1 2 3	Wintertime Particulate Pollution Episodes in an Urban Valley of the Western U.S.: A Case Study
4 5	LW. Antony Chen ^{1,2,*} , John G. Watson ^{1,2} , Judith C. Chow ^{1,2} , Mark C. Green ¹ , Daniel Inouye ³ ,
6	Kevin $Dick^3$
7 8	¹ Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
9 10 11	² State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
12 13 14 15	³ Washoe County District Health Department Air Quality Management Division, Reno, NV
16	
17	
18	
19	
20	
21	
22	Submitted to:
23	Atmospheric Chemistry & Physics Discussion
24	April 20, 2012
25	
26	Address all correspondence to: LW. Antony Chen, Desert Research Institute, email:
27	Antony.Chen@dri.edu; phone: (775) 674-7028; fax: (775) 674-7009
28	

Supplement Information

29

30 Table S-0. Organic marker compounds measured by thermal-desorption-gas chromatography-

mass spectrometry (TD-GC-MS), total organic carbon (TOC), and ion chromatography-pulsed 31

amperometric detection (IC-PAD) analyses. 32

Group	Mnemonic	Chemical Species	Analytical Method ^a
	acnapy	acenapthene	TD-GC-MS
	acnape	acenaphthylene	TD-GC-MS
	fluore	fluorene	TD-GC-MS
	phenan	phenanthrene	TD-GC-MS
	anthra	anthracene	TD-GC-MS
	fluora	fluoranthene	TD-GC-MS
	pyrene	pyrene	TD-GC-MS
	baanth	benzo[a]anthracene	TD-GC-MS
	chrysn	chrysene	TD-GC-MS
	bbfl	benzo(b)fluoranthene	TD-GC-MS
	bjkfl	benzo(j,k)fluoranthene	TD-GC-MS
	bbjkfl	bbfl + bjkfl	TD-GC-MS
D.1	bafl	benzo[a]fluoranthene	TD-GC-MS
Polycyclic	bepyrn	benzo[e]pyrene	TD-GC-MS
Aromatic	bapyrn	benzo[a]pyrene	TD-GC-MS
Hydrocarbons	peryle	perylene	TD-GC-MS
(PAHs)	retene	retene	TD-GC-MS
	incdpy	indeno[1,2,3-cd]pyrene	TD-GC-MS
	dbanth	dibenzo[a,h]anthracene	TD-GC-MS
	bghipe	benzo[ghi]perylene	TD-GC-MS
	corone	coronene	TD-GC-MS
	dbaepy	dibenzo(a,e)pyrene	TD-GC-MS
	fl9one	9-fluorenone	TD-GC-MS
	m 9ant	9 methyl anthracene	TD-GC-MS
	m 13fl	2-methylfluoranthene	TD-GC-MS
	cp cdpvr	cyclopenta(c,d)pyrene	TD-GC-MS
	baa7 12	benz[a]anthracene-7,12-dione	TD-GC-MS
	chry56m	methyl chrysene	TD-GC-MS
	pic	picene	TD-GC-MS
	hop13	$18\alpha(H), 21\beta(H)-22, 29, 30$ -trisnorhopane	TD-GC-MS
	hop15	$17\alpha(H), 21\beta(H)-22, 29, 30$ -trisnorhopane	TD-GC-MS
	hop17	$17\alpha(H), 21\beta(H)-30$ -norhopane	TD-GC-MS
	hop15a	17β (H), 21α (H)-22,29,30-norhopane	TD-GC-MS
	hop17a	$17\beta(H),21\alpha(H)-30$ -norhopane	TD-GC-MS
	hop19	$17\alpha(H), 21\beta(H)$ -hopane	TD-GC-MS
	hop19a	$17\alpha(H), 21\alpha(H)$ -hopane	TD-GC-MS
	hop20	$17\beta(H), 21\alpha(H)$ -hopane	TD-GC-MS
	hop21	$22S-17\alpha(H), 21\beta(H)-30$ -homohopane	TD-GC-MS
	hop22	$22R-17\alpha(H), 21\beta(H)-30$ -homohopane	TD-GC-MS
TT 0	hop24	$22S-17\alpha(H), 21\beta(H)-30, 31$ -bishomohopane	TD-GC-MS
Hopanes &	hop25	$22R-17\alpha(H), 21\beta(H)-30, 31$ -bishomohopane	TD-GC-MS
Steranes	hop26	22S-17α(H),21β(H)-30,31,32-trisomohopane	TD-GC-MS
	hop27	$22R-17\alpha(H), 21\beta(H)-30, 31, 32$ -trishomohopane	TD-GC-MS
	hop28	22S-tretrahomohopane	TD-GC-MS
	hop29	22R-tetrashomohopane	TD-GC-MS
	hop30	22S-pentashomohopane	TD-GC-MS
	hop31	22R-pentashomohopane	TD-GC-MS
	ster1	ααα 20S-cholestane	TD-GC-MS
	ster2	$\alpha\beta\beta$ 20R-cholestane	TD-GC-MS
	ster3	$\alpha\beta\beta$ 20S-cholestane	TD-GC-MS
	ster4	ααα 20R-cholestane	TD-GC-MS
	ster5	ααα 20S 24S-methylcholestane	TD-GC-MS

35	Table S-0	(continued)
		· /

Group	Mnemonic	Chemical Species	Analytical Method ^a
	ster6	$\alpha\beta\beta$ 20R 24S-methylcholestane	TD-GC-MS
	ster7	$\alpha\beta\beta$ 20S 24S-methylcholestane	TD-GC-MS
Hopanes &	ster8	ααα 20R 24R-methylcholestane	TD-GC-MS
Steranes,	ster9	ααα 20R,24S- methylcholestane	TD-GC-MS
continued	ster10	$\alpha\beta\beta$ 20R 24R-ethylcholestane	TD-GC-MS
	ster11	$\alpha\beta\beta$ 20S 24R-ethylcholestane	TD-GC-MS
	ster12	ααα 20S 24R/S-ethylcholestane	TD-GC-MS
	pentad	n-pentadecane	TD-GC-MS
	hexad	n-hexadecane	TD-GC-MS
	heptad	n-heptadecane	TD-GC-MS
	octad	n-octadecane	TD-GC-MS
	nonad	n-nonadecane	TD-GC-MS
	eicosa	n-eicosane	TD-GC-MS
	heneic	n-heneicosane	TD-GC-MS
	docosa	n-docosane	TD-GC-MS
	tricosa	n-tricosane	TD-GC-MS
	tetcos	n-tetracosane	TD-GC-MS
	pencos	n-pentacosane	TD-GC-MS
	hexcos	n-hexacosane	TD-GC-MS
4.11	hepcos	n-heptacosane	TD-GC-MS
n-Alkanes	octcos	n-octacosane	TD-GC-MS
	noncos	n-nonacosane	TD-GC-MS
	tricont	n-triacontane	TD-GC-MS
	htricont	n-hentriacontane	TD-GC-MS
	dtricont	n-dotriacontane	TD-GC-MS
	ttricont	n-tritriacontane	TD-GC-MS
	tetricont	n-tetratriacontane	TD-GC-MS
	ntricont	n-pentatriacontane	TD-GC-MS
	hxtricont	n-hexatriacontane	TD-GC-MS
	hntricont	n-hentatriacontane	TD-GC-MS
	otricont	n-octatriacontane	TD-GC-MS
	ntricont	n-ponatriacontane	TD-GC-MS
	tetracont	n-tetracontane	TD-GC-MS
	isoc29	iso-nonacosane	TD-GC-MS
	anteisoc29	anteiso-nonacosane	TD-GC-MS
	isoc30	iso-triacontane	TD-GC-MS
	anteisoc30	anteiso-triacontane	TD-GC-MS
	isoc31	iso-bentriacotane	TD-GC-MS
	anteisoc31	anteiso-hentriacotane	TD-GC-MS
	isoc32	iso detriacontane	TD-GC-MS
Branched	anteisoc32	anteiso-dotriacontane	TD-GC-MS
Alkanes	isoc33	iso tritriactotane	TD-GC-MS
	1SOC33	antaise tritrigetetene	TD GC MS
	anteisoc33	2 mothylponodocono	TD-OC-MS
	nonad2m	2-methylnonadecane	TD-GC-MS
	nonadom	s-methymonauccane	TD-GC-MS
	prist		TD-GC-MS
	pilytan	phytane	TD-GC-MS
	squal		TD-GC-MS
	cnexas	n-octyrcyclonexane	
C 1. 1	cnex10	n-decyrcyclonexane	
Cycloalkane	chex13	n-tridecylcyclohexane	TD-GC-MS
	chex1/	n-neptadecylcyclohexane	TD-GC-MS
4.11	chex19	n-nonadecylcyclonexane	TD-GC-MS
Alkenes	octdecen	1-octadecene	TD-GC-MS
Water Soluble	npoc	water soluble organic carbon (WSOC)	TOC
Organics	levg	levoglucosan	IC-PAD
^a TD-GC-M	IS: thermal desor	rption-gas chromatography-mass spectrometry; TOC: tota	al organic carbon; IC-PAD:

TD-GC-MS: thermal desorption-gas chromatography-mass spectrometry; TOC: total organic carbon; IC-PAD: ion chromatography-pulsed amperometric detection.

