Chamber Simulation of Photooxidation of Dimethyl Sulfide and Isoprene in the Presence of NO_{x}

Tianyi Chen and Myoseon
 Jang^*

Department of Environmental Engineering Sciences P.O. Box 116450, University of Florida, Gainesville, Florida 32611

Correspondence to: M. Jang (email: mjang@ufl.edu)

Supplementary Materials

1

Number of Tables: 5 Number of Figures: 7

The artifacts of DMSO measurement in the presence of DMS

The prediction of DMSO (not shown in the figures) is systematically much lower than the measured DMSO. However, as explained by Sorensen et al (1996), the fast reaction between DMSO and OH. should lead to the scavenging of the DMSO formed so the detected DMSO should be little. It is thus possible that the measurement of DMSO rather than the model prediction is problematic. It has been reported by Gershenzon (2001) that DMS and O₃ can rapidly react in the water with a reaction rate constant of $\sim 10^9 \text{ M}^{-1} \text{ s}^{-1}$ at room temperature, forming DMSO with a nearly unity yield. In contrast, the liquid phase reaction between DMSO and O_3 was found to be ~ 10^8 times slower than that between DMS and O_3 , so once DMSO is formed as a product of DMS and O_3 reaction, it will not be rapidly consumed by O_3 . It is thus reasonable to assume that the high concentration of DMSO measured in the presence of DMS was an artifact due to the liquid-phase reaction of DMS and O_3 collected in the liquid N_2 trap (~ -195°C while the melting point of DMS is $-98 \,^{\circ}$ C and that of O₃ is $-192 \,^{\circ}$ C). Rapid liquid phase reaction of DMS and O_3 is most likely to occur when the cold trap is heated. In order to prove this hypothesis, 600 ppb DMS and 200 ppb O_3 were injected into the chamber, then the chamber air was sampled using the liquid N_2 trap. Since the rate of the reaction of DMS with O_3 in gas phase is known to be in the order of $\sim 10^{-20}$ cm³ molecules⁻¹ s^{-1} , there should be theoretically no or little DMSO detected. Nevertheless, with 10 ppb of DMS decay, 180 ppb of DMSO was detected, which demonstrated that the DMSO sampling method causes a significant amount of artifacts. As a result, measured DMSO concentrations in the experiments containing DMS were not used in this study.

DMSO Reactions	Rate constant a	Note
Initial reactions		
1 $\operatorname{CH}_3-\operatorname{S}(\operatorname{O})\operatorname{CH}_3+\operatorname{O}^3\operatorname{P}\to\operatorname{SO}_2+\operatorname{CH}_3+\operatorname{CH}_3\cdot$	1.50E + 07	(Sander, 2006)
2 $CH_3-S(O)CH_3 + OH \rightarrow CH_3-S(OH)(O)CH_3$	6.1E-12exp(800/T)	(Sander, 2006)
3 $CH_3-S(O)CH_3+NO_3 \rightarrow NO_2+CH_3(O)S(O)CH_3$	2.90E-13	(Sander, 2006)
Primary products		
a. CH_3 · Reactions (see CH_4 reactions)		
b. CH_3 -S(OH)(O) CH_3 reactions		
4 $CH_3-S(OH)(O)CH_3 \rightarrow CH_3-S(O)OH+ CH_3$.	1.50E + 07	(Veltwisch et al., 1980)
5 $CH_3-S(OH)(O)CH_3 + O_2 \rightarrow CH_3(O)S(O)CH_3 + HO_2$	1.20E-12	(Yin et al., 1990)
c. $CH_3(O)S(O)CH_3$ and its further reactions		
$6 \qquad CH_3(O)S(O)CH_3 + OH \rightarrow CH_3(O)S(O)CH_2 + H_2O$	1.00E-14	(Yin et al., 1990)
7 $\operatorname{CH}_3(O)\operatorname{S}(O)\operatorname{CH}_2 + \operatorname{O}_2 \to \operatorname{CH}_3(O)\operatorname{S}(O)\operatorname{CH}_2\operatorname{OO}$	7.30E-13	(Yin et al., 1990)
Secondary Products		
a. $CH_3S(O)OH$		
8 $CH_3-S(O)OH + OH \rightarrow CH_3(O)S(O) + H_2O$	1.00E-10	(Kukui et al., 2003)
b. $CH_3(O)S(O)CH_2OO$. reactions		
9 $\operatorname{CH}_3(O)S(O)\operatorname{CH}_2OO + \operatorname{NO} \to \operatorname{CH}_3(O)S(O)\operatorname{CH}_2O + \operatorname{NO}_2$	5.00 E- 12	(Yin et al., 1990)
10 $CH_3(O)S(O)CH_2OO + CH_3-S \rightarrow CH_3(O)S(O)CH_2O + CH_3-SO$	5.00 E-11	(Kukui et al., 2003)
11 $\operatorname{CH}_3(O)S(O)CH_2OO + CH_3-SO \rightarrow CH_3(O)S(O)CH_2O + CH_3(O)S(O)$	4.00 E- 12	(Yin et al., 1990)
12 $\operatorname{CH}_3(O)S(O)\operatorname{CH}_2OO + \operatorname{CH}_3(O)S(O) \to \operatorname{CH}_3(O)S(O)\operatorname{CH}_2O + \operatorname{CH}_3-\operatorname{SO}_3$	2.50E-13	(Yin et al., 1990)
13 $CH_3(O)S(O)CH_2OO + HO_2 \rightarrow CH_3(O)S(O)CH_2OOH + O_2$	1.50E-12	(Yin et al., 1990)
14 $\operatorname{CH}_3(O)\operatorname{S}(O)\operatorname{CH}_2\operatorname{OO} + \operatorname{CH}_3 - \operatorname{O}_2 \to \operatorname{CH}_3(O)\operatorname{S}(O)\operatorname{CH}_2\operatorname{O} + \operatorname{O}_2 + \operatorname{CH}_3 - \operatorname{O}_2$	1.80E-13	(Yin et al., 1990)
15 $CH_3(O)S(O)CH_2OO + CH_3(O)S(O)CH_2OO \rightarrow 2CH_3(O)S(O)CH_2O + O_2$	8.60E-14	(Yin et al., 1990)

