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S1. Methods 11 

S1.1 Emissions 12 

The accumulated global emissions of PCB28, -101, -153 and -180, for the period 1930-2000 13 

amount to 11568, 2894, 2596 and 1037 t, respectively (high emission estimate; Breivik et al., 2002). 14 

The emissions of PCB153 for the years 1950-2000, 2385 t, were used for all congeners. The 15 

geographic distribution is shown in Fig. S1. 16 

 17 

Fig. S1: Global spatial (a) and temporal (b) primary emission distribution of PCB153. 18 

a.        b. 19 

 20 

 21 



1.2 Physico-chemical properties 22 

Table S1. Physico-chemical properties of PCBs. Data given for 298 K unless otherwise stated.  23 

Property PCB28 

(C12H7Cl3) 

PCB101 

(C12H5Cl5) 

PCB153 

(C12H4Cl6) 

PCB180 

(C12H3Cl7) 

Saturation vapour pressure psat [Pa] 0.027
a 

0.025
a 

0.0006
a 

0.0002
a 

Enthalpy of vapourisation  

Hvap [kJ mol
-1

]  

89.3
b 

95.6
c 

103.5
c 

111.9
c 

Water solubility s [g L
-1

]  0.23 
a 

0.033
a 

0.011
a 

0.0052
a 

Henry constant [M atm
-1

] 3.36
a 

4.22
a 

5.08 
a 

11.9 
a 

Enthalpy of solution 

Hsol [kJ mol
-1

]  

27 
d 

27
d 

27
d 

27
d 

Octanol-air partitioning coefficient log KOA 7.57 
e 

8.34
e 

8.97
e 

9.64
e 

Soil organic carbon partitioning coefficient log 

KOC [L g
-1

] 

5.27 
f 

5.94
f 

6.48
f 

6.77
f 

OH gas-phase reaction rate coefficient kOH [10
-12 

cm³ moles
-1

 s
-1

] 
j 

1.06 
g 

0.33 
g 

0.16 
g 

0.10 
g 

OH particulate-phase reaction rate coefficient kOH 

[10
-12 

cm³ moles
-1

 s
-1

] 
j 

0 
d 

0 
d 

0 
d 

0 
d 

First-order degradation rate coefficient in sea-

water koc [s
-1

] 
3.5·10

-8
,
 h 

6.21·10
-9

,
 h 

3.5·10
-9 h 

3.5·10
-9 h 

First-order degradation rate coefficient in ocean 

sediment ksed [s
-1

] 
1.13·10

-8 h 
3.50·10

-9 h 
1.13·10

-9 h 
1.13·10

-9 h 

First-order degradation rate coefficient in topsoil 

and on vegetation surfaces ksoil [s
-1

] 
1.93·10

-8 h 
1.93·10

-9 h 
3.5·10

-10 h 
1.93·10

-10 h 

a
 Li et al., 2003 24 

b
 Puri et al., 2001 25 

c
 Puri et al., 2002 26 

d
 estimate 27 

e
 from Kow/Kaw, Kow from Li et al., 2003, Kaw based on water solubility and vapour pressure 28 

f
 0.41×Kow (Karickhoff), Kow from Li et al., 2003 29 

g
 Anderson and Hites, 1996 30 

h
 adopted from Wania and Daly, 2002 31 

 32 



S2. Results 33 

S2.1 PCB congener budgets 

Table S2: Selected global burdens in compartment j, bj, removal and intercompartmental exchange 34 

fluxes, Fi, and characteristic removal and residence times, τi. a is the feedback correction factor for 35 

emission (100% into air) with respect to air-surface exchange a = 1/(1 – fas
2
), with fas = 36 

knetdep/(knetdep + kdeg a) (Margni et al., 2004). Annual means of 2 selected years, 1970 and 1995. deg 37 

