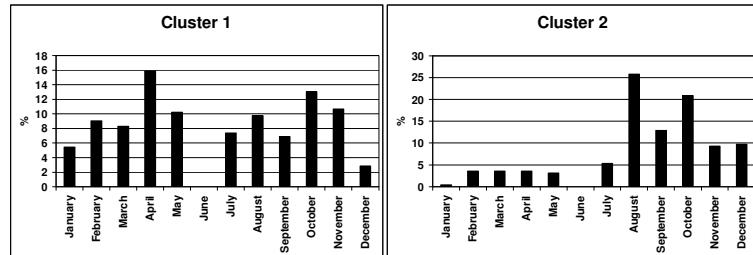
18

19

20

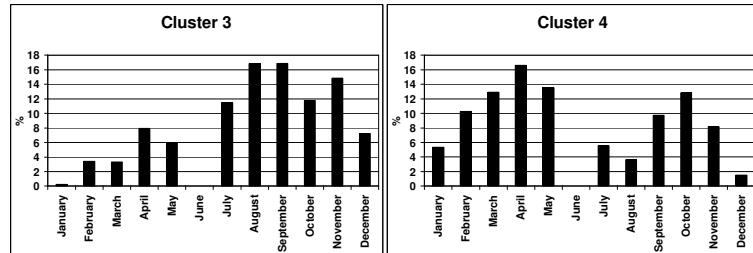
21

22

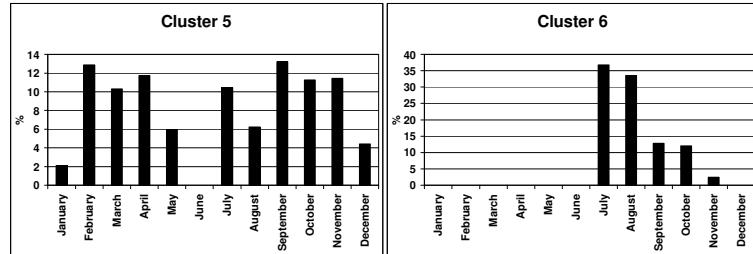

23

24

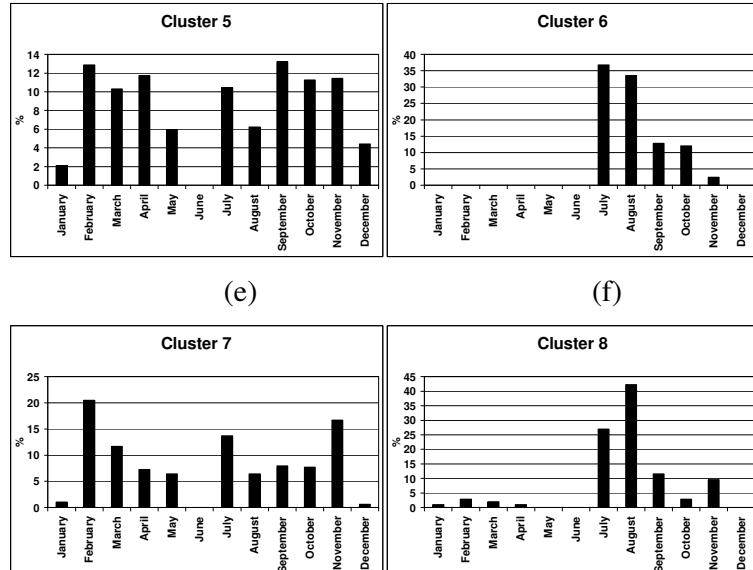
25


26

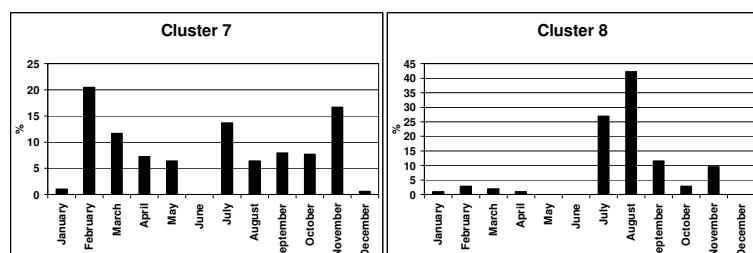
1
2


(a)

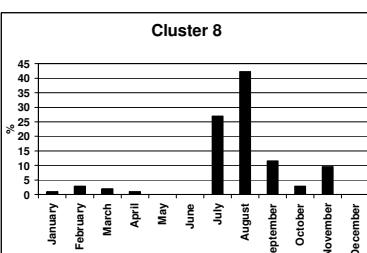
3
4


(b)

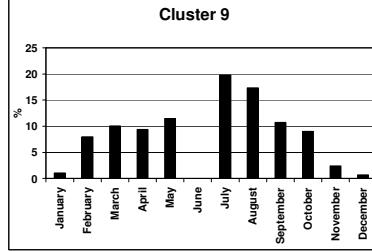
5
6

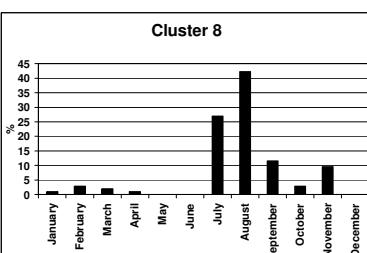

(c)

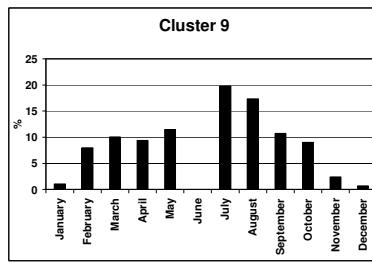
7
8



(d)


9
10


(e)


(f)

(g)

(h)

(i)

11 **Figure SI2.** Occurrence of each of the 9 clusters (a-i) for each month of the year. Please note
12 June did not have measurements and January and December very few (Table 1)