TABLE S1. DMSO photooxidation mechanisms

^{*a*}The unit for first order reactions is s^{-1} and the unit for second order reactions is s^{-1} molecules⁻¹ cm³

TABLE S	1. Cont'd.
---------	------------

Tert	tiary and further products		
a. C	CH_3 - $S(O)OH$ reactions		
16	CH_3 - $S(O)OH + OH \rightarrow CH_3(O)S(O) + H_2O$	1.60E-11	(Yin et al., 1990)
17	$CH_3-S(O)OH + CH_3-SO_3 \rightarrow CH_3(O)S(O) + CH_3-SO_3H$	2.00E-13	(Yin et al., 1990)
18	CH_3 - $S(O)OH + CH_3$ - $O· \rightarrow CH_3(O)S(O)· + CH_3-OH$	1.00E-13	(Yin et al., 1990)
19	CH_3 - $S(O)OH + O^3P \rightarrow CH_3(O)S(O) + OH$	1.00E-13	(Yin et al., 1990)
20	CH_3 - $S(O)OH + NO_3 \rightarrow CH_3(O)S(O) + HNO_3$	1.00E-13	(Yin et al., 1990)
21	CH_3 - $S(O)OH + HO_2 \rightarrow CH_3(O)S(O) + H_2O_2$	1.00E-15	(Yin et al., 1990)
22	CH_3 - $S(O)OH + CH_3$ - $O_2 \rightarrow CH_3(O)S(O) + CH_3$ -OOH	1.00E-15	(Yin et al., 1990)
b. ($CH_3(O)S(O)CH_2O$ reactions		
23	$CH_3(O)S(O)CH_2O \rightarrow CH_3(O)S(O) + H-CO-H$	1.00E + 01	(Yin et al., 1990)
c. C	$CH_3(O)S(O)$ reactions		
24	$CH_3(O)S(O) + NO_2 \rightarrow CH_3 - SO_3 + NO$	5.00 E- 13	Estimate
25	$CH_3(O)S(O) + O_3 \rightarrow CH_3 - SO_3 + O_2$	5.00E-15	(Yin et al., 1990)
26	$CH_3(O)S(O) + HO_2 \rightarrow CH_3 - SO_3 + OH$	2.50E-13	(Yin et al., 1990)
27	$CH_3(O)S(O) \rightarrow CH_3 \rightarrow SO_2$	1.00E + 01	(Mellouki et al., 1988)
28	$CH_3(O)S(O) + O_2 \rightarrow CH_3(O)S(O)OO$	2.60E-18	(Yin et al., 1990)
29	$CH_3(O)S(O)OO \rightarrow CH_3(O)S(O) \rightarrow O_2$	3.30	(Yin et al., 1990)
30	$CH_3(O)S(O) + NO_3 \rightarrow CH_3 - SO + NO_2$	1.00E-14	(Yin et al., 1990)
31	$CH_3(O)S(O) + CH_3 - O_2 \rightarrow CH_3 - SO_3 + CH_3 - O_2$	2.50E-13	(Yin et al., 1990)
32	$CH_3(O)S(O) + CH_3 - S \rightarrow CH_3(O)S(O)S - CH_3$	4.20E-11	(Yin et al., 1990)
33	$CH_3(O)S(O) + CH_3(O)S(O) \rightarrow CH_3 - SO + CH_3 - SO_3$	7.50E-12	(Yin et al., 1990)
34	$CH_3(O)S(O) + CH_3-S-NO \rightarrow CH_3(O)S(O)CH_3 + NO$	6.80E-13	(Yin et al., 1990)
35	$CH_3(O)S(O) + OH \rightarrow CH_3-SO_3H$	5.00E-11	(Yin et al., 1990)
d. ($CH_3(O)S(O)OO$ reactions		
36	$CH_3(O)S(O)OO \rightarrow CH_3-SO_3 \rightarrow NO_2$	1.00E-11	(Yin et al., 1990)

TABLE S1. Cont'd.

~ -			
37	$CH_3(O)S(O)OO + NO_2 \rightarrow CH_3(O)S(O)OONO_2$	1.00E-12	(Yin et al., 1990)
38	$CH_3(O)S(O)OONO_2 \rightarrow CH_3(O)S(O)OO \rightarrow NO_2$	4.20E-03	(Yin et al., 1990)
39	$CH_3(O)S(O)OO + CH_3 - S \rightarrow CH_3 - SO_3 + CH_3 - SO_2$	6.00E-11	(Yin et al., 1990)
40	$CH_3(O)S(O)OO + CH_3 - SO \rightarrow CH_3 - SO_3 + CH_3(O)S(O)$	8.00E-12	(Yin et al., 1990)
41	$CH_3(O)S(O)OO + CH_3(O)S(O) \rightarrow 2 CH_3 - SO_3$	3.00E-13	(Yin et al., 1990)
42	$CH_3(O)S(O)OO + HO_2 \rightarrow CH_3(O)S(O)OOH + O_2$	2.00E-12	(Yin et al., 1990)
43	$CH_3(O)S(O)OO + CH_3 - O_2 \rightarrow CH_3 - SO_3 + CH_3 - O + O_2$	5.50E-12	(Yin et al., 1990)
44	$CH_3(O)S(O)OO + CH_3(O)S(O)OO + CH_3 - SO \rightarrow 2 CH_3 - SO_3 + O_2$	6.00E-12	(Yin et al., 1990)
45	$CH_3(O)S(O)OO + CH_3-S-OH \rightarrow CH_3(O)S(O)OOH + CH_3-SO.$	4.00E-13	(Yin et al., 1990)
e. CH	I_3 -SO $_3$ · reactions		
46	$CH_3-SO_3 \rightarrow SO_3+CH_3$.	4.00E-02	Estimate
47	$CH_3-SO_3+H-CO-H \rightarrow CH_3-SO_3H + HO_2+CO$	1.60E-15	(Yin et al., 1990)
48	$CH_3-SO_3 + HO_2 \rightarrow CH_3-SO_3H + O_2$	5.00E-11	(Yin et al., 1990)
49	$CH_3-SO_3 + HONO \rightarrow CH_3-SO_3H + NO_2$	6.60E-16	(Yin et al., 1990)
50	$CH_3-SO_3 + H_2O_2 \rightarrow CH_3-SO_3H + HO_2$	3.00E-16	(Yin et al., 1990)
51	$CH_3-SO_3 + CH_3-OOH \rightarrow CH_3-SO_3H + CH_3-O_2$	3.00E-16	(Yin et al., 1990)
52	$CH_3-SO_3 + CH_3-OH \rightarrow CH_3-SO_3H + H-CO-H + HO_2$	1.00E-16	(Yin et al., 1990)
53	$CH_3-SO_3 + NO_2 \rightarrow CH_3(O)S(O)ONO_2$	3.00E-15	(Yin et al., 1990)
54	$CH_3(O)S(O)ONO_2 + H_2O \rightarrow CH_3 - SO_3H + HNO_3$	1.00E-15	(Yin et al., 1990)
55	$CH_3-SO_3+ NO \rightarrow CH_3(O)S(O)ONO$	3.00E-15	(Yin et al., 1990)
56	$CH_3(O)S(O)ONO + H_2O \rightarrow CH_3-SO_3H + HONO$	1.00E-15	(Yin et al., 1990)
Wall I	loss		
57	$\rm CH_3-S(O)\rm CH_3 \rightarrow$	6.00E-05	Experiment
58	$CH_3(O)S(O)CH_3 \rightarrow$	7.00E-05	Experiment

