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Abstract

Organics dominate the composition of the atmospheric aerosol, especially in the fine
mode, influencing some of its characteristics such as the hygroscopicity, which is of
climatic relevance for the Earth system. This study targets an improvement in the de-
scription of organic aerosols suitable for large-scale modelling, making use of recent5

developments based on laboratory and field measurements. In addition to the organic
mass and particle number distribution, the proposed method keeps track of the ox-
idation state of the aerosol based on the OH exposure time, describing some of its
chemical characteristics. This study presents the application of the method in a global
chemistry climate model, investigates the sensitivity to process formulations and emis-10

sion assignments, provides a comparison with observations and analyses the climate
impact.

Even though the organic aerosol mass distribution is hardly affected by the new
formulation, it shows impacts (regionally of the order of 10 % to 20 %) on parame-
ters directly influencing climate via the direct and indirect aerosol effects. Furthermore,15

the global distribution of the organic O:C ratio is analysed in detail, leading to differ-
ent regimes in the oxidation state: low O:C ratios over the tropical continents due to
small OH concentrations caused by OH depletion in chemical reactions, and enhanced
oxidation states over the tropical oceans based on the OH abundance and at high alti-
tudes due to longer atmospheric residence time. Due to the relation between O:C ratio20

and the aerosol hygroscopicity the ageing results in a more accurate description of
aerosol water uptake by the organic aerosol. In comparison with observations reason-
able agreement within the limits of a global model of the simulations is achieved.

1 Introduction

The composition of the atmospheric fine mode aerosol is dominated to a large extent25

by contributions of substances lumped under the term of organic carbon (e.g., Jimenez
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et al., 2009). These aerosol compounds affect the climate of the Earth system directly
mainly by scattering and indirectly via indirect aerosol effects by altering cloud proper-
ties (e.g., IPCC core writing team, 2007). Furthermore, the chemical composition and
formation of organic aerosol compounds can also impact the chemical composition of
the atmosphere due modifications in the oxidation pathways and therefore the oxida-5

tion potential, but on the other hand are also directly impacted by the oxidation capacity
of the atmosphere.

Especially in large-scale models describing the atmospheric aerosols, all of these
compounds are treated together in a similar way, mostly as one compound per size
category, named OC (organic carbon) or POM (particulate organic matter) (e.g., Textor10

et al., 2006). In reality, the actual compounds of this mixture are characterised by dif-
ferent oxidation states, and consequently different ratios of carbon to oxygen, and orig-
inate from various sources such as anthropogenic emissions, biomass burning or sec-
ondary aerosol formation from biogenic or anthropogenic volatile organic compounds
(VOCs) which have been processed in the atmosphere reducing their volatility. The15

actual organic aerosol in models therefore should represent the complete mixture of
all of these compounds including their varying properties. Even though some of these
properties equilibrate quickly and can be described by mean characteristics (Andreae,
2009), others change over time. One of these properties is the oxidation state of the
organic aerosol, described by the O:C ratio which is found to be a suitable metric to20

describe some of its chemical properties (Kroll et al., 2011).
Instead of treating all organic material in the particulate phase in only one compound,

recently separate treatment of secondary organic aerosols (SOA) has become more
common (e.g., Tsigaridis and Kanakidou, 2003; Kanakidou et al., 2005; O’Donnell
et al., 2011). In addition to the “classical” approach of treating the organic aerosol, a25

new modelling approach has been developed in the recent years, namely the volatility
basis set (VBS) (Robinson et al., 2007) approach. VBS separates the organic aerosol
into separate classes based on their volatility. This is used to describe both primary and
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secondary particles, however with this approach the computational load of the aerosol
module component is substantially increased.

This increase has also been further amplified by equipping the VBS with a second
dimension (Donahue et al., 2006, 2011, 2012; Jimenez et al., 2009): the ageing of
organic aerosol particles. With this approach, chemical conversion can alter both the5

volatility of a compound and its oxidation state, represented by the O:C ratio. Even for
regional studies conducted over a limited time frame, this concept was found too time
consuming, that a more simplified approach is required (Shrivastava et al., 2011).

Based on observations, Jimenez et al. (2009) show that the O:C ratio can be almost
linearly translated into a value for the aerosol hygroscopicity κ (Petters and Kreiden-10

weis, 2007), and will therefore affect the water uptake of aerosols and their ability to
act as cloud condensation nuclei (CCN).

Without doubt, the variety of organic aerosol compounds show a considerable range
of hygroscopicity values (Suda et al., 2012). In addition to the different hygroscopicity
values obtained for various compounds, Suda et al. (2012) also provided frequency15

spectra for individual species, depending on different oxidation states due to competi-
tion for oxidants. Lumping all of this information is required to transfer it to field mea-
surements of ambient organic aerosol. For instance, Chang et al. (2010) conclude from
their field studies in Canada that the hygroscopicity can be described by a linear rela-
tionship with the observed O:C ratio, in agreement with Jimenez et al. (2009). In their20

study the analysis is taken one step further to compare predicted and observed CCN
numbers, based on the assumed and derived κ values of the organic aerosol and con-
cluded that the consideration of the O:C ratio for the determination the hygroscopicity
and total CCN numbers is relevant. However, also in this study it is stated that one value
for κ for a typical aged and one for the completely non-aged type of organic aerosol25

would be sufficient for climate modelling. On the other hand, this corresponds more or
less to a decision whether the organic aerosol is hygroscopic or not, but does not take
a reasonable contribution of organic material to a mixed aerosol particle into account.
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The here presented modelling study aims to analyse the impact of the processing
of organic aerosol material by ageing on the aerosol distribution. A major goal is to
quantify the importance of the characterisation of O:C ratios and hygroscopicity values
on large scales to transfer knowledge from laboratory and field studies to the globally
simulated context. Additionally, we present the global distribution of the O:C ratio in5

organic aerosols and corresponding organic aerosol hygroscopicity values for global
scale climate which are – according to our knowledge – not yet documented in the
literature, and compare the simulated with observed values for various regions.

