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Abstract

In order to use high resolution in-situ measurements to constrain regional emissions of
carbon dioxide (CO2), we use a Lagrangian methodology based on diffusive backward
trajectory tracer reconstructions. We use aircraft, tall tower and ground sites for CO2
data collected nearby the CO2 emission hot spot of the Tokyo Bay Area during the5

CONTRAIL campaign, from the MRI/JMA Tsukuba tall tower and from the World Data
Centre for Greenhouse Gases (WDCGG). We calculated Bayesian inversions based
on EDGAR 4 and CDIAC a priori fluxes. Estimated fluxes for the Tokyo Bay Area for
the analyzed period between 2005 and 2009 range between 4.80×10−7 and 3.45×
10−6 kgCO2

m2 s−1 with significant time variations. Significant differences in retrieved10

fluxes of up to 21 % were found when CONTRAIL measurements were added to the
dataset. No significant trend was found in the time series of spatially averaged retrieved
fluxes.

1 Introduction

Anthropogenic emissions of CO2 and in general greenhouse gases (GHGs) are a major15

concern for atmospheric composition, given that emissions are increasing rapidly with
a consequent impact on the atmospheric radiative budget. Estimations of CO2 fluxes at
continental scales contain significant uncertainties, and these uncertainties are larger
for finer spatial and temporal scales. Such uncertainty limits the rapid development of
comprehensive mitigation policies at global and State levels. In the so called “bottom-20

up” approach, CO2 emissions from fossil fuel consumption are estimated based on
socio-economic databases (European Comission, 2009). Their accuracy depends on
the reliability of information about the import, export and consumption of fossil fuels by
various countries. Therefore, complementary independent assessment is desirable.

The atmospheric CO2 measurements record the effect of CO2 surface sources on the25

earth’s atmospheric composition. Consequently, time series of atmospheric CO2 con-
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centrations and transport model simulations can be used for constraining the surface
fluxes by the so called top-down approach or inverse modeling. In the inverse approach,
for any given atmospheric transport model, it is theoretically possible to linearize and
invert the transport operator in order to relate perturbations to the background (e.g. an-
thropogenic emissions) with a measured concentration. (∆F = ∆χCO2

∂F
∂χCO2

where F is5

the flux, χ is the mixing ratio and
∂χCO2
∂F the linearized transport operator.) The other ap-

proach consists of local micro-scale flux measurements (Moriwaki and Kanda, 2004),
which are suitable for small patches (a few 100m2), but it is not feasible for monitoring
an area of the size of the Tokyo Bay Area.

Nevertheless, in real world applications the amount of information available is seldom10

sufficient, and hence this formulation yields ill-conditioned problems, that are challeng-
ing to solve numerically. A number of regularization mechanisms have been proposed
and applied to the important problem of constraining global biogenic inversions (e.g.,
Enting, 2002; Tarantola, 2005).

Regional (104 km2) assessments of fluxes using global models are hindered at small15

time and space scales due to models inability to represent CO2 time series measure-
ments adjacent to large point sources (Patra et al., 2008). A more precise methodology
is desirable, as errors can amount to 200 % in regional flux estimation from global Eu-
lerian models (Gurney et al., 2002). Mesoscale CO2 flux inversion is gaining popularity
in both Eulerian and Lagrangian modeling research. A number of previous studies20

have focused on biogenic emissions. Lin et al. (2007) based on the model STILT, pro-
vided flux estimates based on footprint analysis. Tolk et al. (2009) analized the Cabauw
tower data using a mesoscale model. Lagrangian inversion has been recently used in
the lower troposphere close to the surface to estimate biogenic emissions (Lauvaux
et al., 2009). The specific problem of anthropogenic emissions requires spatial scales25

the size of a city in order to be resolved, and hence Lagrangian-based techniques are
well suited for this application. The Tokyo Bay Area (TBA) is among the largest emis-
sion spots on the surface of the Earth, a highly developed area with nearly 30 million
inhabitants, a significant industrial activity and a complex transportation network. It is
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located in a terrain with varied topography and surrounded by a complex coast line in
the East.