TABLE S2. DMS photooxidation mechanisms

DMC Desetion	Data constant ^q	Noto
	Rate constant	note
Initial reactions		
$59 CH_3-S-CH_3 + OH \rightarrow CH_3-S-CH_2 + H_2O$	1.13E-11exp(-254/1)	(Atkinson et al., 1997)
$60 CH_3-S-CH_3 + OH + M \rightarrow CH_3-S(OH)CH_3 + M$	1.70E-12	(Atkinson et al., 1989)
61 CH_3 -S- $CH_3 + O^3P \rightarrow CH_3$ -SO $\cdot + CH_3$ ·	5E-11exp(0.0409/T)	(Atkinson et al., 1989; Cve-
		tanovic et al., 1981; Nip et al.,
		1981)
62 CH_3 -S- $CH_3 + NO_3 \rightarrow CH_3$ -S $(ONO_2)CH_3$	1.4E-13exp(500/T)	(Atkinson et al., 1989; Nip et
		al., 1981)
63 CH_3 -S- $CH_3 + NO_2 \rightarrow CH_3$ -S(O) $CH_3 + NO$	9.00E-21	(Balla and Heicklen, 1984)
Primary products		
64 CH_3 -S(OH) CH_3 + $O_2 \rightarrow CH_3$ -S(O) CH_3 + HO_2 ·	1.30E-12	(Barone et al., 1996)
65 CH_3 -S(OH) $CH_3 \rightarrow CH_3$ -S-OH + CH_3 ·	5.00E + 05	(Yin et al., 1990)
66 CH_3 -S(OH)CH ₃ + O ₂ \rightarrow CH ₃ -S(OH)(OO)CH ₃	1.00E-12	(Yin et al., 1990)
67 CH_3 -S- CH_2 + $O_2 \rightarrow CH_3$ -S- CH_2 -OO·	7.30E-13	(Schafer et al., 1978)
68 CH_3 -S- CH_2 + $NO_3 \rightarrow CH_3$ -S- CH_2 -OO+ NO	3.00E-10	(Sander, 2006)
69 CH_3 -S(ONO ₂) $CH_3 \rightarrow CH_3$ -S- CH_2 + HNO ₃	1.00E + 02	(Yin et al., 1990)
Secondary products		
a. DMSO		
b. Methylthiomethylperoxyl radical CH ₃ SCH ₂ O ₂ .		
70 CH_3 -S- CH_2 -OO·+ NO \rightarrow CH_3 -S- CH_2 O·+ NO ₂	1.90E-11	(Nielsen et al., 1995)
71 CH_3 -S- CH_2 -OO·+ CH_3 -S- CH_2 -OO· $\rightarrow 2CH_3$ -S- CH_2 O·+ O ₂	8.60E-14	(Wallington et al., 1986)
72 CH_3 -S- CH_2 -OO·+ HO_2 · \rightarrow CH_3 -S- CH_2 -OOH	5.00E-12	(Nielsen et al., 1995)
73 CH_3 -S- CH_2 -OO·+ CH_3 -S· \rightarrow CH_3 -S- CH_2 O·+ CH_3 -SO·	6.10E-11	(Yin et al., 1990)
74 CH_3 -S- CH_2 -OO·+ CH_3 -SO· \rightarrow CH_3 -S- CH_2 O·+ CH_3 (O)S(O)·.	4.00E-12	(Yin et al., 1990)
75 CH_3 -S- CH_2 -OO·+ $CH_3(O)S(O)$ · $\rightarrow CH_3$ -S- CH_2O ·+ CH_3 -SO ₃ ·	2.50E-13	(Yin et al., 1990)
76 CH_3 -S- CH_2 -OO·+ CH_3 -O ₂ · \rightarrow CH_3 -S- CH_2 O·+ CH_3 -O·+ O ₂	1.80E-13	(Yin et al., 1990)

^{*a*}The unit for first order reactions is s^{-1} and the unit for second order reactions is s^{-1} molecules⁻¹ cm³

TABLE S2. Cont'd.