Table S-1. Average of $PM_{2.5}$ mass and chemical concentrations ($\mu g/m^3$) and their signal-to-noise ratio (SNR). (Shaded species were selected for EV-CMB modeling.)

	Site/Network	Central Reno Site (CSN)					
	Sampling Period	d 12/03/09 - 01/29/10					
	No. of Samples	20 ^a					
Group	Chemical Species	Number of Valid Data	Concentration Range (µg/m ³)	Average ^a Concentration (µg/m ³)	SNR°		
Mass	PM _{2.5}	20	1.9 - 52	17	19		
	Na	20	0 - 0.15	0.042	3.8		
	Mg	20	0 - 0.0087	0.00083	0.39		
	Al	20	0.0087 - 0.17	0.044	5.6		
	Si	20	0.026 - 0.51	0.13	11		
	P	20	0 - 0	0 14	14		
	S Cl	20	0.013 - 0.48 0.00093 - 0.45	0.14	14		
	K	20	0.00093 - 0.43	0.072	14		
	Ca	20	0.014 - 0.13	0.038	17		
	Ti	20	0 - 0.023	0.058	4		
	V	20	0 - 0.003	0.00063	1		
	Cr	20	0 - 0.017	0.0018	4.6		
	Mn	20	0 - 0.014	0.0019	4.4		
	Fe	20	0.02 - 0.27	0.097	13		
	Со	20	0 - 0.0017	0.0003	0.83		
Elements	Ni	20	0 - 0.0021	0.00063	1.7		
	Cu	20	0 - 0.011	0.0033	3.1		
	Zn	20	0 - 0.037	0.012	9.3		
	As	20	0 - 0.0018	0.00026	0.63		
	Se	20	0 - 0.00083	0.000097	0.26		
	Br	20	0 - 0.0076	0.0023	2.8		
	Kb Sa	20	0 - 0.0013	0.0002	0.51		
	Sf 7r	20	0 - 0.0023	0.00069	0.29		
		20	0 - 0.0049	0.00086	0.18		
	Ag Cd	20	0 = 0.0023	0.00020	0.078		
	In	20	0 - 0.010	0.0010	0.33		
	Sn	20	0 - 0.012	0.0029	0.22		
	Sb	20	0 - 0.013	0.0011	0.14		
	Ba	20	0 - 0.01	0.0017	0.51		
	Pb	20	0 - 0.0068	0.0018	1.4		
	NO ₃	20	0.18 - 11	4	14		
	$\mathrm{SO_4}^+$	20	0.049 - 1.2	0.36	13		
Water Soluble Ions	NH_4^+	19	0.085 - 3.7	1.2	14		
	Na ⁺	20	0.022 - 0.26	0.086	1.7		
	K ^{+a}	18	0 - 0.18	0.072	13		
	OC1	20	0.21 - 5.4	1.3	25		
	0C2	20	0.16 - 3	1	17		
	003	20	0.25 - 3.3	1.3	21		
Thormal Carbor	OC4 OPP	20	0.12 - 1.1	0.63	20		
Fractions ^d	OPK	20	0 - 4.0	0.08	54		
Tractions	FC1	20	0.0 - 17 0.27 - 84	24	40		
	FC2	20	0.27 = 0.4 0.022 = 0.09	2.4 0.047	יג ד ד		
	EC3	20	0 - 0.011	0.0047	7.8		
	ECR	20	0.23 - 4	1.8	20		

43 Table S-1 (continued)

	Site/Network	Reno (CSN)					
	Period		12/3/09 - 1/29/	10			
	# of Samples		20 ^a				
Group		# of Volid		Average ^a			
	Species ^b	# of Valid Data	Range	Concentration	SNR ^c		
	Acnapy $\times 10^3$	20	0 - 06	(μg/m) 0.035	0.47		
	acnape $\times 10^3$	20	0 - 0	0	0		
	fluore $\times 10^3$	20	0 - 0.011	0.00053	0.087		
	phenan $\times 10^3$	20	0 - 0.69	0.069	2.8		
	anthra $\times 10^3$	20	0 - 0.22	0.011	0.19		
	fluora $\times 10^3$	20	0 - 2.3	0.3	13		
	pyrene $\times 10^3$	20	0 - 2.7	0.38	17		
	baanth $\times 10^3$	20	0.043 - 2.4	0.46	20		
	$chrysn \times 10^3$	20	0 - 2.1	0.45	18		
	$bbfl \times 10^3$	20	0.13 - 1.6	0.5	20		
	bjkfl $\times 10^3$	20	0.075 - 1.5	0.43	20		
	$bbjkfl \times 10^3$	20	0.22 - 3.1	0.93	28		
	$bafl \times 10^3$	20	0 - 0.69	0.18	10		
Polycyclic	bepyrn $\times 10^{3}$	20	0.068 - 1.3	0.39	20		
Aromatic	bapyrn $\times 10^{\circ}$	20	0.094 - 2.1	0.6	20		
Hydrocarbons	peryle $\times 10^3$	20	0 - 0.42	0.049	0.97		
	retene $\times 10^3$	20	0.15 - 13	1.7	20		
	10^{3} incdpy $\times 10^{3}$	20	0.033 - 1.6	0.39	20		
	dbanth $\times 10^3$	20	0 - 0.21	0.048	11		
	bghipe $\times 10^3$	20	0.036 - 1.6	0.45	20		
	$corone \times 10^3$	20	0 - 0.43	0.12	19		
	dbaepy $\times 10^3$	20	0 - 0.31	0.07	20		
	fl9one $\times 10^3$	20	0 - 0.5	0.051	2.5		
	$m_{9ant} \times 10^{3}$	20	0 - 0	0	0		
	$m_{1311} \times 10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	20	0 - 0.4/	0.05	5.9		
	$cp_capyr \times 10^{-1}$	20	0 - 8.5	2.3	11		
	$baa/_{12} \times 10$ $abm 56m \times 10^3$	20	0.015 - 0.39	0.10	20		
	$ris \times 10^3$	20	0 - 0.23	0.041	3.3 2.2		
	$\frac{\text{pic} \times 10}{\text{hop12} \times 10^3}$	20	0 - 0.19	0.029	2.2		
	hop 15×10^3	20	0.0000 - 0.10	0.052	20		
	hop 1.5×10^3	20	0.0094 - 0.2	0.000	20		
	hop17 \times 10	20	0.0019 - 0.091	0.03	20		
	hop13a \times 10 ³	20	0.0019 - 0.091	0.03	20		
	hop 19×10^3	20	0.012 - 0.46	0.05	20		
	hop 19a $\times 10^3$	20	0 - 0.024	0.0093	55		
	$hop 20 \times 10^3$	20	0 - 0.06	0.02	17		
	hop 21×10^3	20	0.0064 - 0.23	0.082	20		
	hop 22×10^3	20	0.0082 - 0.27	0.093	20		
	$hop24 \times 10^3$	20	0 - 0.14	0.05	14		
	hop 25×10^3	20	0 - 0.095	0.032	17		
Hopanes &	hop 26×10^3	20	0.003 - 0.073	0.027	20		
Steranes	hop 27×10^3	20	0.004 - 0.075	0.026	20		
	hop 28×10^3	20	-0.0027 - 0.063	0.02	20		
	hop 29×10^3	20	-0.0022 - 0.042	0.014	20		
	hop 30×10^3	20	-0.0037 - 0.077	0.023	20		
	hop 31×10^3	20	-0.0036 - 0.045	0.015	18		
	ster 1×10^3	20	0.0032 - 0.13	0.047	20		
	ster2 \times 10 ³	20	0.0038 - 0.093	0.033	20		
	ster3 \times 10 ³	20	0.0037 - 0.079	0.027	20		
	ster4 \times 10 ³	20	0.0053 - 0.11	0.041	20		
	ster 5×10^3	20	0.0016 - 0.13	0.034	20		
	ster6 \times 10 ³	20	0.0031 - 0.079	0.027	20		
	ster7 \times 10 ³	20	0.0033 - 0.093	0.03	20		
	ster8 \times 10 ³	20	0.0038 - 0.1	0.033	20		

