1 Supplementary Material

- 2
- 3 Particle size distribution of nitrated and oxygenated
- 4 polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on
- 5 traffic and suburban sites of a European megacity: Paris
- 6 (France)
- 7

```
    J. Ringuet<sup>1,2,3</sup>, E. Leoz-Garziandia<sup>1</sup>, H. Budzinski<sup>2,3</sup>, E. Villenave<sup>2,3</sup> and A.
    Albinet<sup>1</sup>
```

- 10 [1]{Institut National de l'Environnement industriel et des RISques (INERIS), Parc
 11 technologique Alata BP2, Verneuil en Halatte, France}
- 12 [2]{University Bordeaux, EPOC, UMR 5805, Talence, France}
- 13 [3]{CNRS, EPOC, UMR 5805, Talence, France}
- 14 Correspondence to: A. Albinet (alexandre.albinet@gmail.com)
- 15
- 16
- 17
- 18
- 19
- 20

Stage	50 % cut-off diameter (µm)
Inlet	18
1	10
2	5.6
3	3.2
4	1.8
5	1.0
6	0.56
7	0.32
8	0.18
9	0.10
10	0.056
Total filter	0.01*

1 Table S1. Operating characteristics of the MOUDI.

2 * limit of particle size collected on the total filter has been selected arbitrarily

4 Changes in flow during and between sample collections would introduce variability in the size 5 of particles collected on each impactor stage. The flow measured at the beginning and end of 6 each run differed by less than 10 %. This variation would cause a change of approximately 5 7 % in the impactor stage cut-off sizes. Because the flow was not recorded during sampling and 8 these sampling errors introduce only minor variations in D_{p50} , for the remainder of this work 9 the air flow is taken to be constant (1.8 m³ h⁻¹).

10

11

12

13

14

³

1 Reagents and materials

2 Chemical reagents and gases used in this study are reported in Table S1, together with the

- 3 name of suppliers and the purity grades.
- 4
- 5 Table S2. List and characteristics of the chemicals, solvents and gases used.

Compound	Supplier	Purity (%)					
· OPA	AHs 11	U X Z					
1-Naphthaldehyde	Acros	95					
9-Fluorenone	Acros	99					
9-Phenanthrenecarboxaldehyde	Aldrich	97					
9,10-Anthaquinone	Acros	98					
1,4-Anthaquinone	Chiron	97.8					
Benzo[a]fluorenone	Chiron	99.9					
Benzo[b]fluorenone	Chiron	99.8					
Benzanthrone	Acros	99					
Benz[a]anthacen-7,12-dione	Acros	99					
NPAHs							
1-Nitronaphthalene	Cluzeau	99					
2-Nitronaphthalene	Cluzeau	99					
2-Nitrofluorene	Cluzeau	98					
9-Nitroanthracene	Chiron	86.6					
9-Nitrophenanthrene	Cluzeau	100					
3-Nitrophenanthrene	Cluzeau	99.7					
3-Nitrofluoranthene	Cluzeau	99.5					
1-Nitropyrene	Cluzeau	99					
2-Nitropyrene	Cluzeau	99.9					
4-Nitropyrene	Chiron	99.8					
7-Nitrobenz[a]anthracene	Cluzeau	99					
6-Nitrochrysene	Cluzeau	98					
1,3-Dinitropyrene	Cluzeau	99.9					
1,6-Dinitropyrene	Cluzeau	97.5					
1,8-Dinitropyrene	Chiron	99.9					
1/3-Nitrobenzo[a]pyrene	Chiron	99.7					
6-nitrobenzo[a]pyrene	Cluzeau	99.8					
Labelled deuterium NPAHs/OPAHs							
3-Nitrofluoranthene-d9	Cluzeau	99.3					
1-Nitronaphtalene-d7	Cluzeau	99.4					
2-Nitrofluorene-d9	Cluzeau	98.8					
6-Nitrochrysene-d11	Cluzeau	99.7					
Anthraquinone-d8	Cluzeau	98.6					
1-Nitropyrene-d9	Cluzeau	99.2					
Solvent							
Methylene Chloride	Sigma-Aldrich	> 99.8					
Pentane	Sigma-Aldrich	> 99.0					
Isooctane	Sigma-Aldrich	> 99.5					
Acetonitrile	VWR	> 99.9					
Gases							
Helium	Air Liquide	99.9999					
Nitrogen	Air Liquide	99.999					
Methane	Air Liquide	99.995					
Argon	Air Liquide	99.9999					

1 Analytical procedures

2

3 Extractions

Sample extractions were realised using pressurized solvent extraction (Dionex, ASE 200)
with CH2Cl2 as solvent. Extraction procedure was the following: 33 mL cells at 120 °C, 140
bars, 3 cycles of 6 minutes, flush 50 % and purge 120 seconds.