= degradation, dep = total deposition, vol = volatilisation. 38 

 PCB28 PCB101 PCB153 PCB180 

Year 1970 1995 1970 1995 1970 1995 1970 1995 

btotal (t) 45 32 255 533 444 1198 613 1461 

bair (t) 3.84 2.32 9.66 7 9.15 6.95 5.71 4.25 

bseawater. (t) 4.82 4.02 35.38 68.61 84.53 223.42 118.83 319.08 

bseawater +sea ice (t) 6.54 5.2 41.44 74.34 90.8 229.71 122.48 322.58 

bsoil+vegetation (t) 31.04 23.12 194.59 435.79 330.68 938.69 376.63 1123.3 

bland ice + snow(t) 3.13 2.71 9.79 16.36 13 22.43 8.1 11.36 

Fdeg soil + vegetation (t a
-1

) 10.5 6.9 4.5 8.1 2.3 5.7 1.7 4.6 

Fdeg air (t a
-1

) 46.31 27.73 35.16 24.92 15.33 11.41 5.78 4.19 

Fdeg ocean (t a
-1

) 1.38 1.11 1.88 3.49 2.68 6.66 3.97 9.86 

Fdep (t a
-1

) 66.4 40.17 133.94 105.28 148.96 121.33 121.41 91.09 

Fvol soil + vegetation (t a
-1

) 21.90 12.71 38.91 28.78 35.56 28.95 29.83 25.11 

Fvol seawater+sea ice (t a
-1

) 14.95 9.31 44.01 37.62 52.99 48.49 27.63 22.82 

Fvol snow and land ice (t a
-1

) 14.26 9.68 19.3 21.55 9.23 12.87 4.8 5.22 

Fdep/Fvol (%) 
(1) 

57 58 80 84 92 95 96 100 

a  0.30 0.36 0.69 1.00 0.84 0.76 0.98 0.76 

τair (d)
 (2) 

12.46 12.5 20.85 19.62 20.32 19.12 16.4 16.28 

τair dep (d) 21.19 21.12 26.33 24.26 22.41 20.92 17.18 17.03 

τair deg (d) 30.25 30.6 100.29 102.47 217.74 222.49 360.8 370.53 

τsoil+vegetation (a) 
(2) 

0.96 1.18 4.49 11.81 8.73 27.05 11.95 37.85 

τsnow+land ice (d) 
(2) 

28.31 39.28 54.18 110.17 76.05 157.2 53.66 96.22 

τocean+sea ice (a) 
(2) 

0.40 0.50 0.90 1.81 1.63 4.16 3.88 9.87 

τoverall (a) 0.77 0.93 6.16 14.6 21.8 50.28 44.84 78.46 
(1) 

Fvol refers to total volatilisation, i.e. sum of primary and secondary sources  39 
(2) 

compartmental residence time considers, besides degradation, intercompartmental transfer fluxes 40 

and it is defined as τj = 1/(1/τdeg + 1/τtransfer) 41 



 

 

Fig. S2: Global distribution of the total environmental burdens of (a) PCB 28, (b) PCB101, (c) 

PCB153 and (d) PCB180 excluding the atmosphere (kg m
-2

). Mean of the year 2010. 

 



a. 

 42 

b. 43 

 44 

c. 45 

 46 

Fig. S3. Time series of the fraction of PCB congeners’ secondary emissions over all sources 47 

(primary + secondary) (a) globally, (b) in the latitudinal band 0°N-30°N and (c) 30°N-60°N. Annual 48 

means. 49 

 50 

 



S2.2 Fractionation in meridional direction and long-term chemodynamics 

Fi

g. S4: Mapped year of peak total environmental burden. Identical emission distributions used 

(historic only for PCB153, see text). 



S3. Comparison between modeled and observed levels, congeners' fractions and trends 

Fig. S5. Comparison of observed and model predicted near-ground atmospheric concentrations of 51 

PCB153 at monitoring stations in Europe (EMEP, 2011) and in the Arctic (Hung et al., 2010) [pg m
-

52 

3
]. Multi-annual mean, number of years (5-12) depicted by size of symbol. Numbers in the circles 53 

denote ratio between predicted and observed concentrations. 54 

 55 

Perfect agreement is found for one central European station (Kosetice, Czech Republic), 56 

discrepancy of a factor of 5 for one northern European station (in Sweden) and a factor of 10 for 57 

other western and northern European stations (in England, Sweden, and continental Norway) and 58 

on Svalbard) and the Arctic. No direct comparison between levels in soil is possible, because 59 

measurements refer to the concentration in topsoil of decimeter of depth, while no depth is allocated 60 

to the soil compartment in the model. 61 

 62 

In the following, fractions of congeners among the sum of 4 PCB congeners (PCB28, -101, -153, -63 