In this study we estimate CO2 flux constraints based on Lagrangian backward trans-
port modeling and an inverse Bayesian methodology. We present a case study of the
TBA using ensembles of diffusive backward trajectories (Pisso et al., 2010) and a La-5

grangian particle dispersion model de Foy et al. (2009, FLEXPART-WRF) with different
advecting winds, parametrizations of turbulent mixing and simplified planetary bound-
ary layer (PBL) interface representations. The fluxes were calculated for the winter
months (December to March) when the inventories show that biospheric activity within
the TBA can be considered to have a lesser impact on CO2 concentrations than anthro-10

pogenic activity. This study, to our knowledge the first of its kind in Japan, is organized
as follows: Sect. 2 introduces the models, methods and data used in this study, Sect. 3
describes the results obtained, Sect. 4 discusses these results and Sect. 5 presents
our conclusions.

2 Method15

In order to constrain emission fluxes with concentration or mixing ratio measurements
far away from the CO2 source, the transport and mixing processes determining the im-
pact of the source on the receptor must be assessed. Given certain information about
the transport and mixing, the master equation Gi ,j = P (i → j ) allows us to extract the
source distributions (initial/boundary conditions) that best represent the tracer mea-20

surements according to certain criteria (Risken, 1989). Gi ,j describes the probability of
a transition between the location i to the location j . Atmospheric transport and mixing
models (particularly Lagrangian) are often applied to the numerical representation of
the transition probability or master equation. Because the Green’s function discretiza-
tion is only suitable for concentrations or mixing ratios, the 2-D to 3-D conversion from25

flux to volume has to be calculated. Source Relation Relationships (SRRs) (Seibert
and Frank, 2004) were developed to assess the probability that a receptor (e.g., an
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atmospheric measurement site) is linked with a source depending on the time a back
trajectory spends in a grid cell. Other approaches include the count of impinging parti-
cles on the lower boundary of the domain (Wilson, 1995). In general, statistical ensem-
bles of trajectories provide a better description of the transport processes than a single
particle approach. The method follows four basic steps to obtain the SRR. An inversion5

method, such as Bayesian constraints is in turn applied to obtain flux estimates.

2.1 SRR calculation

2.1.1 (A) Measurements

Available measurements were organized in daily data subsets (blocks). Every daily
data block was associated with a set of receptors. Receptors were used as initial points10

for backward Lagrangian trajectories calculated with the LPDM FLEXPART. Only one
run was executed per day, with all ensembles within a day included in the same initial
file. Ancillary data allowed us to group trajectories for a posteriori plotting and analysis.

2.1.2 (B) Space time partition

Given a set of available measurements, the period and region of interest for the flux15

inversion, the partition of the space and the time step resolution for the inversion were
selected. The output was a set of vectors of length m describing the spatio-temporal
discretization of the sources. A subsequent step interpolates a priori fluxes from differ-
ent inventories into the space-time grid.

The sources were subdivided in a rectangular grid of 0.1◦×0.1◦ containing the TBA.20

An adaptive aggregation was performed to separate the far field (the WRF domain
covering East Asia) from the near field (the TBA). A total of 227 subsets of aggregated
grid cells was used for every time step. Source geometry specifications allowed us to
interpolate corresponding a priori fossil and biogenic flux and boundary/background
conditions. As one of the objectives was to assess the impact of a priori information25
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from different inventories, we used as a priori constraints EDGAR and CDIAC fluxes.
The time step of the retrieved sources varied between 1 and 12 h during the period
of interest with a default time step of 3 h. Given that emissions 3 days prior to mea-
surement are unlikely to affect receptor, the period of interest has been defined as 72 h
prior to measurement for every measurement point. Although background concentra-5

tions may be affected by sources outside the chosen domain due to the strength of
the source under study, sensitivity tests indicate that they represent a small fraction of
the CO2 measured. Hence, the background value is chosen to match an open ocean
site (Mauna Loa taken from NOAA/ESRL, Conway et al., 1988). Nevertheless, this can
be changed if background concentrations are provided by a global model with reduced10

uncertainty. In contexts where the transport and initial conditions are provided with suf-
ficient accuracy, even small scale features of the data time series such as peaks and
gradients can be reconstructed with the model (Pisso and Legras, 2008).

2.1.3 (C) Trajectory calculations for mesoscale Lagrangian inversions

Trajectories were calculated with a modified version of the LPDM FLEXPART (Stohl15

et al., 2005). Different meteorological wind fields were used, including ECMWF ERA
interim (EI) and WRF, that can be used to assess transport uncertainty. The trajec-
tory calculations followed for the approach outlined in Pisso et al. (2010). Combined
with gridded representations of emissions and concentrations, they allow calculation of
Lagrangian reconstructions.20

2.1.4 (D) source-receptor relationship (SRR) calculation

This section describes how to calculate the source receptor relationship (SRR) and set
other parameters such as PBL the model.