77 CH_3 -S- CH_2 -OO·+ NO ₂ + M \rightarrow CH ₃ -S- CH_2 -OONO ₂ ·+ M	9.20E-12	(Nielsen et al., 1995)	
c. CH_3 -S(OH)(OO·)-CH ₃			
78 CH_3 -S(OH)(OO·)CH ₃ \rightarrow CH ₃ -S(O)CH ₃ + HO ₂ ·	$1.00E{+}01$	(Yin et al., 1990)	
79 CH_3 -S(OH)(OO·)CH ₃ + NO \rightarrow CH ₃ -S(OH)(O)CH ₃ + NO ₂	5.00E-12	(Yin et al., 1990)	
d. CH ₃ -S-OH		× · · /	
80 CH_3 -S-OH + OH \rightarrow CH ₃ -SO+ H ₂ O	1.10E-10	(Yin et al., 1990)	
81 CH_3 -S-OH + CH_3 -SO ₃ · \rightarrow CH_3 -SO·+ CH_3 -SO ₃ H	3.40E-12	(Yin et al., 1990)	
82 CH_3 -S-OH + CH_3 -O· \rightarrow CH_3 -SO·+ CH_3 -OH	3.40E-12	(Yin et al., 1990)	
83 CH_3 -S-OH + O ³ P \rightarrow CH ₃ -SO+ OH	3.40E-12	(Yin et al., 1990)	
84 CH_3 -S-OH + NO ₃ \rightarrow CH ₃ -SO+ HNO ₃	3.40E-12	(Yin et al., 1990)	
85 CH_3 -S-OH + HO ₂ \rightarrow CH ₃ -SO+ H ₂ O ₂	8.50E-13	(Yin et al., 1990)	
86 CH_3 -S-OH + CH_3 -O ₂ · \rightarrow CH ₃ -SO·+ CH ₃ -OOH	8.50E-13	(Yin et al., 1990)	
87 CH_3 -S-OH+CH ₃ -S-OH \rightarrow CH ₃ -S-S(O)CH ₃ \cdot + H ₂ O	3.60E-18	(Yin et al., 1990)	
Tertiary products			
a. CH ₃ S(O)OH			
(DMSO reactions)			
b. CH ₃ -S-CH ₂ O			
88 CH_3 -S- $CH_2O \rightarrow CH_3$ -S+H-CO-H	$2.00E{+}01$	(Yin et al., 1990)	
c. CH_3 - $S(OH)(O)CH_3$ (DMSO reactions)			
d. $CH_3(O)S(O)CH_3$ and its further reactions			
(DMSO reactions)			
Further products			
a. CH_3 -S· reactions			
89 $CH_3-S+O_2 \rightarrow CH_3-SOO$	5.80E-17	(Sander, 2006)	
90 CH_3 -SOO· \rightarrow CH_3 -S·+ O_2	6.00E + 02	(Yin et al., 1990)	
91 CH_3 -S·+ $O_3 \rightarrow CH_3$ -SO·+ O_2	5.70E-12	(Domine et al., 1992)	

-1

TABLE	S2.	Cont	d.

92	$CH_3-S+NO_2 \rightarrow CH_3-S-NO_2$.	6.10E-13	(Yin et al., 1990)
93	$CH_3-S+NO_2 \rightarrow CH_3-SO+NO$	6.10E-11	(Yin et al., 1990)
94	CH_3 -S·+ NO \rightarrow CH ₃ -S-NO·	2.87E-11	(Balla et al., 1986)
95	CH_3 -S·+ NO_3 · \rightarrow CH_3 -SO·+ NO_2	6.40E-11	(Yin et al., 1990)
96	$CH_3-S+HO_2 \rightarrow CH_3-SO+OH$	3.00E-11	(Yin et al., 1990)
97	$CH_3-S+CH_3-O_2 \rightarrow CH_3-SO+CH_3-O$	6.10E-11	(Yin et al., 1990)
98	CH_3 -S·+ CH_3 -S· \rightarrow CH_3 -S-S- CH_3	4.15E-11	(Graham et al., 1964)
99	$CH_3-S+CH_3-S-NO \rightarrow CH_3-S-S-CH_3+NO$	1.40E-12	(Yin et al., 1990)
100	$CH_3-S+OH \rightarrow CH_3-S-OH$	5.00E-11	(Yin et al., 1990)
101	CH_3 -S-NO+ $hv \rightarrow CH_3$ -S+ NO	$0.5*$ j[NO ₂ _to_O ³ P]	(Yin et al., 1990)
102	$CH_3-S+O_3 \rightarrow SO_2+CH_3-O \cdot$	5.70E-12	(Domine et al., 1992)
103	$CH_3-S+CH_3-S-CH_3+(O_2) \rightarrow CH_3+CH_3-S(O)CH_3+SO$	8.00E-12	(Barnes, 1986)
b. ($CH_3SOO \cdot reactions$		
104	CH_3 -SOO+ NO $\rightarrow CH_3$ -SO+ NO ₂	1.10E-11	(Turnipseed et al., 1992)
105	CH_3 -SOO+ CH_3 -S· $\rightarrow 2CH_3$ -SO·	8.00E-11	(Yin et al., 1990)
106	CH_3 -SOO+ CH_3 -SO· \rightarrow CH_3 -SO+ $CH_3(O)S(O)$ ·	9.00E-12	(Yin et al., 1990)
107	$CH_3 \text{-} SOO \cdot + CH_3(O)S(O) \cdot \rightarrow CH_3 \text{-} SO \cdot + CH_3 \text{-} SO_3 \cdot$	3.00E-13	(Yin et al., 1990)
108	CH_3 -SOO+ HO_2 · $\rightarrow CH_3$ -SOOH + O_2	4.00E-12	(Yin et al., 1990)
109	$CH_3-SOO + CH_3-O_2 \to CH_3-SO + CH_3-O + O_2$	5.50E-12	(Yin et al., 1990)
110	CH_3 -SOO \cdot + CH_3 -SOO \cdot \rightarrow 2 CH_3 -SO \cdot +O ₂	6.00E-12	(Yin et al., 1990)
c. C	$2H_3SO \cdot reactions$		
111	CH_3 - $SO + O_2 \rightarrow CH_3$ - $S(O)OO$	7.70E-18	(Yin et al., 1990)
112	$CH_3-S(O)OO \rightarrow CH_3-SO \rightarrow O_2$	1.70E + 02	(Yin et al., 1990)
113	CH_3 - $SO + NO_2 \rightarrow CH_3(O)S(O) + NO$	3.00E-12	MCM v3.2
114	CH_3 - $SO + NO_2 \rightarrow CH_3 + NO + SO_2$	3.00E-12	MCM v3.2

TABLE S2. Cont'd.

