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metals as a function of metal concentration. 

calculated rate of DTT loss of each metal divided by that of Fe(II).  For 

at the same concentration (x-axis) and calculate the DTT response based 

response equations in Table 1 of the manuscript.  We divide the DTT response from 

each metal by the DTT loss from Fe(II) to give an idea of the relative reactivity of each metal.  

have a single relative reactivity across the entire concentration range, i.e., 

does not change as a function of PM mass added to the reaction solution.  

concentration-response curves (Table 1).  Cu(II) and Mn(II), on the

relative to Fe(II) with increasing metal concentration, a consequence of 

response curves (Table 1).  Cu(II) is 300 times more reactive than Fe(II) at 

metal concentrations of 0.01 µM, decreasing to a factor of approximately 20 at metal concentrations of 1 

µM.  Mn(II) is 100 times more reactive than Fe(II) at 0.01 µM, decreasing to 10 times more

.  This means the relative DTT loss from each metal species changes as a function 

to the DTT solution.  Because actual PM samples will not have equal 

concentrations of all metal species, the behavior in Fig. S1 is only an example.  However, 

will not be linearly related to the mass of PM added to the reaction 

in cases where Cu and/or Mn dominate DTT oxidation; as we show later in the manuscript, it 

appears that Cu and Mn typically dominate DTT oxidation for fine PM samples.   

S1.  The reactivity of each soluble metal relative to Fe(II), expressed as the ratio of the rate of DTT 

loss by a given metal divided by the rate with Fe(II).  Calculations are based on the measured 

response equations in the manuscript (Table 1).  
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S2. Calculated rate of DTT loss in 34 

quinones and soluble metals reported in the literature35 

 To determine the typical conc36 

sample we use literature values for PM37 

use the median of the average concentration38 

calculate the median for each specie39 

concentrations are total particulate-phase qui40 

reference for the concentration of each species41 

manuscript.  Quinone measurements are typically made by extracting PM samples in an organic solvent at 42 

elevated temperature (e.g., Cho et al., 2004)43 

for the quinone concentrations that can be extracted from particles 44 

the metal concentrations listed here 45 

of organic solvent was added in some cases 46 

calculation purposes, we assume that47 

mass was added to the 3.0 mL of DTT reaction 48 

concentration-response equations in Table 49 

50 

Figure S2. Water soluble metal concentrations in US urban PM51 

Verma et al., 2009; Vidrio et al., 2009)52 

53 

54 

55 
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57 

in a hypothetical PM sample based on median concentrations of 

quinones and soluble metals reported in the literature 

concentration of each DTT-active species in our hypothetical PM 

PM2.5 for urban locations in the United States; for a given

concentrations from each of the cited studies.  The study averages 

for each species are summarized in Figs. S2 and S3.  Quinone (and PHEN) 

phase quinones as summarized by Walgreave et al. (2010)

of each species in our hypothetical PM2.5 sample is listed in

Quinone measurements are typically made by extracting PM samples in an organic solvent at 

(e.g., Cho et al., 2004); therefore, these concentrations are probably 

that can be extracted from particles in the aqueous DTT assay

listed here represent soluble metals from PM extracted in water; a small amount 

in some cases to wet the Teflon filters (Connell et al., 2006)

assume that 32.8 m
3
 of air was sampled onto a filter and the whole filter 

DTT reaction solution. The DTT response was then calculated using the 

ations in Table 1 of the manuscript.  

. Water soluble metal concentrations in US urban PM2.5 from the literature (Connell et al., 2006; 

Verma et al., 2009; Vidrio et al., 2009).  Each symbol represents the average value for a given 
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Figure S3. Total particulate quinone concentrations in US urban PM59 

2004; Delhomme et al., 2008; Eiguren60 

for a given site. 61 
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S3. Ambient PM2.5 collected in Fresno and Westside64 

 We measured the DTT loss from six ambient PM65 

of California (see Section 3.3 of the manuscript).  66 

each metal in the PM2.5 samples using 67 

and our concentration-response for each metal (Table 1)68 

from each metal to the total measured DTT loss for each 69 

to one of our four measured metals i70 

in the PM that we did not quantify, e.g., quinones.  The average percent of total DTT loss from each 71 

soluble metal and the unknown fraction was calculated from the six samples72 

S4. 73 

74 
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Figure S4. Calculated average contribution76 

ambient PM2.5 77 

78 
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. Total particulate quinone concentrations in US urban PM2.5 from the literature 

2004; Delhomme et al., 2008; Eiguren-Fernandez et al., 2008).  Each symbol represents the average

collected in Fresno and Westside, California. 

We measured the DTT loss from six ambient PM2.5 samples collected in the San Joaquin Valley 

Section 3.3 of the manuscript).  We also calculated the expected DTT response from 

sing our previous measurements of soluble metals (Shen et al., 2011)

response for each metal (Table 1).  We then calculated the percent 

red DTT loss for each sample.  The remaining DTT loss not attributed 

is labeled “unknown”.  This DTT loss is from other chemical

, e.g., quinones.  The average percent of total DTT loss from each 

soluble metal and the unknown fraction was calculated from the six samples and is shown

 

 

verage contributions to DTT loss by four metals and unidentified species

2.5 samples collected in Fresno and Westside, CA. 

 

 
from the literature (Cho et al., 

Each symbol represents the average value 

samples collected in the San Joaquin Valley 

the expected DTT response from 

(Shen et al., 2011) 

he percent contribution 

.  The remaining DTT loss not attributed 

oss is from other chemical species 

, e.g., quinones.  The average percent of total DTT loss from each 

and is shown below in Fig. 

four metals and unidentified species in six 



 80 

 81 

 82 

S4. Effect of EDTA 83 

 We measured the rate of DTT loss in blanks with various concentrations of EDTA 84 

order to accurately blank-correct our quinone and metal results85 

the results for PQN shown in Fig. 7b, addition of EDTA 86 

probably by chelating trace metals that were not removed by Chelex treatment of the phosphate buffer.  87 

88 

Figure S5. Rate of DTT loss in the blank with increasing concentrations of EDTA89 
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