10628
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The mixing ratio χ (x,t) of an atmospheric tracer can be inferred from the previous
distribution and sources by the (continuous) Green’s function of the diffusion equation
G:

χ (x,t) =
∫
y

G(x,t;y ,s)χ (y ,s)dy +

t∫
0

∫
y

G(x,t;y ,s)χ̇ (y ,s)dyds+

t∫
0

∫
S

G∇χ − χ∇GdSds

where χ represents a mixing ratio (in this context the background), χ̇ represents a5

bulk volume source (in this context the anthropogenic CO2 emissions) and the kernel
G represents a continuous point-wise probability transition (atmospheric transport and
mixing processes). Surface density emission fluxes are formally described by the third
term in the equation, however because of numerical limitations this information is usu-
ally included in the second term, using some representation of the PBL and diluting the10

emissions in the 3-D lower grids of the domain.
G allows to perform 4 dimensional tracer reconstructions (provided t > s) and can be

numerically estimated from backward trajectory calculations with a discretized G. The
trajectories include information from sub-grid scale turbulence modeled as a stochas-
tic processes. Histograms of backward trajectories provide estimates of the transition15

probability function G or more generally the master equation.
The basic output is a matrix M (the SRR), the selected CO2 data and the emission

regions that are compatible with the matrix M.
The main component of the output at this step is the Jacobian matrix, i.e. the lin-

earization of the transport operator. This matrix of dimensions (number of observa-20

tions) × (number of flux regions × time steps) is essentially a histogram of particles
within the PBL over the emission regions. The number of rows of the matrix matches
the number of receptors, and hence a vector of CO2 values is stored alongside the
matrix. Another vector of the same size is required to store the background values
with respect to which concentration perturbation is to be calculated. Several sources25

of data for the background have been used for testing purposes including a range of
10629
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fixed values during short periods, direct interpolation from the output of global (ACTM)
and regional (WRF-chem) models, and diffusive Lagrangian reconstructions based on
the same models. Due to the inherent uncertainty associated with these estimates, we
have chosen to use averages of measurements (with the Mauna Loa time series as the
default value). The columns of the matrix correspond to the emission regions consid-5

ered to have a non-negligible impact on the measured data available for inversion. We
are considering a time dependent set of sources covering the TBA. The default setting
is a grid of 0.1◦ in the intervals [132◦ N 144◦ N 31◦ E 40◦ E]. One of the advantages of
using a Lagrangian methodology is that as the grid is used for post processing of the
trajectory calculations, the space partition setting is flexible for sensitivity studies. As10

grids far away from the source have less impact on the measurements, the size of the
region increases with distance from the measurements. The code accepts any parti-
tion in regions of this grid. It is also possible to aggregate regions after the calculation,
although the increase of the resolution requires more computational time.

Numerically, the SRR can be estimated using the residence time of an ensemble of15

trajectories in a designated volume of space.
The sensitivity of the mass mixing ratio of CO2 at the receptor to a mass emission at

the source can be expressed as the mean time spent within a volume source for those
trajectories visiting the source of interest, divided by the air density and the height of the
volume source (associated with the PBL). It requires a (simplified) PBL representation20

(Wilson and Sawford, 1996; Seibert and Frank, 2004) to convert surface mass fluxes
into volume mixing ratios:

∂χCO2

∂F
=

1
N

N∑
n=1

∆tn
ρaird

where ρair is the air density, ∆tn the time step, d the thickness of the footprint layer
(layer within the PBL where trajectories are counted) and n the index of the N trajec-25

tories arriving at a certain receptor. It has been argued (Seibert and Frank, 2004) that
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provided that the footprint layer lies within a well mixed PBL, the source receptor rela-
tionship is independent of d (Seibert, 2004; Lin, 2003). The customary value of d is to
the order of 300 m.

2.2 Bayesian inversion

The previous section described the calculation of the SRR based on trajectories. The5

inversion is performed using the measurements, the background and the bottom up
estimations interpolated in (B), used as a priori emissions for Bayesian inversion. We
have chosen to apply a Least Squares Bayesian inversion method to the resulting SRR
based on a technique previously used in the literature (Menke, 1984; Tarantola, 2005)
adapted to the present case.10

M is available for all measurements y , the different a priori inventory data S0 and all
winter months from 2005 to 2009. For every month, a local sub matrix with the rows
corresponding to each day and the columns corresponding to the significant emission
regions was constructed.