115 CH_3 -SO· \rightarrow SO·+ CH_3 ·	2.66E32exp(-25200/T)	(Yin et al., 1990)
116 $CH_2 SO_1 + NO_2 \rightarrow CH_2(O)S(O)_1 + NO_2$	25200/1) 8.00F 12	(Vin at al 1000)
$117 \text{CH}_2 \text{SO} + \Omega_3 \rightarrow \text{CH}_2(O) \text{S}(O) + \Omega_2$	1.00E-12	(Tundell and Bayishankara, 1080)
$117 \text{OH}_3\text{-}\text{5O} + \text{O}_3 \rightarrow \text{OH}_3(\text{O})\text{S}(\text{O}) + \text{O}_2$ $118 \text{CH}_2 \text{ SO} + \text{HO}_2 \rightarrow \text{CH}_2(\text{O})\text{S}(\text{O}) + \text{OH}_2$	1.50E-12 1.50F 12	(Yin at al 1000)
110 $CH_2 SO + CH_2 SO + CH_2 S + CH_2 (O)S(O)$	7.50E-12 7.50F 12	(Vin et al., 1990)
$119 \text{CH}_3\text{-}\text{SO} + \text{CH}_3\text{-}\text{SO} \rightarrow \text{CH}_3\text{-}\text{SO} + \text{CH}_3\text{-}\text{O}\text{-}\text{SO} \rightarrow \text{CH}_3\text{-}\text{O}-$	7.50E-12 3.00F 12	(Yim et al., 1990) (Vin et al., 1000)
$120 \text{CH}_3\text{-}\text{SO} + \text{CH}_3\text{-}\text{O}_2 \rightarrow \text{CH}_3\text{-}\text{O}_2\text{-}\text{O}_1\text{-}\text{O}_1\text{-}\text{O}_1\text{-}\text{O}_2\text{-}\text{O}_2\text{-}\text{O}_1$	5.00E-12 6.80F 13	(Vin et al., 1990)
$121 \text{OH}_3\text{-}\text{SO} + \text{OH}_3\text{-}\text{S-NO} \rightarrow \text{OH}_3\text{-}\text{S-S}(\text{O})\text{OH}_3\text{+}\text{NO}$ $122 \text{CH}_3\text{-}\text{SO} + \text{OH}_3\text{-}\text{CH}_3\text{-}\text{S}(\text{O})\text{OH}_3\text{+}\text{NO}$	5.00E-15	(Yim et al., 1990)
$122 \text{CH}_3\text{-}\text{SO} + \text{OH} \rightarrow \text{CH}_3\text{-}\text{SO} + \text{OH}$	3.00E-11 3.00F 13	(1 In et al., 1990) (Borissonko et al. 2003)
$\begin{array}{cccc} 125 & \bigcirc 113 - \bigcirc $	3.20E-13	(Bolissenko et al., 2003)
a. $CH_3(O)S(O)$ · reactions (DMSO reactions)		
e. CH_3 -S(O)OO + NO + CII (O)S(O) + NO	8 OOF 19	$(\mathbf{Virr} \text{ at al} 1000)$
124 CH_3 -S(U)OO+ NU \rightarrow CH_3 (U)S(U)+ NU ₂ 125 CH_3 (C)OO + CH_3 (C)S(O)+ CH_3 (O)S(O) + CH_3 (O)S(O)S(O) + CH_3 (O)S(O)S(O)S(O) + CH_3 (O)S(O)S(O)S(O) + CH_3 (O)S(O)S(O)S(O)S(O)S(O)S(O)S(O)S(O) + CH_3 (O)S(O)S(O)S(O)S(O)S(O)S(O)S(O)S(O)S(O)S	8.00E-12	(1 III et al., 1990)
$125 CH_3-S(O)OO + CH_3-S \rightarrow CH_3(O)S(O) + CH_3-SO = 126 CH_3(O)OO + CH_3-SO = 26H_3(O)O(O) = 126 CH_3-SO = 126 CH_3-S$	(.00E-11	$(Y_{111} \text{ et al.}, 1990)$
$126 CH_3-S(O)OO + CH_3-SO \rightarrow 2CH_3(O)S(O) + CH_4OO$	8.10E-12	$(Y_{111} \text{ et al.}, 1990)$
127 CH_3 -S(O)OO+ CH_3 (O)S(O)· $\rightarrow CH_3$ (O)S(O)+ CH_3 -SO ₃	3.00E-13	(Yin et al., 1990)
128 CH_3 - $S(O)OO + CH_3$ - $O_2 \rightarrow CH_3(O)S(O) + CH_3$ - $O + O_2$	5.50E-12	(Yin et al., 1990)
129 $CH_3-S(O)OO + CH_3-S(O)OO \rightarrow 2CH_3(O)S(O) + O_2$	6.00 E- 12	(Yin et al., 1990)
130 $CH_3-S(O)OO + NO_2 \rightarrow CH_3-S(O)OONO_2$	1.00E-12	(Yin et al., 1990)
131 $CH_3-S(O)OONO_2 \rightarrow CH_3-S(O)OO + NO_2$	4.20E-03	(Yin et al., 1990)
f. $CH_3(O)S(O)OO$ reactions		
g. CH ₃ -SO ₃ reactions		
132 $CH_3-SO_3+CH_3-S-CH_3 \rightarrow CH_3-SO_3H + CH_3-S-CH_2$.	6.80E-13	(Yin et al., 1990)
h.CH ₃ SONO ₂ reactions		
133 CH_3 -S(O)NO ₂ · \rightarrow CH ₃ -SO·+ NO ₂	1.00	(Yin et al., 1990)
i.CH ₃ · reactions		
(DMSO reactions)		
Table S2 (cont'd)		
$j.CH_3-S(O)CH_2$ and its futher reactions		

TABLE S2. Cont'd.