44 Table S-1 (continued)

	Site/Network	Reno (CSN)						
	Period	12/3/09 - 1/29/10						
	# of Samples	20 ^a						
Group	Species ^b	# of Valid Data	Range	Average ^a Concentration (µg/m ³)	SNR ^c			
Hopanes &	ster9 \times 10 ³	20	0.0025 - 0.06	0.017	20			
Steranes, continued	ster 10×10^3	20	0.0036 - 0.12	0.036	20			
	ster11 \times 10 ³	20	0.0082 - 0.18	0.063	20			
	ster 12×10^3	20	0.02 - 0.54	0.21	20			
Water Soluble	npoc $\times 10^3$	18	230 - 7000	1900	10			
Organics	$levg \times 10^{3a}$	18	93 - 1300	430	16			
	pentad $\times 10^3$	20	0 - 0.34	0.041	0.44			
	hexad $\times 10^3$	20	0 - 0.56	0.052	0.53			
	neptad $\times 10^{3}$	20	0 - 0.94	0.17	1.2			
	octad $\times 10^{-10^{-3}}$	20	0 - 1	0.22	1.6			
	10^{10}	20	0 - 2.0	0.37	2.4			
	heneic $\times 10^3$	20	0.25 - 8	0.92	20			
	docosa $\times 10^3$	20	0.23 = 0.0	1.2	20			
	tricosa $\times 10^3$	20	0.22 = 0.9 0.32 = 5.8	1.2	20			
	tetcos $\times 10^3$	20	0.32 = 5.0	1.5	20			
	nencos $\times 10^3$	$\frac{20}{20}$	0.11 - 52	1.0	20			
	hexcos $\times 10^3$	$\frac{20}{20}$	0.23 - 3.3	1.2	20			
	hencos $\times 10^3$	20	0.4 - 4.6	1.5	20			
n-Alkanes	octcos $\times 10^3$	20	0.2 - 3.2	1	20			
	noncos $\times 10^3$	20	0.17 - 4.2	1.3	20			
	tricont $\times 10^3$	20	0.15 - 2.1	0.77	20			
	htricont $\times 10^3$	20	0.5 - 3.6	1.6	20			
	dtricont $\times 10^3$	20	0 - 2	0.76	15			
	ttricont $\times 10^3$	20	0.53 - 3.2	1.4	20			
	tetricont $\times 10^3$	20	0.28 - 2.4	1	20			
	ptricont $\times 10^3$	20	0.6 - 3	1.3	20			
	hxtricont $\times 10^{3}$	20	0.63 - 2.5	1.1	20			
	hptricont $\times 10^3$	20	0 - 0	0	0			
	otricont $\times 10^3$	20	0 - 0	0	0			
	$ntricont \times 10^3$	20	0 - 0	0	0			
	tetracont $\times 10^{3}$	20	0 - 0	0 12	0			
	$180c29 \times 10^{-3}$	20	0 - 0.36	0.13	5.6 2.6			
	$isoc 30 \times 10^3$	20	0 - 0.29	0.071	2.0			
	anteisoc 30×10^3	20	0.13 - 0.85	0.075	20			
	10^{3} isoc 31 × 10 ³	20	0.15 - 0.05	0.57	20			
	anteisoc 31×10^3	20	0 - 0.63	0.22	4 5			
	$isoc32 \times 10^3$	$\frac{20}{20}$	0 - 0.83	0.37	7.8			
Branched Alkanes	anteisoc 32×10^3	20	0.39 - 1.3	0.72	20			
	$isoc33 \times 10^{3}$	20	0.34 - 1	0.6	20			
	anteisoc33 \times 10 ³	20	0.14 - 0.74	0.31	20			
	nonad2m \times 10 ³	20	0 - 0.26	0.06	7.3			
	nonad3m \times 10 ³	20	0 - 0.37	0.055	8			
	prist $\times 10^3$	20	0 - 0.38	0.048	0.71			
	phytan $\times 10^3$	20	0 - 0.63	0.094	1.5			
	squal \times 10 ³	20	0 - 0.18	0.05	16			
	chexa8 \times 10 ³	20	0 - 0.017	0.00086	0.11			
0 1 11	chex 10×10^{3}	20	0 - 0	0	0			
Cycloalkane	chex 13×10^{3}	20	0 - 0.074	0.011	0.92			
	chex1/×10 ³ chex10×10 ³	20	0.019 - 0.3	0.075	20			
Alleonae	$c_{10} \times 10^{-3}$	20	0 - 0.52	0.092	13			
AIKCHES		∠0	0 - 1.1	0.24	3.4			

46 Table S-1 (continued)

	Site/Network	Reno (CSN) 12/3/09 – 1/29/10 20 ^a				
	Period					
	# of Samples					
Group	Species	# of Valid Data	Range	Average ^a Concentration (µg/m ³)	SNR ^c	
Absorption (Mm ⁻¹)	b_{abs} (370 nm) b_{abs} (880 nm)	20 20	5.5 - 86 1.8 - 50	39 19	20 20	

47

48 ^a Average of 20 samples except for 18 samples for K⁺ and levg.

49 ^b See Table S-0 for organic species names.

^c Signal-to-noise ratio (SNR) is calculated by $\sqrt{\sum_{i} C_{i}^{2} / \sum_{i} \sigma_{i}^{2}}$ where C_{i} and σ_{i} are value and uncertainty of each 50

measurement.

^d OC and EC were measured by the IMPROVE A TOR protocol (Chow et al., 2007; 2011) where OC1–OC4 are the

51 52 53 54 55 56 organic carbon evolved at 140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere; EC1-EC3 are the

elemental carbon evolved at 580, 740, and 840 °C, respectively, in a 98% He/2% O₂ atmosphere; OPR is pyrolyzed

OC; OCR is OC by reflectance (OC1+OC2+OC3+OC4+OPR); and ECR is EC by reflectance (EC1+EC2+EC3-

OPR). It is assumed that the analytical uncertainties are similar to those reported by the IMPROVE program for the

57 urban Phoenix site (PHOE1) for the same sampling period. The uncertainty of each RENO C carbon measurement

58 was assigned as the uncertainty of PHOE1 measurement with the closest concentration level.

59

61	Table S-2. Source profiles assembled for EV-CMB receptor modeling. (Shaded entries designate
62	profiles included in the final source apportionment.)