For every day, there is a daily matrix M and a daily set of measurements and sources.15

The geometry of the sources matching these measurements and transport operator M
were selected from the vector of sources defined previously for the whole period of
inversion.

The information gathered in the previous section yields the basic input required for
Bayesian inversion: the matrix for the linearized transport operator M, the vector of20

constraining measurements y (perturbations respect to the background concentration)
and the a priori fluxes S0.

S = S0 +CSMT
(

MCDMT +CD

)−1
(y −MS0)

Where S is the a posteriori flux, CS is the covariance of the fluxes, CD the covariance
of the measurements (Tarantola, 2005).25
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Different backgrounds were used to test the sensitivity of the method, although ar-
guably the most reasonable background would be from a clean air site such as Yonagu-
nishima, Minamitorishima or Mauna Loa. The interpolated values for the a priori fluxes
are based on the inventories to be tested and must comply with the format established
for that day. The covariance matrices CD and CF are determined based on the a priori5

uncertainties. Two scenarios were chosen for testing uncertainty: the standard identity
functions and a 200 % variance (Gurney et al., 2002).

3 Data

3.1 Measurements

We have integrated CO2 data from ground stations, a tall tower and in-situ aircraft10

measurements covering the Tokyo Bay Area (Fig. 1).
In situ high resolution measurements being used include

(i) Tsukuba tall tower (measurement of CO2 in the sampled air from inlets located
at 25, 100, and 200 m introduced by the diaphragm pump to the NDIR in the
experimental field building) for 2007 (Inoue and Matsueda, 1996, 2001). The con-15

centration of CO2 is calculated based on the MRI87 scale (Inoue and Matsueda,
1996). The difference in CO2 concentration scale between WMO mole-fraction
and MRI87 is less than 0.2 ppm for the ambient CO2 level, although it depends on
the mixing ratios (Ishii et al., 2004).

(ii) Aircraft CO2 measurements are taken from the Continuous CO2 Measuring20

Equipment (CME) on board a Japan Airlines (JAL) passenger aircraft by the
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL)
project (Machida et al., 2008). Continuous CO2 measurement over the Narita air-
port are used in this study during the ascending and descending of the aircraft.
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The measurements are reported in NIES-95 standard scale. Data covers 2007 to
2009.

(iii) Atmospheric CO2 hourly concentration data, Mt. Dodaira and Kisai, World Data
Cent. for Greenhouse Gases (WDCGG), Japan Meteorol. Agency, Tokyo. (Avail-
able at http://gaw.kishou.go.jp/wdcgg.html.) The absolute scales of these mea-5

surements are WMO mole fraction scale. We have chosen data from 2005 to
2009 for this analysis.

3.2 Initial conditions, boundary conditions and a priori information

The a priori information is drawn from different inventory data: EDGAR version 4 and
CDIAC. It is worth to stress that in the Tokyo Bay Area, the biogenic fluxes then repre-10

sent just a small fraction of the anthropogenic emissions and hence their impact on the
final inversion result is modest. A large source of uncertainty is the background CO2
value. We have tested different options, including model output from AGCM and WRF.
A conservative but robust estimate are the measurements from the clear air oceanic
sites such as Mauna Loa observatory and Yonaguni island.15

3.3 Models

We have used two global scale trajectory codes: FLEXPART 8.1 (Stohl et al., 2005) and
TRACZILLA (Legras et al., 2005; Pisso et al., 2010) driven by ERA Interim (EI) winds
(Simmons et al., 2007). Regional scale modelling was performed using FLEXPART-
WRF (de Foy et al., 2009) driven by WRF – CO2 winds For our simulation, WRF-CO220

was configured with 27 km grid spacing domain over East Asia. We choose Lambert
Conformal map projection for the model domain with 165×132 grid cells (Grell et al.,
2005; Takigawa et al., 2007; Ballav et al., 2012). The domain is centered at (35◦ N,
133◦ E), which is near Tokyo. The model has 30 vertical layers up to 100 hPa, and 11
layers are located within 2 km above the ground level. Different meteorological ad-25

vection fields have been used in this study related to different Lagrangian models.
10633
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TRACZILLA and FLEXPART 8.1 are driven by ERA Interim (EI) reanalysis. ERA-Interim
is the latest ECMWF reanalysis with a spectral truncation of T255L. Global coverage
3 h intervals and 1◦ ×1◦ spatial resolution were used for these analyzed winds.