134	CH_3 - $S(O)CH_2 \rightarrow CH_3$ - $S \rightarrow H$ -CO-H	1.00E + 03	(Yin et al., 1990)
135	$CH_3-S(O)CH_2 + O_2 \rightarrow CH_3-S(O)CH_2OO$	1.00E-12	(Yin et al., 1990)
136	$CH_3-S(O)CH_2OO + NO \rightarrow CH_3-S(O)CH_2O + NO_2$	6.00E-12	(Yin et al., 1990)
137	$CH_3-S(O)CH_2OO + CH_3-S \rightarrow CH_3-SO + CH_3-S(O)CH_2O$	5.00E-11	(Yin et al., 1990)
138	$CH_3-S(O)CH_2OO + CH_3-SO \rightarrow CH_3(O)S(O) + CH_3-S(O)CH_2O$	4.00E-12	(Yin et al., 1990)
139	$CH_3-S(O)CH_2OO + CH_3(O)S(O) \rightarrow CH_3-SO_3 + CH_3-S(O)CH_2O$	2.50E-13	(Yin et al., 1990)
140	$CH_3-S(O)CH_2OO+HO_2 \rightarrow O_2+CH_3-S(O)CH_2OOH$	1.50E-12	(Yin et al., 1990)
141	$CH_3-S(O)CH_2OO + CH_3-O_2 \rightarrow O_2 + CH_3-O + CH_3-S(O)CH_2O$	1.80E-13	(Yin et al., 1990)
142	$CH_3-S(O)CH_2OO + CH_3-S(O)CH_2OO \rightarrow O_2 + 2CH_3-S(O)CH_2O \rightarrow O_2 + 2CH_3-S(O)CH_3O \rightarrow O_2 + 2CH_3O $	8.60E-14	(Yin et al., 1990)
143	CH_3 -S(O) $CH_2O \rightarrow CH_3$ -SO $\rightarrow H$ -CO-H	1.00E + 02	(Yin et al., 1990)
l.CF	H_3S-OH and $CH_3S(O)OH$ reactions (DMSO reactions)		
m.C	H ₃ -S-S-CH ₃ reactions		
144	CH_3 -S- CH_3 + $OH \rightarrow CH_3$ -S- OH + CH_3 -S-	5.59E-	(Atkinson et al., 1989)
		$11 \exp(380/T)$	
145	CH_3 -S- CH_3 + $O^3P \rightarrow CH_3$ -SO·+ CH_3 -S·	5.62E-	(Atkinson et al., 1989; Cvetanovic
		$11 \exp(250/T)$	et al., 1981; Nip et al., 1981)
146	CH_3 -S- CH_3 + $NO_3 \rightarrow CH_3$ - $S(ONO_2)$ S- CH_3	7.00E-13	(Yin et al., 1990)
147	CH_3 - $S(ONO_2)S$ - $CH_3 \rightarrow CH_3$ - $S(O)NO_2 + CH_3$ - S -	1.00E + 02	(Yin et al., 1990)
148	CH_3 -S- CH_3 + $hv \rightarrow 2 CH_3$ -S·	5.0E-	(Yin et al., 1990)
		$3*j[NO_2_to_O^3P]$	
wall	loss		
149	$\rm CH_3\text{-}S\text{-}CH_3 \rightarrow$	9.00 E- 06	Experiment
150	$\rm CH_3\text{-}S\text{-}S\text{-}CH_3 \rightarrow$	9.00 E- 06	Estimated

	SO_2 Reactions	Rate constant a	Note
SO·re	actions		
151	$O_2 + SO \rightarrow SO_2 + O^3 P \rightarrow$	1.39E-13exp(-2280/T)	(Atkinson et al., 1989)
152	$NO_2 + SO \rightarrow SO_2 + NO$	1.40E-11	(Atkinson et al., 1989)
153	$O_3 + SO_2 \rightarrow SO_2 + O_2$	4.51E-12exp(-1170/T)	(Atkinson et al., 1989)
154	$O^{3}P + SO \rightarrow SO_{2}$	2.20E-11	(Graedel, 1977)
155	$OH + SO \rightarrow SO_2 + HO_2$	1.10E-10	(Graedel, 1977)
156	$SO_3 + SO \rightarrow 2SO_2$	2.00E-15	(Graedel, 1977)
SO_2 r	reactions		
157	$O^{3}P+SO_{2} \rightarrow SO_{3}$	9.75E-13exp(-1000/T)	(Baulch et al., 1984; Kerr, 1984)
158	$\mathrm{HO}_2 + \mathrm{SO}_2 \to \mathrm{SO}_3 + \mathrm{OH}$	1.00E-18	(Atkinson et al., 1989; Atkinson
			and Lloyd, 1984)
159	$CH_3-O_2+SO_2 \rightarrow SO_3+CH_3-O_2$	5.00E-17	(Atkinson et al., 1989; Atkinson
			and Lloyd, 1984)
160	$CH_3-O+SO_2 \rightarrow CH_3-O-SO_2$.	5.50E-13	(Calvert, 1984)
161	$CH_3 + SO_2 \rightarrow CH_3(O)S(O)$	2.90E-13	(Graedel, 1977)
162	$\mathrm{SO}_2 + \mathrm{h}\upsilon \to \mathrm{SO}_2^*$	$2*j[NO_2_to_O^3P]$	(Graedel, 1977)
163	$OH + SO_2 \rightarrow HOSO_2$	$9.07\text{E}\text{-}13\text{exp}\ (231/\text{T})$	(Atkinson et al., 1989; Kerr, 1984)
164	$NO_2 + SO_2 \rightarrow NO + SO_3$	2.00E-26	(Sander, 2006)
165	$NO_3 + SO_2 \rightarrow SO_3 + NO_2$	7.00E-21	(Sander, 2006)
SO_2^* r	eactions		
166	$\mathrm{SO}_2^* \to \mathrm{SO}_2$	3.70E + 06	(Graedel, 1977)
167	$\mathrm{SO}_2^* + \mathrm{SO}_2 \to \mathrm{SO} + \mathrm{SO}_3$	6.30E-13	(Graedel, 1977)
168	$\mathrm{SO}_2^* + \mathrm{CO} \to \mathrm{SO} + \mathrm{CO}_2$	1.10E-14	(Graedel, 1977)
169	$\mathrm{HOSO}_2 + \mathrm{O}_2 \to \mathrm{HO}_2 + \mathrm{SO}_3$	4.00E-13	(Atkinson et al., 1989; Kerr, 1984)
170	$HOSO_2 + OH + M \rightarrow H_2SO_4 + M$	1.00E-11	(Graedel, 1979)

TABLE S3. SO₂ photooxidation mechanisms

^{*a*}The unit for first order reactions is s^{-1} and the unit for second order reactions is s^{-1} molecules⁻¹ cm³

TABLE S3. Cont'd.