Category	Subcategory	Mnemonic	Year	Location	Description	Reference
		TahoeNRD	2003	Lake Tahoe	Resuspension soil dust (PM _{2.5}) from Village Lakeshore	(Kuhns et
		TahoeSRD	DeSRD 2003 Lake Tahoe Resuspension soil dust (PM _{2.5}) from Mays/Southwood		al., 2004)	
	Paved Road	GPVRDC	1995	Las Vegas	Composite of 7 paved road dust samples	(Green et al., 2004)
	Dust	FDPVRD	1997	Central California	Composite of 2 paved road dust samples from San Joaquin Valley	(Chow et al., 2003)
		RNOPVRD	2010	Reno	Paved road dust samples collected along the two north lanes of the S 12th Ave, a well-traveled road a few blocks south of Anderson school near the Reno site (301 State Street)	This study
		GUPRDC	1995	Las Vegas	Composite of 2 unpaved road dust samples	(Green et al., 2004)
Contrainet	Unpaved	FDUNPVRD	1997	Central California	Composite of 2 unpaved road dust samples from San Joaquin Valley	(Chow et al., 2003)
Geological	Road Dust & Surface Soil	GSOILC	1995	Las Vegas	Composite of 5 desert soil samples	(Green et al., 2004)
		RNOSOIL	2010	Reno	Mixture of surface soil from bare ground vacant lot along the east side of Anderson School near the Reno site (301 State Street)	This study
	Construction	CONST	1997	Central California	Composite of 2 construction & earthmoving dust profiles	(Chow et al., 2003)
	Asian Dust	AD_IMPRO	2001	California and Oregon	Composite of 3 IMPROVE samples (4/29/1998 at CRLA1 and LAVO1 and 4/16/2001 at LAVO1) representing Asian dust impact	This study
	De-Icing Agents	RNOSalt1	2010	Reno, NV	Reno de-icing material from Public Works stockpile. 5:1 mixture of rock salt and Paiute Pit granite sand	This study
		RNOSalt2	2010	Reno, NV	Reno de-icing material from Public Works stockpile. 5:1 mixture of rock salt and Paiute Pit granite sand	This study
		LVOnRD	2003	Las Vegas	On-road diesel exhaust, a composite	(Green et
	Diesel	LVOIIRD	2003	Las Vegas	Off-road diesel exhaust, a composite	al., 2004)
Mobile	Exhaust	DIESEL	2001	Southern California	Composite of medium and heavy duty diesel vehicles	(Fujita et al., 2007a; 2007b)
	Casalina	LVOnRSW	2003	Las Vegas	Onroad gasoline vehicle exhaust at Swenson	(Green et al., 2004)
	Exhaust	GAS	2001	Southern California	Composite of low and high gasoline emitters	(Fujita et al., 2007a; 2007b)
		CRBURN_H	2001	Northern Nevada	California hardwood (oak, cedar, almond) combustion in a fireplace	(Fitz et al.,
Biomass	Residential	CRBURN_S	2001	Northern Nevada	California softwood (pine, tamarack) combustion in a fireplace	2004)
Burning	Wood	LTFP_H	2004	Lake Tahoe	Residential hardwood combustion in a fireplace	
	Combustion	LTFP_S	2004	Lake Tahoe	Residential softwood combustion in a fireplace	(Kuhns et
		LTWS_H	2004	Lake Tahoe	Residential hardwood combustion in a woodstove	al., 2004)
		LTWS_S	2004	Lake Tahoe	Residential softwood combustion in a woodstove	
Coal	Coal-Fired	MZPPC	1995	Northern Colorado	Composite of ten coal-fired boiler emission samples	(Watson et al., 2001)
Coal Combustion	Power Plant	BVCFPP	1999	Texas	Composite of 26 profiles of stack emissions from coal-fired boilers in Texas.	(Chow et al., 2004)
Oil	Oil-Fired Plant	IMGPEC	1992	Southern California Border	Composite of six Mexicali oil-fueled glass plant emission profiles collected on 12/17/92.	(Watson and Chow, 2001)
Compustion	1 10111	BVCAT1	1999	Texas	Composite of 5 profiles of stack emissions from a Texas petroleum refinery's catalytic cracker	(Chow et al., 2004)
Cement	Cement Factory	BVCEM	1999	Texas	Composite of 11 profiles of cement kiln emissions	(Chow et al., 2004)
L				1	i	

Table S-2 (continued)

Category	Subcategory	Mnemonic	Year	Location	Description	Reference
Cooking	Meat Cooking	BVCOOK	2000	Southern California	Composite of charcoal chicken, propane chicken, and charcoal hamburger cooking profiles.	(Chow et al., 2004)
	Secondary Bisulfate	AMBSUL			Ammonium bisulfate	
Sacandami	Secondary Sulfate	AMSUL			Ammonium sulfate	(Watson et
Secondary	Secondary Nitrate	AMNIT			Ammonium nitrate	al., 1994)
	Secondary OC	SOC			Secondary organic carbon	

Group	Species	RNOPVRD	RNOSOIL	RNOSalt1	RNOSalt2
Mass	PM _{2.5}	100 ± 7.3	100 ± 7.6	100 ± 7.4	100 ± 7.8
	Na	0 ± 0.41	0 ± 0.55	2.7 ± 0.28	3.3 ± 0.81
	Mg	0 ± 0.14	0 ± 0.18	0 ± 0.038	0 ± 0.21
	AI	4.4 ± 0.32	4.1 ± 0.3	5.1 ± 0.38	3.6 ± 0.28
	Si	18 + 13	16 + 11	15 + 11	10 + 0.78
	р	0.044 + 0.0058	0 + 0.0061	0 + 0.0013	0 + 0.0071
	S	0.044 ± 0.0030 0.45 ± 0.033	0.37 ± 0.0001	0 ± 0.0015 0.96 ± 0.071	18 ± 0.0071
	Č	0.091 ± 0.0081	0.081 ± 0.0087	97 ± 072	1.0 = 0.19 12 + 0.89
	K	13 ± 0.091	0.001 ± 0.0007 0.86 ± 0.064	1.4 ± 0.12	12 ± 0.05 2.1 + 0.16
	Ca	29 ± 0.01	75 ± 0.55	36 ± 0.26	2.1 = 0.10 2 + 0.15
	Ti	0.53 ± 0.039	0.23 ± 0.019	0.37 ± 0.028	0.22 ± 0.13 0.23 ± 0.021
	V	0.035 ± 0.037 0.014 ± 0.0047	0.23 ± 0.013	0.011 ± 0.0015	0.23 ± 0.021 0.019 ± 0.0072
	Ċr	0.014 ± 0.0047 0.029 ± 0.005	0.013 ± 0.0001 0.1 + 0.0097	0.011 ± 0.0015 0.1 + 0.0076	1.8 ± 0.13
	Mn	0.027 ± 0.005 0.094 ± 0.016	0.1 ± 0.0007 0.11 ± 0.021	0.1 ± 0.0070 0.12 ± 0.01	0.25 ± 0.03
	Fe	5 ± 0.36	38 ± 0.21	5.2 ± 0.38	0.23 ± 0.03 10 + 0.78
		0 ± 0.0046	0.0058 ± 0.0061	0 ± 0.0013	10 ± 0.70 0 + 0.0071
Flements	Ni	0 ± 0.0040 0.012 ± 0.013	0.0038 ± 0.0001 0.033 ± 0.018	0 ± 0.0013 0.042 + 0.0049	$0 \pm 0.00/1$ 0.71 ± 0.058
Liements	Cu	0.012 ± 0.013 0.021 ± 0.017	0.033 ± 0.013	0.042 ± 0.0049	0.71 ± 0.033 0.12 ± 0.027
	Cu Zn	0.021 ± 0.017 0.083 ± 0.0077	0.017 ± 0.022 0.012 ± 0.0061	0.01 ± 0.0047 0.011 ± 0.0015	0.12 ± 0.027 0.034 ± 0.006
		0.083 ± 0.0077	0.012 ± 0.0001	0.011 ± 0.0013	0.034 ± 0.000
	A5 Se	0 ± 0.0040 0 ± 0.0046	0 ± 0.0001 0 ± 0.0061	0 ± 0.0013 0 \pm 0.0013	0 ± 0.0071 0 \pm 0.0071
	Br	0 ± 0.0040 0 ± 0.0046	0 ± 0.0001 0 \pm 0.0061	0 ± 0.0013	$0 \pm 0.00/1$ 0.075 ± 0.0003
	Rb	0 ± 0.0040	0 ± 0.0001 0.002 ± 0.0061	0.0040 ± 0.0013 0.0061 ± 0.0014	0.073 ± 0.0093
	KU Sr	0.0003 ± 0.0046	0.002 ± 0.0001 0.048 ± 0.007	0.0001 ± 0.0014	0.0003 ± 0.0071 0.024 ± 0.0075
	51 7r	0.044 ± 0.0036	0.048 ± 0.007	0.034 ± 0.0042	0.034 ± 0.0073
	Δα	$0 \pm 0.00/3$	0.0037 ± 0.0099	0.017 ± 0.0023	0.03 ± 0.012
	Ag Cd	0 ± 0.011	0 ± 0.014	0 ± 0.0029	0.0023 ± 0.010
	Cu In	0.0043 ± 0.013	0.014 ± 0.018	0 ± 0.0037	0 ± 0.021
	III Sn	0.0094 ± 0.014	0.0080 ± 0.019	0.0018 ± 0.004	0 ± 0.022
	Sh	0 ± 0.014	0 ± 0.019	0.0028 ± 0.004	0 ± 0.022
	Ba	0 ± 0.023	0 ± 0.03	0.0038 ± 0.0003	0 ± 0.033
	Da Dh	0.010 ± 0.053	0.023 ± 0.071	0 ± 0.015	$0.0/3 \pm 0.083$
	NO -	0.0080 ± 0.0031	0 ± 0.0007	0.0033 ± 0.0013	$0 \pm 0.00/8$
	103	0.12 ± 0.12	0.12 ± 0.16	0.022 ± 0.034	0.28 ± 0.19
Water Soluble Iong	SO_4	0.037 ± 0.12	0.31 ± 0.16	2.8 ± 0.2	4.9 ± 0.41
water Soluble lons	NH_4 Ne^+	0.068 ± 0.12	0 ± 0.16	0 ± 0.034	0 ± 0.19
	V^+	0.19 ± 0.12	0.2 ± 0.16	7.1 ± 0.52	11 ± 0.88
	<u>K</u>	0.23 ± 0.12	0 ± 0.16	0.16 ± 0.036	0.99 ± 0.2
	001	0.43 ± 0.031	0.45 ± 0.033	0 ± 0	$0.2/\pm 0.02$
	002	1.2 ± 0.088	0.8 ± 0.059	0.086 ± 0.0062	$1 \pm 0.0/5$
Thormal Carbon	003	7.5 ± 0.54	2.4 ± 0.18	0.65 ± 0.047	1.8 ± 0.13
Inermal Carbon	OC4	4.1 ± 0.3	1.9 ± 0.14	$0.3/\pm 0.027$	0.42 ± 0.031
Fractions (INPROVE_A	OPK	1.6 ± 0.12	0.4 ± 0.03	0.014 ± 0.001	0 ± 0
protocol, Cnow et al.,	UCK EC1	15 ± 1.7	5.9 ± 1.2	1.1 ± 0.24	3.4 ± 1.2
20070)	ECI	2.1 ± 0.15	0.4 ± 0.03	0.014 ± 0.001	0 ± 0
	EC2	0.8 ± 0.058	0.26 ± 0.019	0 ± 0	0 ± 0
	EC3	0 ± 0	0 ± 0	0 ± 0	0 ± 0
	ECK	1.3 ± 0.2	0.26 ± 0.23	0 ± 0.049	0 ± 0.27