4 Results

We have selected a set of measurements for analysis: the winter months for the years5

2005 to 2009. Figure 1 shows the spatial distribution of data used within the region to
be assessed for inversion. CONTRAIL and WDCGG data spanned from 2005 to 2009.
The sites of WDCGG provide a continuous record of data. Tsukuba tall tower data
was used for 2007. The total amount of data points used in this work is 176 414. The
trajectories have been calculated for all available receptors with ERA Interim and WRF10

winds. One run per day was performed starting on every receptor measurement point
for an ensemble of 100 trajectories. The particle output was stored every hour for post
processing for a period of 7 days. Nevertheless, only the first 3 days are significant for
TBA flux estimation.

4.1 Calculation of SRR15

For the period under consideration (2005 to 2009), ensembles of trajectories associ-
ated with the measurements were processed to estimate the SRR for all measure-
ment points. The fluxes were retrieved at 3 h time resolution. The results are based
on a 20km×20km grid which can be aggregated in different ways (e.g. the prefec-
ture boundaries of the Kanto area). Minimal dimensions of the daily configuration were20

48×2724 for days containing only WDCGG sites data. As the columns outnumber the
rows, the system required regularization for matrix inversion.

The matrix is solved on a daily basis. Besides allowing a faster calculation than the
full matrix, the day by day calculation set out a simple parallelization methodology. For
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each day of measurements the algorithm provides an estimate of fluxes for the previous
three days. The results are averaged monthly to reduce random variability.

Figure 2 shows an example of the SRR matrix corresponding to the 1st of January
2007. This figure demonstrates a decreasing influence of the emission regions as time
evolves backwards. After 3 days the influence of the source regions is negligible and5

hence it was not taken into account. The influence of far field sources is reduced by mix-
ing, and given the strength of the Tokyo sources it can be overlooked at an initial stage.
Patterns calculated with ERA Interim and WRF winds show a considerable agreement.
In general, the shapes of the clouds of points used to construct these matrices show
a consistent picture of transport. As for the absolute values, the L1 norm (the sum of10

the absolute values) of the difference is to the order of 10 % of either matrix WRF or
ERA Interim. This is significant because both model’s meteorologies are based on dif-
ferent assimilation systems (ECMWF and NCEP). The fact that they show a consistent
picture provides necessary grounds for any subsequent analysis. Without agreement
between different transport models, further conclusions may be compromised.15

4.2 Flux inversion

Given a certain degree of confidence in the description of the transport, an inversion-
based constrain on the fluxes can be attempted. Several factors have an impact on the
inversion results including the a priori fluxes, background and measurement selection.
In Fig. 3, CO2 fluxes from fossil fuel burning are shown. The first column shows the20

EDGAR and CDIAC inventories in the TBA. The second, third and fourth columns
correspond to 2005, 2007 and 2009 retrieved fluxes respectively. The upper row shows
the geographical distribution of a posteriori fluxes using EDGAR as a priori. The lower
row shows the geographical distribution of a posteriori fluxes using CDIAC as a priori.

The geographical distribution of the fluxes in the TBA illustrates how the a priori infor-25

mation introduced by EDGAR regularizes the inversion, providing a picture consistent
with third party information. Error reduction is obtained in the grid cells closer to the
measurement data, such as Kisai, Dodaira, Tsukuba and Narita. The estimates show
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a weak variability over time, in agreement with previously reported regional inventory
data in Japan. In the case of CDIAC (lower row), the a priori grid is much coarser, but
it can be used as an interesting benchmark for the method. For example, the inversion
adds spatial information, as can be seen in panels f, g and d. The spatial distribution of
emissions with CDIAC a priori has much less contrast compared to EDGAR 4. These5

modifications are likely to be higher in those regions and during periods in which more
information was available from measurements.

Figure 4 shows the impact of CONTRAIL data on the geometry of retrieved fluxes.
The upper left panel shows the result of the inversion using all available data including
WDCGG stations, the Tsukuba tall tower and CONTRAIL. The upper right panel shows10

the result of the inversions including only WDCGG stations and Tsukuba data. The
lower left panel displays the a priori used, EDGAR 4 for 2005 for comparison. The
geometry of the retrieved fluxes is consistent with the inventory data. The difference
is larger in those grids with higher flux value such as the center of Tokyo and in the
grids containing the largest power plants. The lower right panel shows the difference15

between the results using all data with respect to the results based on WDCGG sites
only. In the most urbanized region of Tokyo the difference is up to 21 % higher using all
data measurements. This illustrates to what extent the availability of data has a large
impact on flux inversion results.