7

8 NPAH and OPAH analyses

9 Prior to analyses, extracts were purified on solid phase extraction (SPE) (alumina and silica
10 (Upti-clean Aln 500 mg/3 mL, interchim and Upti-clean Si-S 500 mg/3 mL, Interchim)) using
11 a protocol described in a previous publication (Albinet et al., 2006). After purification,
12 extracts were evaporated under argon stream near to dry and dissolved in isooctane.
13 NPAHs and OPAHs were analysed by GC/MS, using a Perkin-Elmer Clarus 500 coupled with

14 a Perkin-Elmer Turbomass gold in the NICI mode in selective ion monitoring mode (Albinet

15 et al., 2006). The column used was a DB-5MS (30 m \times 0.25 mm \times 0.25 μ m film thickness,

16 Agilent J&W). Program settings were as follow: gas flow at 1.2 mL min-1, cool splitless

17 injection (40 to 320 °C) of 1 μ L, and transfer line at 300 °C. The initial oven temperature was 18 60 °C for 2 min, then increasing at 45°C min⁻¹ until 150 °C for 5 min; and 5 °C min⁻¹ to 300

19 °C for 7 min. Total run time was 46 min. MS parameters were as follow: electron energy 45

20 eV; source temperature 150 °C; methane was used as the reagent gas for NICI. Monitored

21 ions and deuterated standards were listed in Table S2.

1 Table S3. Selected ion monitoring conditions for OPAHs and NPAHs.

Compounds	Monitored	Dwell	Labelled internal	Monitored	Dwell			
	ions (m/z)	time (s)	standards	ions (m/z)	time (s)			
OPAHs								
1-Naphthaldehyde	156	0.08	Anthraquinone-d8	216	0.08			
9-Fluorenone	180	0.04	Anthraquinone-d8	216	0.08			
9-Phenanthrenecarboxaldehyde	206	0.08	Anthraquinone-d8	216	0.08			
9,10-Anthraquinone	208	0.04	Anthraquinone-d8	216	0.08			
1,4-Anthraquinone	208	0.04	Anthraquinone-d8	216	0.08			
Benzo[a]fluorenone	230	0.04	Anthraquinone-d8	216	0.08			
Benzo[b]fluorenone	230	0.04	Anthraquinone-d8	216	0.08			
Benzanthrone	230	0.04	Anthraquinone-d8	216	0.08			
Benz[a]anthracen-7,12-dione	258	0.08	Anthraquinone-d8	216	0.08			
NPAHs								
1-Nitronaphthalene	173	0.08	1-Nitronaphtalene-d7	180	0.04			
2-Nitronaphthalene	173	0.08	1-Nitronaphtalene-d7	180	0.04			
2-Nitrofluorene	211	0.08	2-Nitrofluorene-d9	220	0.08			
9-Nitroanthracene	223	0.04	2-Nitrofluorene-d9	220	0.08			
9-Nitrophenanthrene	223	0.04	2-Nitrofluorene-d9	220	0.08			
3-Nitrophenanthrene	223	0.04	2-Nitrofluorene-d9	220	0.08			
2+3-Nitrofluoranthene ^a	247	0.08	3-Nitrofluoranthene-d9	256	0.08			
1-Nitropyrene	247	0.08	3-Nitrofluoranthene-d9	256	0.08			
2-Nitropyrene	247	0.08	3-Nitrofluoranthene-d9	256	0.08			
4-Nitropyrene	247	0.08	3-Nitrofluoranthene-d9	256	0.08			
1-Nitropyrene-d9	256	0.08	3-Nitrofluoranthene-d9	256	0.08			
7-Nitrobenz[a]anthracene	273	0.08	6-Nitrochrysene-d11	284	0.08			
6-Nitrochrysene	273	0.08	6-Nitrochrysene-d11	284	0.08			
1,3-Dinitropyrene	292	0.04	6-Nitrochrysene-d11	284	0.08			
1,6-Dinitropyrene	292	0.04	6-Nitrochrysene-d11	284	0.08			
1,8-Dinitropyrene	292	0.04	6-Nitrochrysene-d11	284	0.08			
1-Nitrobenzo[a]pyrene	297	0.08	6-Nitrochrysene-d11	284	0.08			
3-Nitrobenzo[a]pyrene	297	0.08	6-Nitrochrysene-d11	284	0.08			
6-Nitrobenzo[a]pyrene	297	0.08	6-Nitrochrysene-d11	284	0.08			

^a The separation of these two isomers could not be achieved on the DB-5MS column.

3

1 Additional figures

Figure. S1. Particle size distributions of 2-nitronaphthalene (2-Nnaph), 9-nitrophenanthrene
(9-Nphen), 3-nitrophenanthrene (3-Nphen) and 2-nitropyrene (2-NP) at the traffic and
suburban sites.

8 Figure. S2. Particle size distributions of 4-nitropyrene (4-NP), 7-nitrobenz[a]anthracene (79 NB[a]A) and 6-nitrobenzo[a]pyrene (6-NB[a]P) at the traffic and suburban sites.

Figure. S3. Particle size distributions of 1,3-dintropyrene (1,3-DNP), 1,8-dintropyrene (1,8DNP), 1-nitrobenzo[a]pyrene (1-NB[a]P) and 3-nitrobenzo[a]pyrene (3-NB[a]P) at the traffic
suburban sites. Missing graphs correspond to the compounds not quantified.

5

Figure. S4. Particle size distributions of 1-naphthaldehyde (1-Naph), 9-fluorenone (9-Fluo), 9phenanthrenecarboxaldehyde (9-Phen), 1,4-anthraquinone (1,4-Ant) and benzanthrone (Benzone) at the traffic and suburban sites. Missing graphs correspond to the compounds not
quantified.

11

12 References

Albinet, A., Leoz-Garziandia, E., Budzinski, H., and Villenave, E.: Simultaneous analysis of
oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference material
1649a (urban dust) and on natural ambient air samples by gas chromatography-mass
spectrometry with negative ion chemical ionisation, Journal of Chromatography A, 1121,
106-113, 2006.