Table S-3. PM_{2.5} source profile abundances (in % of PM_{2.5} mass) for the four geological
 materials collected in this study. See profile descriptions in Table S-2.

<u>69</u>

75	т
15	1

Table S-3 (continued).		ſ	[
Group	Species ^a	RNOPVRD	RNOSOIL	RNOSalt1	RNOSalt2
	Acnapy $\times 10^{3}$	0 ± 76	0 ± 97	0 ± 21	0 ± 110
	acnape $\times 10^{3}$	0 ± 22	0 ± 29	0 ± 6.2	0 ± 33
	fluore $\times 10^{3}$	0 ± 6.5	0 ± 8.3	0 ± 1.8	0 ± 9.4
	phenan $\times 10^{3}$	0 ± 18	0 ± 23	0 ± 4.9	0 ± 26
	anthra $\times 10^{3}$	0 ± 62	0 ± 80	0 ± 17	0 ± 90
	fluora $\times 10^3$	0 ± 18	0 ± 23	0 ± 4.9	0 ± 26
	pyrene $\times 10^{3}$	0 ± 17	0 ± 22	0 ± 4.7	0 ± 25
	baanth $\times 10^3$	0 ± 8.3	0 ± 11	0 ± 2.3	0 ± 12
	chrysn $\times 10^3$	0 ± 15	0 ± 19	0 ± 4.1	0 ± 22
	$bbfl \times 10^{3}$	0 ± 8.6	0 ± 11	0 ± 2.4	0 ± 12
	$b_{jktl} \times 10^{3}$	0 ± 17	0 ± 22	0 ± 4.7	0 ± 25
	$bbjkfl \times 10^{3}$	0 ± 19	0 ± 25	0 ± 5.3	0 ± 28
	$bafl \times 10^{3}$	0 ± 15	0 ± 19	0 ± 4.2	0 ± 22
Polycyclic Aromatic	bepyrn $\times 10^3$	0 ± 7.8	0 ± 10	0 ± 2.1	0 ± 11
Hydrocarbons (PAHs)	bapyrn $\times 10^3$	0 ± 17	0 ± 22	0 ± 4.6	0 ± 24
	peryle $\times 10^3$	0 ± 35	0 ± 45	0 ± 9.6	0 ± 51
	retene $\times 10^3$	0 ± 8.4	0 ± 11	0.23 ± 0.35	0 ± 12
	incdpy $\times 10^{3}$	0 ± 6.2	0 ± 7.9	0 ± 1.7	0 ± 9
	dbanth $\times 10^3$	0 ± 3.7	0 ± 4.7	0 ± 1	0 ± 5.3
	bghipe $\times 10^{3}$	0 ± 11	0 ± 14	0 ± 2.9	0 ± 15
	corone $\times 10^{3}$	0 ± 6.2	0 ± 7.9	0 ± 1.7	0 ± 8.9
	dbaepy $\times 10^3$	0 ± 1.7	0 ± 2.1	0 ± 0.46	0 ± 2.4
	fl9one $\times 10^{3}$	0 ± 15	0 ± 19	0 ± 4	0 ± 21
	m_9ant $\times 10^{3}$	0 ± 270	0 ± 350	0 ± 74	0 ± 390
	$m_{13}fl \times 10^{3}$	0 ± 6.6	0 ± 8.5	0 ± 1.8	0 ± 9.6
	$cp_cdpyr \times 10^{3}$	0 ± 170	0 ± 220	0 ± 47	0 ± 250
	$baa7_{12} \times 10^{3}$	0 ± 6.8	0 ± 8.8	0.44 ± 0.45	0 ± 9.9
	$chry56m \times 10^{3}$	0 ± 7.6	0 ± 9.7	0 ± 2.1	0 ± 11
	$pic \times 10^3$	0 ± 7.9	0 ± 10	0 ± 2.2	0 ± 11
	hop 13×10^3	$0.19~\pm~0.56$	$0.088 ~\pm~ 0.68$	0.018 ± 0.14	0.13 ± 0.77
	hop 15×10^3	0.33 ± 0.62	0.17 ± 0.7	0 ± 0.32	0 ± 1.7
	hop 17×10^3	0.81 ± 0.9	0.43 ± 0.71	0.027 ± 0.13	0 ± 1.7
	hop15a \times 10 ³	0.22 ± 0.77	0.15 ± 0.96	0 ± 0.25	0 ± 1.3
	hop $17a \times 10^3$	0 ± 1.3	0.1 ± 1.3	0.019 ± 0.28	0 ± 1.8
	hop 19×10^3	1.2 ± 1.4	0.54 ± 1.2	0 ± 0.52	0 ± 2.7
	hop19a \times 10 ⁵	0.12 ± 0.67	0 ± 1.4	0 ± 0.3	0 ± 1.6
	hop 20×10^3	0.18 ± 0.55	0.065 ± 0.67	0 ± 0.22	0 ± 1.2
	hop 21×10^3	0.47 ± 0.97	0.26 ± 1.1	0 ± 0.27	0 ± 1.4
	hop 22×10^3	0.54 ± 0.92	0.32 ± 1	0 ± 0.23	0 ± 1.2
	hop 24×10^3	0.3 ± 0.51	0 ± 3.3	0 ± 0.72	0 ± 3.8
	$hop 25 \times 10^{3}$	0.3 ± 0.67	0.18 ± 0.8	0 ± 0.39	0 ± 2.1
	hop 26×10^3	0.25 ± 0.52	0.14 ± 0.61	0 ± 0.13	0 ± 0.67
	$hop 2 / \times 10^3$	0.25 ± 0.76	0.096 ± 0.92	0 ± 0.2	0 ± 1
Hopanes & Steranes	$hop 28 \times 10^{3}$	0.2 ± 0.6	0.13 ± 0.74	0 ± 0.16	0 ± 0.83
	$hop 30 \times 10^{3}$	0.24 ± 0.77	0.19 ± 0.95	0 ± 0.2	0 ± 1.1
	$hop 51 \times 10^{\circ}$	0.15 ± 3	0.18 ± 1.8	0 ± 0.39	0 ± 2.1
	ster1 $\times 10^3$	0.25 ± 0.59	0.092 ± 0.69	0 ± 0.22	0.077 ± 0.78
	ster2 \times 10 ³	0.12 ± 0.54	0.052 ± 0.67	0 ± 0.14	0 ± 0.76
	ster 3×10^{3}	0.11 ± 0.81	0.04 ± 1	0 ± 0.14	0 ± 0.76
	ster4 $\times 10^{3}$	0.32 ± 1	0.041 ± 1.2	0 ± 0.1	0 ± 0.54
	ster5 \times 10 ²	$0.1/\pm 0.73$	0.06 ± 0.91	0 ± 0.1	0 ± 0.53
	stero $\times 10^{-3}$	$0.1/\pm 0.63$	0.043 ± 0.78	0 ± 0.13	0 ± 0.68
	$ster / \times 10^{-10^3}$	0.23 ± 0.36	0.065 ± 0.36	0 ± 0.12	0 ± 0.66
	stero $\times 10^{3}$	0.22 ± 0.89	0.051 ± 1.1	$0 \pm 0.04/$	0 ± 0.25
	stery $\times 10^{-10^3}$	0.031 ± 0.52	0.061 ± 0.67	$0 \pm 0.04/$	0 ± 0.25
	ster 10×10 ster 11×10^3	0.12 ± 1.7	0.053 ± 2.1	0 ± 0.11	0 ± 0.58
	ster 12×10^3	0.13 ± 1.4	0.05 ± 1.7	0 ± 0.086	0 ± 0.46
L	ster 12×10^{-5}	0.4 ± 0.99	0.14 ± 1.2	0 ± 0.23	0 ± 1.2