The calculation of a longer time series of inversions provides information about the20

time evolution of fluxes, their variability and trends. In order to study the time evolution
of fluxes we have calculated the monthly average of daily inversions for the available
period of data from 2005 to 2009. Figure 5 shows a set of time series of averaged
a posteriori fluxes. The fluxes were calculated for the winter months, from December
to March in order to avoid uncertainties associated with summer biogenic activity and25

variable mixing within the PBL. Different data sets were created for both CDIAC and
EDGAR a priori fluxes. In both cases, the retrieved fluxes were higher than the a pri-
ori. The Bayesian inversion suggested that the inventories underestimated the fluxes
required to match measurements. In order to determine to what extent this behavior
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depended on the magnitude of the a priori fluxes, we calculated the inversions increas-
ing the a priori fluxes by a factor of 2 and 3. It was found that a factor of 2 slightly
overestimated the fluxes and a factor of 3 largely overestimates the fluxes. The fact
that the equilibrium point is slightly below 2 times the EDGAR values means that the
system is able to confirm that CDIAC underestimates the fluxes. In the present case5

this was expected and it is due mainly to the coarse resolution of the CDIAC inventory.
In the case of TBA CO2 emissions an error threshold of 5–10 % would be required for
short timescale variability assessment. Such thresholds are still beyond the capabilities
of the current methodology given the data availability and the transport/mixing model
uncertainties. In particular the region still remains under-constrained given the sparse10

observation network. Because of the uncertainties related to the transport model, it
cannot be unequivocally asserted that EDGAR underestimates Tokyo emissions. Nev-
ertheless a reduction of the uncertainty below the threshold of 100 % represents an im-
provement respect to regional inversions performed with global models (Gurney et al.,
2002).15

The time series of retrieved fluxes allowed us to carry out a trend analysis. The
CO2 fluxes in the TBA have shown a slow increase in the first decade of the 21st
century. The evolution of fluxes over time presents a flat trend that is compatible with
the a priori information provided by the inventories (http://www.kankyo.metro.tokyo.jp/
en/data/). This static trend could be explained by several factors including negative20

population growth in Japan, the increase in efficiency in energy use and the roll out of
CO2 mitigation policies.

5 Discussion

The flux values obtained are consistent with the values of Moriwaki and Kanda (2004)
to the order of 2.5×10−7 kgCO2

m−2 s−1 based on direct micrometeorological measure-25

ments. The average flux values obtained in this study are lower than those of Moriwaki
and Kanda (2004). This may be due to the fact that a larger area encompassing rural
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areas of Kanto is selected in our average, whereas Moriwaki and Kanda (2004) fo-
cused on a restricted suburban area. In addition, our estimates are strongly affected by
the a priori baseline, e.g., EDGAR may underestimate the actual flux. The values are
also consistent with the yearly average value of 1.9124×10−7 obtained by Kordowski
and Kuttler (2010). They study a park area in Essen, Germany, which is somewhat5

consistent with our mixed urban/rural area in the TBA. In such areas, while some bio-
genic uptake occurs it is not expected to overtake anthropogenic emissions, warranting
a positive flux throughout the year. It is worth bearing in mind that these comparisons
are being made between pointwise measurements and a large area inversion.

Several sources of uncertainties affect the inversion process, namely data, model10

representation and errors in the estimation of the a priori fluxes. Additional sources
of error include the impact of the PBL parametrization. The construction of the SRR
involves the translation of 2-D flux densities to 3-D mixing ratio or concentrations. The
Green’s function method is best suited to represent probability transitions between re-
gions of the same dimension (i.e., 3-D to 3-D). Although a rigorous formulation exists15

for the consideration of boundary fluxes for mixed Neumann-Dirichlet boundary con-
ditions (Morse and Feshbach, 1953; Holzer and Hall, 2000), it is not well suited for
numerical computations. This is because such a formulation requires the calculation of
the Green’s function gradient at the boundary of the domain, which can result in a large
source of error. Instead, an additional step is often performed for the parameterization20

of the mixing within PBL. In this study we have used a PBL height consistent with the
3-D transport model used for advection (ERA Interim or WRF). The use of measure-
ments to constrain PBL height is limited by the spatial distribution required within the
inversion area.