SO_3 1	reactions		
171	$SO_3 + H_2O + M \rightarrow H_2SO_4 + M$	9.10E-13	(Atkinson and Lloyd, 1984; Kerr, 1984)
172	$SO_3 + O(^3P) \rightarrow SO_2 + O_2$	7.00E-13	(Calvert et al., 1978)
wall l	loss		
173	$SO_2 \rightarrow$	7.00E-06	Experiment

ab ami a al	wall loss rate			
chemicai	in this study	in literature		
DMS	9.0×10^{-6}	1.5×10^{-6} (Yin et al., 1990)		
SO_2	2.0×10^{-5}	2.2×10^{-6} (Yin et al., 1990)		
O_3	2.5×10^{-5}	4.5×10^{-6} (Yin et al., 1990)		
DMSO	6.0×10^{-5}	3.3×10^{-5} (Ballesteros et al., 2002)		
DMSO_2	7.0×10^{-5}	4.4×10^{-5} (Ballesteros et al., 2002)		
H_2O_2	6.7×10^{-4}	2.4×10^{-4} (Qi et al., 2007)		

TABLE S4. Comparison of the wall loss rates of different chemicals in this study and those in literature

$No.^{b}$	Reaction	iso-DMS-1	iso-DMS-2	iso-DMS-3
59	CH_3 -S- $CH_3 + OH$ ·	1.75	1.35	1.71
60	CH_3 -S- $CH_3 + OH$ ·	0.61	0.48	0.6
61	CH_3 -S- $CH_3 + O(^3P)$	1.18	1.62	2.37
62	CH_3 -S- $CH_3 + NO_3$ ·	0.77	1.13	0.93
63	CH_3 -S- $CH_3 + NO_2$	0.01	0.01	0.01
103	$CH_3-S+CH_3-S-CH_3$	0.96	0.96	1.26
132	CH_3 - S - $CH_3 + CH_3$ - SO_3 ·	0.51	0.49	0.47

TABLE S5. Integrated reaction rate (IRR) of the initial reactions of DMS decay in different conditions a

 $^a\mathrm{Refer}$ to Table 3 for the experimental conditions. $^b\mathrm{Refer}$ to Table S2 for the reaction number

FIGURE S1. Mass fragmentation spectra in the EI mode (with GC retention time) for d_6 -DMSO, DMSO and DMSO₂

FIGURE S2. The time profiles of DMSO, $DMSO_2$, SO_2 , NO_x and O_3 for the photooxidation of DMSO in the presence of NO_x (Exp DMSO-3, Exp DMSO-4 and Exp DMSO-5 in Table 1). "E" denotes the experimentally observed concentrations of chemical species and "S" for those simulated using the kinetic model.

FIGURE S3. Model simulation of MSA and sulfuric acid for the photooxidation of DMSO in the presence of NO_x (Exp DMSO-3, Exp DMSO-4 and Exp DMSO-5 in Table 1) with (SH) and without (SN) including heterogeneous reactionS "E" denotes the experimentally observed concentrations of chemical species and "S" for those simulated using the kinetic model.

FIGURE S4. The time profiles of DMS, $DMSO_2$, SO_2 , MSA, sulfuric acid, NO_x and O_3 for the photooxidation of DMSO in the presence of NO_x (Exp DMS-1 and Exp DMS-2 in Table 1). "E" denotes the experimentally observed concentrations of chemical species and "S" for those simulated using the kinetic model.

FIGURE S5. Mass fragmentation spectra in the EI mode (with GC retention time) for PFBHA derivatives of major carbonyl products originated from isoprene photooxidation in the presence of NO_x . P1: methacrolein (monoderivatives), P2: methyl vinyl ketone (mono-derivatives), P3: glyoxal (diderivatives), P4: methylglyoxal (di-derivatives)

FIGURE S6. The time profiles of isoprene, P1–P4, NO_x and O_3 from the photooxidation of isoprene in the presence of NO_x (Exp iso-1 and Exp iso-2 in Table 2). "E" denotes the experimentally observed concentrations of chemical species and "S" for those simulated using the kinetic model.

FIGURE S7. The time profiles of gaseous products (P1–P4), NO_x and O₃ from the photooxidation of DMS and NO_x in the presence of 560 ppb of isoprene (Exp iso-DMS-1), 1360 ppb of isoprene (Exp iso-DMS-2) and 2248 ppb of isoprene (Exp iso-DMS-3). "E" denotes the experimentally observed concentrations of chemical species and "S" for those simulated using the kinetic model.

References

Atkinson, R., and Lloyd, A. C.: Evaluation of Kinetic and Mechanistic Data for Modeling of Photochemical Smog, J. Phys. Chem. Ref. Data., 13, 315-444, 1984.

Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J.: Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. 3. Iupac Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data., 18, 881-1097, 1989.

Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI - IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data., 26, 1329-1499, 1997.

Balla, R. J., and Heicklen, J.: Oxidation of Sulfur Compounds. 2. Thermal Reactions of NO₂ with Aliphatic Sulfur-Compounds, J. Phys. Chem-US., 88, 6314-6317, 1984.

Balla, R. J., Nelson, H. H., and Mcdonald, J. R.: Kinetics of the Reaction of CH₃S with NO, NO₂ and O₂, Chem. Phys., 109, 101-107, 1986.

Ballesteros, B., Jensen, N. R., and Hjorth, J.: FT-IR study of the kinetics and products of the reactions of dimethylsulphide, dimethylsulphoxide and dimethylsulphone with Br and BrO, J. Atmos. Chem., 43, 135-150, 2002.

Barnes, I., Bastian, V., Becker, K. H.: Products and kinetics of the OH initiated oxidation of SO₂, CH₃SH, DMS, DMDS, DMSO, in E. Angeletti and A. Restelli (Ed-s.), Physico-Chemical Behaviour of Atmospheric Pollutants, Proceedings of the Fourth European Symposium, Stress, 327-377, 1986.

Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Reaction of OH with dimethyl sulfide (DMS).1.Equilibrium constant for OH+DMS reaction and the kinetics of the OH-DMS+O₂ reaction, J. Phys. Chem-US., 100, 14694-14702, 1996.

Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Troe, J., and Watson, R. T.: Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. 2. Codata Task Group on Gas-Phase Chemical-Kinetics, J. Phys. Chem. Ref. Data., 13, 1259-1380, 1984.

Borissenko, D., Kukui, A., Laverdet, G., and Le Bras, G.: Experimental study of SO_2 formation in the reactions of CH₃SO radical with NO₂ and O₃ in relation with the atmospheric oxidation mechanism of dimethyl sulfide, J. Phys. Chem. A., 107, 1155-1161, Doi 10.1021/Jp021701g, 2003.

Calvert, J. G., Su, F., Bottenheim, J. W., and Strausz, O. P.: Mechanism of Homogeneous Oxidation of Sulfur Dioxide in Troposphere, Atmos. Environ., 12, 197-226, 1978.

Calvert, J. G.: The mechanism and rates of the gas phase oxidations of sulfur dioxide and nitrogen oxides in the atmosphere, in J.G. Calvert (ed.), Biochim. Biophys. Acta., Butterworth, 1-62, 1984.

Cvetanovic, R. J., Singleton, D. L., and Irwin, R. S.: Gas-Phase Reactions of O(³P) Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Reaction Products and Mechanisms, J. Am. Chem. Soc., 103, 3530-3539, 1981.

Domine, F., Ravishankara, A. R., and Howard, C. J.: Kinetics and Mechanisms of the Reactions of CH₃S, CH₃SO, and CH₃SS with O₃ at 300-K and Low-Pressures, J. Phys. Chem.-US, 96, 2171-2178, 1992.

Gershenzon, M., Davidovits, P., Jayne, J. T., Kolb, C. E., and Worsnop, D. R.: Simultaneous uptake of DMS and ozone on water, J. Phys. Chem. A, 105, 7031-7036, Doi 10.1021/Jp010696y, 2001.

Graedel, T. E.: Homogeneous Chemistry of Atmospheric Sulfur, Rev. Geophys., 15, 421-428, 1977.

Graedel, T. E.: Reduced Sulfur Emission from the Open Oceans, Geophys. Res. Lett., 6, 329-331, 1979.

Graham, D. M., Sivertz, C., and Mieville, R. L.: Photo-Initiated Reactions of Thiols
+ Olefins .I. Thiyl Radical Catalyzed Isomerization of Butene-2 + 1,2-Ethylene-d2, Can.
J. Chem., 42, 2239-2249, 1964.

Kerr, J. A., Calvert, J. G.: Chemical Transformation Modules for Eulerian Acid Decomposition Models, Volume I: The gas-phase chemistry, Boulder, 1984.

Kukui, A., Borissenko, D., Laverdet, G., and Le Bras, G.: Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor

and chemical ionization mass spectrometry, J. Phys. Chem. A., 107, 5732-5742, Doi 10.1021/Jp0276911, 2003.

Mellouki, A., Jourdain, J. L., and Lebras, G.: Discharge Flow Study of the CH₃S+NO₂ Reaction-Mechanism Using Cl+CH₃SH as the CH₃S Source, Chem. Phys. Lett., 148, 231-236, 1988.

Nielsen, O. J., Sehested, J., and Wallington, T. J.: Atmospheric Chemistry of Dimethyl Sulfide - Kinetics of the CH₃SCH₂O₂+NO₂ Reaction in the Gas Phase at 296 K, Chem. Phys. Lett., 236, 385-388, 1995.

Nip, W. S., Singleton, D. L., and Cvetanovic, R. J.: Gas-Phase Reactions of O(³P) Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide .1. Rate Constants and Arrhenius Parameters, J. Am. Chem. Soc., 103, 3526-3530, 1981.

Qi, B., Chao, Y. T., and Chen, Z. M.: Mechanism and kinetics of the production of hydroxymethyl hydroperoxide in ethene/ozone/water gas-phase system, Sci. China Ser. B, 50, 425-431, DOI 10.1007/s11426-007-0048-2, 2007.

Sander, S. P., Friedl, R.R., Golden, D.M., Kurylo, M.J., Moortgat, G.K., Wine, P.H., Ravishankara, A.R., Kolb, C.E., Molina, M.J., Finlayson-Pitts, B.J., Huie, R.E.: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 15, JPL Publication, 06-2, 1-523, 2006.

Schafer, K., Bonifacic, M., Bahnemann, D., and Asmus, K. D.: Addition of Oxygen to Organic Sulfur Radicals, J. Phys. Chem.-US, 82, 2777-2780, 1978.

Sorensen, S., FalbeHansen, H., Mangoni, M., Hjorth, J., and Jensen, N. R.: Observation of DMSO and $CH_3S(O)OH$ from the gas phase reaction between DMS and OH, J. Atmos. Chem., 24, 299-315, 1996.

Turnipseed, A. A., Barone, S. B., and Ravishankara, A. R.: Observation of CH_3S Addition to O_2 in the Gas Phase, J. Phys. Chem.-US, 96, 7502-7505, 1992.

Tyndall, G. S., and Ravishankara, A. R.: Kinetics of the Reaction of CH₃S with O₃ at 298 K, J. Phys. Chem.-US, 93, 4707-4710, 1989.

Veltwisch, D., Janata, E., and Asmus, K. D.: Primary Processes in the Reaction of OH· Radicals with Sulfoxides, J. Chem. Soc. Perk. T. 2, 146-153, 1980.

Wallington, T. J., Atkinson, R., Winer, A. M., and Pitts, J. N.: Absolute Rate Constants for the Gas-Phase Reactions of the NO₃ Radical with CH₃SCH₃, NO₂, CO, and a Series of Alkanes at 298+/-2 K, J. Phys. Chem.-US, 90, 4640-4644, 1986.

Yin, F. D., Grosjean, D., and Seinfeld, J. H.: Photooxidation of Dimethyl Sulfide and Dimethyl Disulfide.1.Mechanism Development, J. Atmos. Chem., 11, 309-364, 1990.

Yin, F. D., Grosjean, D., Flagan, R. C., and Seinfeld, J. H.: Photooxidation of Dimethyl Sulfide and Dimethyl Disulfide .2. Mechanism Evaluation, J. Atmos. Chem., 11, 365-399, 1990.