Table S-3 (continued).

Group	Species ^a	RNOPVRD	RNOSOIL	RNOSalt1	RNOSalt2
Water Soluble Organics	$npoc \times 10^3$				
	$levg \times 10^3$				
	pentad $\times 10^3$	4.4 ± 5.3	5.5 ± 6.6	0 ± 17	5.3 ± 6.7
	hexad $\times 10^3$	4.7 ± 4.7	7.5 ± 7.2	0 ± 20	6 ± 5.8
	heptad $\times 10^3$	0 ± 89	0 ± 110	0 ± 24	0 ± 130
	octad $\times 10^3$	0 ± 74	0 ± 95	0 ± 20	0 ± 110
	nonad $\times 10^{3}$	0 ± 95	0 ± 120	0 ± 26	0 ± 140
	$eicosa \times 10^{3}$	0 ± 44	0 ± 57	0 ± 12	0 ± 64
	heneic $\times 10^{3}$	0 ± 28	0 ± 36	0 ± 7.8	0 ± 41
	docosa $\times 10^{3}$	0 ± 32	0 ± 41	0 ± 8.9	0 ± 47
	tricosa $\times 10^3$	0 ± 18	0 ± 23	0 ± 4.9	0 ± 26
	tetcos $\times 10^{3}$	0 ± 19	0 ± 24	0 ± 5.2	0 ± 27
	pencos $\times 10^3$	0.8 ± 1	0 ± 16	0 ± 3.4	0 ± 18
	hexcos $\times 10^{3}$	0 ± 16	0 ± 20	0 ± 4.3	0 ± 23
n-Alkanes	hepcos $\times 10^{3}$	0 ± 16	0 ± 20	0 ± 4.3	0 ± 23
ii / lincuitos	octcos $\times 10^3$	0 ± 18	0 ± 23	0 ± 5	0 ± 26
	noncos $\times 10^3$	0 ± 19	0 ± 24	0 ± 5.1	0 ± 27
	tricont $\times 10^3$	0 ± 25	0 ± 32	0 ± 6.9	0 ± 36
	htricont $\times 10^3$	0 ± 32	0 ± 41	0 ± 8.8	0 ± 46
	dtricont $\times 10^3$	0 ± 41	0 ± 52	0 ± 11	0 ± 59
	ttricont $\times 10^3$	2.4 ± 2.3	0 ± 57	0 ± 12	0 ± 64
	tetricont $\times 10^3$	2.8 ± 2.7	0 ± 48	0 ± 10	0 ± 55
	ptricont $\times 10^3$	5.9 ± 5.7	0 ± 63	0 ± 13	0 ± 71
	hxtricont $\times 10^3$	9.4 ± 9.1	0 ± 180	0 ± 39	0 ± 200
	hptricont $\times 10^3$	0 ± 860	0 ± 1100	0 ± 240	0 ± 1300
	otricont $\times 10^3$	0 ± 1300	0 ± 1700	0 ± 360	0 ± 1900
	ntricont $\times 10^3$	0 ± 1100	0 ± 1500	0 ± 310	0 ± 1700
	tetracont $\times 10^{3}$	0 ± 1200	0 ± 1500	0 ± 330	$0 \pm 1/00$
	$180c29 \times 10^{-3}$	0 ± 15	0 ± 19	0 ± 4.1	0 ± 22
	$iaaa^{20} \times 10^{3}$	0 ± 15 0 + 24	0 ± 19	0 ± 4.1	0 ± 22
	$150C50 \times 10$	0 ± 24	0 ± 30	0 ± 6.5	0 ± 34
	$\frac{1000000}{1000000}$	0 ± 24	0 ± 30	0 ± 6.5	0 ± 34
	$150C31 \times 10^{3}$	0 ± 32 0 + 22	0 ± 41	0 ± 8.8	0 ± 46 0 + 46
	$isoc^{32} \times 10^3$	0 ± 32	0 ± 41	0 ± 8.8	0 ± 40
Dranahad Alleanas	150032×10^3	0 ± 39	0 ± 50	0 ± 11	0 ± 57
Diancheu Aikanes	$isoo^{22} \times 10^3$	0 ± 39	0 ± 50	0 ± 11 0 + 12	0 ± 57
	anteisoc33 $\times 10^3$	0 ± 44 0 + 44	0 ± 30 21 ± 20	0 ± 12 0 + 12	0 ± 03 0 + 63
	nonad2m $\times 10^3$	0 ± 44 0 + 47	5.1 ± 2.9 0 ± 6	0 ± 12 0 + 13	0 ± 03 0 ± 68
	nonad3m $\times 10^3$	0 ± 4.7 0 + 3.9	0 ± 0 0 ± 5	0 ± 1.3 0 + 1.1	0 ± 0.3 0 + 5.7
	$rist \times 10^3$	0 ± 3.9 0 + 45	32 + 39	0 ± 1.1 0 + 12	0 ± 5.7 0 ± 65
	physic 10^3	0 ± 43 21 + 28	3.2 ± 3.9 3.2 + 3.9	0 ± 12 0 ± 10	0 ± 03 0 + 54
	squal $\times 10^3$	0 + 25	0 + 33	0 = 10 0 + 07	0 = 37 0 + 37
Group	Species ^a	RNOPVRD		RNOSalt1	RNOSalt2
or out	$chexa8 \times 10^3$	0 ± 8.6	0 ± 11	0 ± 2.3	0 ± 12
	$chex10 \times 10^3$	0 ± 9.1	0.76 ± 7.7	0 ± 2.5	0 ± 13
Cycloalkane	$chex13 \times 10^3$	0 ± 8.1	0 ± 10	0 ± 2.2	0 ± 12
,	$chex17 \times 10^3$	0 ± 2.5	0 ± 3.1	0 ± 0.67	0 ± 3.6
	$chex19 \times 10^3$	0 ± 4.6	0 ± 5.9	0 ± 1.3	0 ± 6.7
Alkenes	octdecen $\times 10^3$	0 ± 46	0 ± 59	0.95 ± 2.7	0 ± 67
I I I T	b_{abs} (370 nm)	55 ± 2.8	29 ± 1.5	39 ± 1.9	36 ± 1.8
Light Transmission	$b_{\rm abs}$ (880 nm)	20 ± 1	9.5 ± 0.47	8.3 ± 0.42	21 ± 1.1

^a See Table S-0 for organic species names.

