Supplemental materials for "Impacts of transported background pollutants on summertime Western US air quality: model evaluation, sensitivity analysis and data assimilation", by Huang et al.

This file includes two tables and four figures.

Region	Year	Number of plumes w/ power estimates	Total radiative of power (MW)	Median value of plume top heights (m ASL)	Radiative power/plume (MW)
Siberia	2002	541	269422	1367	498.01
	2003	985	474288	2225	481.51
	2006	433	148157	1597	342.16
	2008	1451	574766	1652	396.12
Canada (end of May to end of July)	2008	72	92439	2062	1283.9
	2002	445	371717	1815	835.32
	2004	1137	501585	1743	441.15
NA	2005	912	376329	1415	412.64
	2006	439	253488	2191	577.42
	2007	510	237497	1620	465.68

Table A1. Wildfire plumes characteristics from the Multi-angle Imaging SpectroRadiometer (MISR) plume height project ^a

^aAdapted from: http://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/

Land type number	Land type description	Category used in Figure 3	
1	Urban and Built-up Land	/	
2	Dryland Cropland and Pasture		
3	Irrigated Cropland and Pasture		
4	Mixed Dryland/Irrigated Cropland and Pasture	Cropland	
5	Cropland/Grassland Mosaic		
6	Cropland/Woodland Mosaic		
7	Grassland		
8	Shrubland	Grass + Shrub	
9	Mixed Shrubland/Grassland		
10	Savanna		
11	Deciduous Broadleaf Forest		
12	Deciduous Needleleaf Forest		
13	Evergreen Broadleaf	Forest	
14	Evergreen Needleleaf		
15	Mixed Forest		
16	Water Bodies	/	
17	Herbaceous Wetland	/	
18	Wooden Wetland	/	
19	Barren or Sparsely Vegetated	/	
20	Herbaceous Tundra	/	
21	Wooded Tundra	/	
22	Mixed Tundra	/	
23	Bare Ground Tundra	/	
24	Snow or Ice	/	

Table A2. US Geological Survey (USGS) land type numbers and descriptions $^{\rm a}$

^a Adapted from: http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm#_Land_Use_and

Figure A1. (a-b) Slope and (d-e) correlation of O₃ vs. CO at ~2.5 km AGL from (a;d) 12 km/32 layer and (b;e) 60 km/18 layer STEM base case for the studied period; (c) Scatterplot of O₃ vs. CO along all ARCTAS-CARB DC-8 flight paths (at ~2-4 km); (f) WRF-chem tracer predicted secondary CO during the same study period in Pfister et al. (2011b); (g) Observed and (h) STEM 12 km modeled PAN/NO_y along all ARCTAS-CARB DC-8 flights at all altitudes; (i) Period mean 00 UTC surface O₃ sensitivity to half reduction in TBC O₃.

Figure A2. (a) 12 km WRF (Version 3.1)-predicted PBLH at 00 UTC, 20 June, by using the MYJ PBL scheme; Differences of WRFpredicted PBLH between the cases using (b) YSU; (c) MYNN3; and (d) QNSE PBL schemes and the results in (a); Differences of predicted PBLH between the cases using (e) WRF Version 3.2 and (f) WRF Version 3.3 and the results in (a); Similar as findings by Saide et al. (2011) over Santiago, Chile, overall MYNN3 and QNSE schemes generate the shallowest and deepest PBLH, respectively, and the differences between YSU and MYJ schemes vary by region. (g) PDT 9pm-7am forward trajectories (calculated mean transport altitudes in km, AGL for every 0.25 degree) during the study period originating from MBO 2.7 km ASL; PDT 8am-8pm forward trajectories during the studied period originating from (h) THD 2.5 km ASL and (i) SC 1.5 km ASL.

Figure A3. Same as Figure 9 but for results from the 60 km/18 layer grid.

Total emission adjustment: 1.002546

Figure A4. (a) Cost function and its reduction as a function of iteration number in Case AS; (b) Surface and (c) elevated NO_x emission scaling factors by controlling NO_x emissions and assimilating surface NO_2 observations in a 24-hour window; (d) Daytime mean surface O_3 differences: assimilating surface observation while applying NO_x emission scaling factors-Case AS.