Given the small scale resolution required for city size flux estimations, spatial an time25

resolution can be a source of error. The compliance with a CFL condition is required.
Typical wind speed is to the order of 20 kmh−1. The resolution of the horizontal grid
is 20 km and the time step of the output of trajectories is 1 h. The transport timescale
between the sites of Kisai or Narita and the center of Tokyo is of the order of one hour.
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The selection of measurement points can also contribute to uncertainty, as seen in
Fig. 5 for the year 2007 when the availability of more measurement points provided
higher sensitivity for the inversions. Furthermore Fig. 5 illustrates the large impact of
the selection of the a priori flux estimate on the inverted flux values. Fluxes estimated
with different inventories (Fig. 5) suggest that in both EDGAR and CDIAC inventories5

underestimate the actual emissions. This exercise is useful to distinguish the perfor-
mance of EDGAR and CDIAC and suggests a method for the selection of the most
appropriate inventory. For the purposes of this study, the optimal a priori inventory was
EDGAR. A hypothetical exercise doubling the value of EDGAR a priori emissions yields
estimates that are lower than the a priori. Doubling the emissions results in excessive10

values that must then be lowered by the inversion to fit the measurements. In this case
it is apparent that the underestimation is due to the coarser resolution of CDIAC in-
ventory. Nevertheless, this method could be applied to finer resolution a priori fluxes
although it is likely that more CO2 data, over a larger, denser geographical distribution
would be necessary in order to further reduce uncertainty. Nevertheless, should the15

present methodology be further refined to reduce uncertainty, it may eventually be ap-
plicable as a policy tool. More sophisticated techniques such as observation targeting
and optimal network design may be applicable. It can be argued that the availability
and accuracy of TBA inventory data makes it a suitable area for benchmark model
inversion methodologies.20

Other studies applied the Lagrangian inversion technique to other greenhouse gases
such as CFCs. Keller et al. (2011) estimated under reported emissions of HFC-23 using
a method previously presented by Stohl et al. (2010). They used the standard input
procedure for FLEXPART adapted to data from the Jungfraujoch station. In this study
a different initialization procedure was used allowing us to include aircraft data at full25

resolution: all 4-D information for every aircraft measurement point is used as in Pisso
et al. (2010).

Interestingly, at first sight it appears that that the relatively large availability of in situ
data yields the ability to explore new problems associated with overdetermined sys-
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tems, as opposed to underdetermined systems characteristic of global inversions. In
fact, the present case can be treated as an overdetermined system provided average
fluxes are treated and some assumptions regarding the representativity of the mea-
surements are made. However, owing to the high resolution of in situ aircraft data, a
large number of data are highly correlated and do not convey independent information.5

A solution to this problem would require the collection of data in locations that optimally
reduce error. This concept has been explored in the fields of data assimilation and
network design (Patra and Maksyutov , 2002).

6 Conclusions and outlook

In this study, we have applied a Bayesian inversion technique combining Lagrangian10

particle dispersion model in backward mode with a composite of CO2 measurements
including ground sites, tall tower and aircraft data. We have found that the better con-
straints on the spatial distributions are obtained using all data including CONTRAIL
aircraft data with respect to inversions calculated using ground sites only. Such im-
proved description of the spatial structure is noticeable even for coarse a priori fluxes15

intended for global models, such as the CDIAC inventory. When longer time series of
spatially averaged fluxes were calculated, we found little evidence of trends in TBA
CO2 fluxes, in agreement with local inventory estimation based on third party infor-
mation. The reliability of these estimates is subject to uncertainties in the transport
models. Additional work is required to improve planetary boundary layer parametriza-20

tions and other precesses of regional transport. We have found that the amount of input
measurement data has a large impact on the results of the inversions. Differences in
inverted fluxes in Central Tokyo amounted to up to 21 % adding aircraft data from the
CONTRAIL dataset. An improvement in the coverage and density of the network dis-
tribution is expected to significantly contribute to the overall quality of the inversions.25

The method may provide an appropriate tool for selecting a priori flux inventories on
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the condition that sufficient data are collected in adequate locations. Further reduction
in uncertainty is required in order to establish a method suitable to inform policy.
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Fig. 1. Sampling location used in this study including geographical distribution of CONTRAIL
data. CONTRAIL measurements provide high resolution sampling of the area surrounding
Tokyo. The gridded surface indicates topography as resolved by the inversion model.