- **Table S-4.** EV-CMB sensitivity tests for the 1/17/2010 and 1/5/2010 sample. PM_{2.5} source contribution estimates (SCEs $\pm 1\sigma$) in μ g/m³ and performance measures (i.e., r², χ^2 , and %MASS) are reported. The best profile combination, marked in bold, were found in Trial V and

86 selected for EV-CMB modeling of all	samples.
--	----------

		RENO_C: $9.08 \pm 0.52 \ \mu g/m^3$; collected on $1/17/2010$)						
Source	Profile ^a	Ι	II	III	IV	V	VI	VII
Geological	RNOPVRD	0.54 ± 0.17	0.56 ± 0.16	0.64 ± 0.12	0.78 ± 0.12	0.78 ± 0.13		
	RNOSOIL						0.36 ± 0.13	0.45 ± 0.10
	RNOSALT1							
	RNOSALT2	0.37 ± 0.12	0.37 ± 0.11	0.29 ± 0.09	0.26 ± 0.09	0.25 ± 0.09	0.48 ± 0.09	0.43 ± 0.08
Gasoline	GAS	0.64 ± 0.31	0.48 ± 0.25		0.14 ± 0.15	0.15 ± 0.16	0.63 ± 0.31	0.32 ± 0.25
	LVOnRGas			0.03 ± 0.01				
Diesel	DIESEL	1.58 ± 0.41	1.36 ± 0.37	0.52 ± 0.28	1.31 ± 0.35	1.68 ± 0.39	1.69 ± 0.43	1.67 ± 0.43
	LVOnRDie							
Biomass	CRBURN_H	2.77 ± 0.25	2.50 ± 0.26	1.78 ± 0.29	1.27 ± 0.27	1.36 ± 0.29	2.13 ± 0.23	1.31 ± 0.31
Burning	CRBURN_S	-	-	1.80 ± 0.65				
	LTWS_H				2.07 ± 0.82	$\textbf{2.82} \pm \textbf{0.89}$		2.80 ± 1.01
	LTWS_S						1.19 ± 0.38	
Secondary	AMSUL	0.04 ± 0.09	0.07 ± 0.07	0.15 ± 0.03	0.12 ± 0.06	0.10 ± 0.07	0.04 ± 0.09	0.08 ± 0.07
	AMBSUL							
	AMNIT	1.36 ± 0.17	1.36 ± 0.17	1.38 ± 0.17	1.38 ± 0.17	1.38 ± 0.17	1.37 ± 0.17	1.38 ± 0.17
	SOC							
Cooking	BVCOOK		1.16 ± 0.57	1.91 ± 0.37	1.57 ± 0.56			
r^2		0.75	0.77	0.81	0.94	0.92	0.93	0.91
χ^2		5.93	6.59	10.23	1.71	1.66	1.42	1.82
%MASS		80.4	86.5	93.6	98.0	93.9	86.9	93.0

^a See Table S-2 for a short description of each source profile. Profiles not included in a test are left blank. A dash is used to indicate profiles that were included in the test but eliminated by the model (due to negative contributions).

		RENO_C: $39.2 \pm 2.0 \ \mu g/m^3$; collected on $1/5/2010$)						
Source	Profile ^a	Ι	II	III	IV	V	VI	VII
Geological	RNOPVRD	2.09 ± 0.37	2.15 ± 0.35	2.30 ± 0.33	2.27 ± 0.33	2.22 ± 0.33		
-	RNOSOIL						1.11 ± 0.27	1.14 ± 0.21
	RNOSALT1							
	RNOSALT2	0.93 ± 0.28	0.92 ± 0.27	0.84 ± 0.27	0.95 ± 0.26	$\textbf{0.98} \pm \textbf{0.27}$	1.60 ± 0.24	1.70 ± 0.23
Gasoline	GAS	0.84 ± 0.48	0.62 ± 0.39		0.00 ± 0.21	0.01 ± 0.21	0.87 ± 0.53	0.08 ± 0.24
	LVOnRGas			0.09 ± 0.05				
Diesel	DIESEL	5.36 ± 1.07	3.99 ± 1.02	3.70 ± 0.88	3.82 ± 0.95	4.99 ± 1.03	6.02 ± 1.17	4.92 ± 1.07
	LVOnRDie							
Biomass	CRBURN H	9.90 ± 0.82	8.15 ± 0.78	8.60 ± 0.79	6.17 ± 0.87	7.94 ± 1.03	6.94 ± 0.70	7.89 ± 1.07
Burning	CRBURN_S	-	-	-				
	LTWS_H				4.81 ± 1.88	7.24 ± 2.29		7.73 ± 2.45
	LTWS_S						3.32 ± 1.01	
Secondary	AMSUL	0.16 ± 0.21	0.24 ± 0.17	0.31 ± 0.14	0.31 ± 0.15	0.25 ± 0.18	0.14 ± 0.23	0.21 ± 0.18
	AMBSUL							
	AMNIT	10.68 ± 1.32	10.70 ± 1.32	10.71 ± 1.32	10.72 ± 1.32	10.71 ± 1.32	10.71 ± 1.32	10.71 ± 1.32
	SOC							
Cooking	BVCOOK		7.20 ± 1.61	7.66 ± 1.52	7.28 ± 1.60			
r^2		0.84	0.86	0.86	0.96	0.95	0.92	0.92
χ^2		4.90	5.40	5.65	1.39	1.61	2.18	2.28
%MASS		76.5	86.7	87.3	92.8	87.6	78.4	87.7

^a See Table S-2 for a short description of each source profile. Profiles not included in a test are left blank. A dash is used to indicate profiles that were included in the test but eliminated by the model (due to negative contributions).

	AMSUL	AMNIT	LTWS_H	CRBURN_H	GAS	DIESEL	RNOPVRD	RNOSalt2
SPECIES ^a								
NO ₃ ⁻	0	1	0	0	0	0	0	0
Na ⁺	-0.04	0	-0.09	0.01	0.06	0	-0.45	0.64
K^+	0	0	0.05	0.47	-0.05	-0.13	0.02	-0.02
OC	-0.04	0	0.71	0.09	-0.11	0.21	0.08	-0.16
EC	-0.15	0	-0.22	-0.09	-0.08	1	-0.23	0
Al	0.03	0	0.14	-0.03	-0.12	-0.07	0.44	-0.11
Si	0.02	0	0.02	0	0.09	-0.16	1	-0.5
Р	-0.05	0	-0.18	0.01	0.15	0.13	-0.08	0.02
S	1	0	0	0	0	0	0	0
Cl	-0.04	0	0.22	0.03	0.01	-0.1	-0.53	0.8
K	0.04	0	0.55	0.15	-0.16	-0.19	0.14	-0.05
Ca	-0.04	0	-0.18	0.06	0.02	0.21	0.47	-0.21
Ti	0.03	0	0.1	-0.01	-0.09	-0.05	0.37	-0.21
Mn	-0.01	0	-0.02	0	0	-0.03	-0.13	0.36
Fe	-0.06	0	-0.09	-0.06	-0.03	0.08	-0.25	1
Cu	-0.05	0	-0.15	0.03	0.13	0.04	-0.2	0.25
Zn	-0.11	0	-0.2	0.1	0.17	0.42	-0.14	-0.01
As	0	0	0	0	0	0	0	0
Se	0	0	0	0	0	0.01	0	0
Br	-0.03	0	-0.07	0	0.04	0.11	-0.11	0.11
Rb	0	0	-0.01	0.01	0	0	0	0
Sr	0	0	0.01	0	-0.01	0	0.04	-0.01
Pb	-0.01	0	-0.03	0.01	0.03	0.01	-0.01	0
retene	-0.03	-0.01	-0.74	1	0.09	-0.09	-0.04	-0.08
incdpy	0.02	0	1	-0.3	0.09	-0.33	0.08	-0.04
bghipe	-0.03	0	0.18	-0.07	0.24	-0.16	-0.06	0.03
corone	-0.18	-0.02	-0.64	0.15	1	-0.26	-0.39	0.18
hop17	-0.03	0	0.17	-0.11	-0.01	0.17	-0.02	-0.01
hop19	-0.03	0	0.49	-0.2	0.2	-0.13	-0.02	0
hop26	0	0	-0.07	0.09	0.01	-0.01	0.02	-0.03
hop27	0	0	-0.01	0.02	0	0	0.02	-0.02
levg	0.05	0	0.76	-0.22	-0.17	-0.14	0.14	-0.06
prist	-0.01	0	-0.03	0	-0.01	0.07	-0.01	0
phytan	-0.04	0	-0.15	-0.01	-0.04	0.33	-0.07	0

Table S-5. MPIN matrix for the 1/17/2010 and 1/5/2010 Trial V sample. High MPIN values (>
0.4) are marked.