180) are compared. When observational data were not available on an individual congener basis, 64 

comparison is done between observed homologues' quantity and one predicted congeners' quantity. 65 

I.e., comparability between predicted and observed is limited by the implicit assumption that the 66 

indicator congeners’ degradation rates are representing the characteristic mean degradation rate of 67 



the respective group of homologues. Similar degradation rates in soil are usually adopted for PCB 68 

homologues. In air, however, lifetimes vary by a factor of three among tri- and penta-chloro 69 

homologues (Anderson and Hites, 1996). Furthermore, historic emissions were simulated for only 70 

one congener, PCB153, while the emissions of the other congeners were set equal to those of 71 

PCB153 deviating from the historic emission distribution (Section 2.).  72 

For fractionation in soil a strong spatial trend is predicted in contrast to a weak one observed (Fig. 73 

S6c, d). This is related to the prediction of a low mobility of PCB180 in Europe unlike the other 74 

congeners (Fig. S1d). 75 

 76 
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c.  d. 79 
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 80 

Fig. S6. Observed (a, c) and predicted (b, d) PCB fractionation in temperate (Czech Republic, GB), 81 

boreal (Norway) and Arctic (Alert, Zeppelin) (a, b) near-ground atmosphere 1998-2000 (except CZ: 82 

1999-2000; Meijer et al., 2003a; Holoubek et al., 2007a; Hung et al., 2010; Klánová, personal 83 

communication) and (c, d) soils 1998-2000 (except CZ: 2000-2002; Meijer et al., 2002; Holoubek 84 

et al. 2007b; Hung et al., 2010; Klánová, personal communication). Given as fraction of individual 85 

congeners' concentration over sum of four PCB congeners' concentrations or of the fraction of 86 

homologues with 3, 5, 6 or 7 chlorine atoms over their sum. Soil sites were 1 mixed forest and 87 

agricultural site in the Czech Republic (9 localities), 14 grassland sites in Great Britain and 9 in 88 

Norway. Model predicted concentrations of PCB28, -101 and -180 were weighted with the 89 

corresponding accumulated global emissions (Breivik et al., 2002) in order to account for non-90 

historic emissions used for these 3 congeners. 91 

 92 



Table S3: Modelled and observed time trends (linear regressions of annual or monthly data, % a
-1

) 93 

of the fraction of individual congeners' concentration over sum of four PCB congeners' 94 

concentrations (predicted all sites, observed Košetice, Czech Republic) or of the fraction of 95 

homologues with 3, 5, 6 or 7 chlorine atoms over their sum (observed Alert and Zeppelin) in (a.) the 96 

near-ground atmosphere of one mid latitude (Košetice, Klánová, personal communication) and two 97 

Arctic (Alert, Zeppelin, based on Fig. 2 of Hung et al., 2010) stations and (b.) soil of the mid 98 

latitude station. Model predicted concentrations of PCB28, -101 and -180 were weighted with the 99 

corresponding accumulated global emissions (Breivik et al., 2002). 100 

a. 101 

 Observed Predicted 

 Košetice 

1999-2008 

Alert  

1993-

2005 

Zeppelin 

1998-2006 

Košetice 

1999-

2008 

Alert  

1993-2005 

Zeppelin 

1998-2006 

PCB28 / 

trichlorobiphenyls 

+2.5 -1.20 -0.25 -0.94 -0.84 -1.44 

PCB101 / 

pentachlorobiphenyls 

-1.6 +0.92 +0.36 +0.24 +0.36 +0.72 

PCB153 / 

hexachlorobiphenyls 

-0.45 +0.48 -0.10 +0.42 +0.36 +0.60 

PCB180 / 

heptachlorobiphenyls 

-0.45 -0.13 -0.02 +0.28 +0.08 +0.05 

 102 

b. 103 

 Observed Predicted 

 Košetice 

1999-2008 

Košetice 

1999-

2008 

PCB28  -0.46 -0.12 

PCB101 -1.3 -0.19 

PCB153 -0.29 -0.61 

PCB180 +2.0 +0.93 

 104 
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