measurements are WMO mole fraction scale. We have chosen data from 2005 to
2009 for this analysis.
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Fig. 1. Sampling location used in this study including geographical distribution of CONTRAIL
data. CONTRAIL measurements provide high resolution sampling of the area surrounding
Tokyo. The gridded surface indicates topography as resolved by the inversion model.
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Fig. 2. Source receptor relationship matrix calculated with different winds. Left: panel ERA
Interim. Center panel: WRF. Right panel: difference. Vertical axis represents measurements
grouped by site and release time (D=Dodaira, K=Kisai, T= Tsukuba, C=CONTRAIL). Horizon-
tal axis represents the Tokyo bay area emission sources under consideration hourly between
24:00 JST of the release day and 36 hours backward in time. Color scale represents the SRR
value in (kgCO2m

2s−1)−1. The integrated difference is of the order of 10 % of the SRR calcu-
lated either with WRF of with ERA Interim winds.

modifications are likely to be higher in those regions and during periods in which more
information was available from measurements.

Figure 4 shows the impact of CONTRAIL data on the geometry of retrieved fluxes.
The upper left panel shows the result of the inversion using all available data including
WDCGG stations, the Tsukuba tall tower and CONTRAIL. The upper right panel shows5

the result of the inversions including only WDCGG stations and Tsukuba data. The

15

Fig. 2. Source receptor relationship matrix calculated with different winds. Left: panel ERA
Interim. Center panel: WRF. Right panel: difference. Vertical axis represents measurements
grouped by site and release time (D=Dodaira, K=Kisai, T=Tsukuba, C=CONTRAIL). Hor-
izontal axis represents the Tokyo Bay Area emission sources under consideration hourly be-
tween 24:00 JST of the release day and 36 h backward in time. Color scale represents the SRR
value in (kgCO2

m2 s−1)−1. The integrated difference is of the order of 10 % of the SRR calculated
either with WRF of with ERA Interim winds.
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Fig. 3. CO2 fluxes from fossil fuel burning (in kgCO2m
2s−1) Left colum: EDGAR and CDIAC a

priori fluxes. b,f: Retrieved fluxes using WCDGG data in 2005, 2007 and 2009 with CDIAC and
EDGAR inventories as a priori fluxes

lower left panel displays the a priori used, EDGAR 4 for 2005 for comparison. The
geometry of the retrieved fluxes is consistent with the inventory data. The difference
is larger in those grids with higher flux value such as the center of Tokyo and in the
grids containing the largest power plants. The lower right panel shows the difference
between the results using all data with respect to the results based on WDCGG sites5

only. In the most urbanized region of Tokyo the difference is up to 21% higher using all
data measurements. This illustrates to what extent the availability of data has a large
impact on flux inversion results.

16

Fig. 3. CO2 fluxes from fossil fuel burning (in kgCO2
m2 s−1) Left colum: EDGAR and CDIAC a

priori fluxes. (b, f) Retrieved fluxes using WCDGG data in 2005, 2007 and 2009 with CDIAC
and EDGAR inventories as a priori fluxes.
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Fig. 4. Impact of CONTRAIL data on the geometry of retrieved fluxes (in kgCO2m
2s−1) . Up-

per left: fluxes retrieved with all data including CONTRAIL. Upper right: fluxes retrieved with
WDCGG and Tsukuba data only. Lower left panel: A priori EDGAR fluxes. Lower right panel:
difference between upper panels a and b.
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Fig. 4. Impact of CONTRAIL data on the geometry of retrieved fluxes (in kgCO2
m2 s−1). Up-

per left: fluxes retrieved with all data including CONTRAIL. Upper right: fluxes retrieved with
WDCGG and Tsukuba data only. Lower left panel: a priori EDGAR fluxes. Lower right panel:
difference between upper panels.
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Fig. 5. Time series of spatially and temporally averaged fluxes in kgCO2m
−2s−1. Squares

represent monthly Bayesian retrievals (a posteriori fluxes) and dashed lines represent a priori
spatial averages. A prioris include: CDIAC (red), EDGAR (blue), 2 × EDGAR (black) and 3 ×
EDGAR (green).
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Fig. 5. Time series of spatially and temporally averaged fluxes in kgCO2
m−2 s−1. Squares repre-

sent monthly Bayesian retrievals (a posteriori fluxes) and dashed lines represent a priori spatial
averages. A prioris include: CDIAC (red), EDGAR (blue), 2× EDGAR (black) and 3× EDGAR
(green).
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