98 Table S-5, continued.

	AMSUL	AMNIT	LTWS H	CRBURN H	GAS	DIESEL	RNOPVRD	RNOSalt2
SPECIES ^a								
NO3-	0	1	0	0	0	0	0	0
Na+	-0.04	0	-0.02	0.01	0.03	0	-0.53	0.74
K+	-0.01	0	-0.1	0.76	-0.03	-0.18	-0.03	-0.01
OC	-0.06	0	0.48	0.28	-0.08	0.2	0.01	-0.09
EC	-0.14	0	-0.15	-0.15	-0.04	1	-0.22	0.02
Al	0.02	0	0.09	-0.03	-0.07	-0.12	0.5	-0.1
Si	0.03	0	0.01	-0.03	0.05	-0.11	1	-0.52
Р	-0.06	0	-0.17	-0.03	0.12	0.33	-0.06	-0.02
S	1	0	0	0	0	0	0	0
Cl	-0.02	0	0.1	0.04	-0.01	-0.05	-0.29	0.41
K	0.01	0	0.28	0.3	-0.07	-0.2	0.04	0
Ca	-0.04	0	-0.18	0.08	0.01	0.26	0.46	-0.22
Ti	0.02	0	0.05	0.01	-0.05	-0.08	0.42	-0.26
Mn	-0.03	0	0	0.01	0	-0.07	-0.35	0.75
Fe	-0.06	0	-0.01	-0.09	-0.01	0.08	-0.37	1
Cu	-0.03	0	-0.06	0.02	0.05	0.06	-0.17	0.23
Zn	-0.09	0	-0.11	0.13	0.06	0.47	-0.09	-0.03
As	0	0	0	0	0	0	0	0
Se	0	0	-0.01	0	0	0.02	0	0
Br	-0.03	0	-0.04	-0.02	0.02	0.15	-0.13	0.13
Rb	0	0	-0.05	0.11	0	-0.01	0	-0.01
Sr	0	0	0	0.01	-0.01	-0.01	0.07	-0.02
Pb	-0.01	0	-0.03	0.02	0.02	0.02	0	-0.01
retene	-0.02	0	-0.53	1	0.03	-0.12	-0.02	-0.09
incdpy	0.03	0	1	-0.39	0.01	-0.3	0.07	0.01
bghipe	0	0	0.28	-0.12	0.11	-0.11	0	0.01
corone	-0.09	0	-0.37	0.14	1	-0.18	-0.2	0.08
hop17	-0.03	0	0.18	-0.16	-0.02	0.2	-0.03	0
hop19	-0.01	0	0.71	-0.37	0.09	-0.08	0.02	0.02
hop26	0	0	-0.1	0.18	0	-0.02	0.03	-0.04
hop27	0	0	-0.02	0.04	0	-0.01	0.03	-0.03
levg	0.03	0	0.65	-0.24	-0.1	-0.17	0.07	0
prist	-0.01	0	-0.04	0	-0.01	0.09	-0.02	0
phytan	-0.06	0	-0.15	-0.04	-0.02	0.42	-0.09	0

Figure S-1. Concentrations of organic marker species for: a) p-PAHs, b) hopanes and steranes,

103 c) n-alkanes, d) cyclo- and branched alkanes, and e) water soluble organic compounds (WSOC,

npoc) and levoglucosan (levg). Species are sorted by the average abundance. See Table S-0 for

- 105 details of mnemonics and chemical species.
- 106
- 107
- 108

109	Reference List
110	Chow, J. C., Watson, J. G., Ashbaugh, L. L., and Magliano, K. L.: Similarities and differences in
111	PM_{10} chemical source profiles for geological dust from the San Joaquin Valley,
112	California, Atmos. Environ., 37, 1317-1340, 2003.
113	Chow, J. C., Watson, J. G., Kuhns, H. D., Etyemezian, V., Lowenthal, D. H., Crow, D. J., Kohl,
114	S. D., Engelbrecht, J. P., and Green, M. C.: Source profiles for industrial, mobile, and
115	area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO)
116	Study, Chemosphere, 54, 185-208, 2004.
117	Chow, J. C., Watson, J. G., Chen, LW. A., Chang, M. C. O., Robinson, N. F., Trimble, D. L.,
118	and Kohl, S. D.: The IMPROVE A temperature protocol for thermal/optical carbon
119	analysis: Maintaining consistency with a long-term database, J. Air Waste Manage.
120	Assoc., 57, 1014-1023, 2007.
121	Chow, J. C., Watson, J. G., Robles, J., Wang, X. L., Chen, LW. A., Trimble, D. L., Kohl, S. D.,
122	Tropp, R. J., and Fung, K. K.: Ouality assurance and quality control for thermal/optical
123	analysis of aerosol samples for organic and elemental carbon. Anal. Bioanal. Chem., 401.
124	3141-3152, 2011.
125	Fitz, D.R., Chow, J.C., and Zielinska, B.: Development of a gas and particulate matter organic
126	speciation profile database, prepared for California Air Resources Board, Sacramento,
127	CA by University of California, CE-CERT, Riverside, CA, 2004.
128	Fujita, E. M., Campbell, D. E., Arnott, W. P., Chow, J. C., and Zielinska, B.: Evaluations of the
129	chemical mass balance method for determining contributions of gasoline and diesel
130	exhaust to ambient carbonaceous aerosols, J. Air Waste Manage. Assoc., 57, 721-740,
131	2007a.
132	Fujita, E. M., Zielinska, B., Campbell, D. E., Arnott, W. P., Sagebiel, J. C., Mazzoleni, L. R.,
133	Chow, J. C., Gabele, P. A., Crews, W., Snow, R., Clark, N. N., Wayne, W. S., and
134	Lawson, D. R.: Variations in speciated emissions from spark-ignition and compression-
135	ignition motor vehicles in California's south coast air basin, J. Air Waste Manage. Assoc.,
136	57, 705-720, 2007b.
137	Green, M.C., Chang, MC.O., Chow, J.C., Kuhns, H.D., Chen, LW.A., Nussbaum, N.J.,
138	Nikolic, D., Arnott, W.P., Kumar, S., and Etyemezian, V.: Las Vegas carbon source
139	apportionment study, final report, prepared for Clark County Department of Air Quality
140	Management, Las Vegas, NV by Desert Research Institute, Reno, NV, 2004.
141	Kuhns, H.D., Chang, MC.O., Chow, J.C., Etyemezian, V., Chen, LW.A., Nussbaum, N.J.,
142	Nathagoundenpalayam, S.K., Trimble, T.C., Kohl, S.D., MacLaren, M., Abu-Allaban,
143	M., Gillies, J.A., and Gertler, A.W.: DRI Lake Tahoe Source Characterization Study,
144	prepared for California Air Resources Board, Sacramento, CA by Desert Research
145	Institute, Reno, NV, 2004.
146	Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H., and Lawson, D. R.: Chemical
147	mass balance source apportionment of PM ₁₀ during the Southern California Air Quality
148	Study, Aerosol Sci. Technol., 21, 1-36, 1994.
149	Watson, J. G. and Chow, J. C.: Source characterization of major emission sources in the Imperial
150	and Mexicali valleys along the U.S./Mexico border, Sci. Total Environ., 276, 33-47,
151	2001.
152	Watson, J. G., Chow, J. C., and Houck, J. E.: PM _{2.5} chemical source profiles for vehicle exhaust,
153	vegetative burning, geological material, and coal burning in northwestern Colorado
154	during 1995, Chemosphere, 43, 1141-1151, 2001.