This study is structured as follows: The next section deals with the description of the
applied model, the modifications required to investigate the research goals and the sim-10

ulations that have been performed to analyse the impact of a description of the ageing
of organic carbon aerosol. The results are discussed in Sect. 3 with focus on the total
atmospheric budget (Sect. 3.1), the oxidation state of the aerosol (Sect. 3.2) and the
impact on aerosol water uptake (Sect. 3.3). Furthermore, the impact of low molecular
weight organics and their dissolution into aerosol water is addressed (Sect. 3.4). In a15

last step, the impact on climate relevant parameters, namely the aerosol optical thick-
ness (Sect. 3.5) and on CCN numbers (Sect. 3.6) is analysed. This work is summarised
and concludes in Sect. 4.

2 Model description and simulation setup

In this study the atmospheric chemistry climate model EMAC (ECHAM5/MESSy At-20

mospheric Chemistry) has been applied. EMAC model is a numerical chemistry and
climate simulation system that includes sub-models describing tropospheric and middle
atmosphere processes and their interaction with oceans, land and human influences
(Jöckel et al., 2010). It uses the second version of the Modular Earth Submodel Sys-
tem (MESSy2) to link multi-institutional computer codes. The core atmospheric model25

is the 5th generation European Center Hamburg general circulation model (ECHAM5,
Roeckner et al., 2006). For the present study we applied EMAC (ECHAM5 version
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5.3.02, MESSy version 2.41) in the T42L31 resolution, i.e. with a spherical truncation
of T42 (corresponding to a quadratic Gaussian grid of approx. 2.8 by 2.8 degrees in
latitude and longitude) with 31 vertical hybrid pressure levels up to 10.0 hPa. The ap-
plied model setup comprised the submodels for radiation and large scale clouds (see
Roeckner et al., 2003), convective clouds and tracer transport (Tost et al., 2010a),5

atmospheric gas phase chemistry (Sander et al., 2005), emissions (Kerkweg et al.,
2006b; Tost et al., 2007b), dry deposition and aerosol sedimentation (Kerkweg et al.,
2006a), scavenging and wet deposition (Tost et al., 2006, 2007a) and a representation
of the atmospheric aerosol (Pringle et al. (2010a), described in detail below) and its
radiative properties (Pozzer et al., 2012).10

2.1 Representation of the atmospheric aerosol

The atmospheric aerosol in this study is parameterised using the MESSy aerosol sub-
model GMXe (Pringle et al., 2010a). GMXe combines treatment of the aerosol mi-
crophysics (in a similar way to the M7 model (Vignati et al., 2004)) with the aerosol
thermodynamics model ISORROPIA II (Fountoukis and Nenes, 2007). The size distri-15

bution is described by four hydrophilic and three hydrophobic lognormal modes, with
prognostic aerosol mass and number and a diagnosed mean radius.

Microphysical processes considered are the nucleation of new sulphuric acid aerosol
particles, coagulation of aerosol particles, and exchange of particles between the
modes, including the conversion of hydrophobic to hydrophilic modes via coating of20

the insoluble cores by soluble material. In addition to the coating material added to
hydrophobic mode particles by coagulation, the condensation of hydrophilic material
(determined from the thermodynamics) can also lead to the transition from hydropho-
bic to hydrophilic modes. These two process contribute to the microphysical ageing of
organic carbon, i.e. they can lead to the transfer of aerosol from the hydrophobic to the25

hydrophilic modes and also to the transfer into other size classes.
Additionally, a transfer from hydrophobic to hydrophilic modes occurs in case of cloud

processing, since it is assumed that the droplets represent a complete mixture of hy-
10336
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drophobic and hydrophilic material. Consequently, after evaporation the hydrophobic
material is coated with hydrophilic material, such that the whole internally mixed aerosol
particle must be considered as hydrophilic. Nevertheless, the hydrophobic material
does not contribute significantly to the aerosol water uptake due to its low hygroscop-
icity.5

The aerosol compounds treated explicitly are Na+, Cl−, NH+
4 , SO2−

4 , HSO−
4 , NO−

3
and the bulk compounds of OC, BC, dust and a bulk sea salt (the fraction that is not
described by NaCl or sea salt sulphate).

Compared to the GMXe, described in Pringle et al. (2010a), an updated version of
the aerosol module is applied, which is equipped with a new internal flexible species10

structure, which allows for an arbitrary number of compounds to be used for the mi-
crophysical calculations, making use of tracer information provided by the TRACER
structure of EMAC (Jöckel et al., 2008). Additionally, the water uptake of organic
aerosol is calculated with the κ approach (Petters and Kreidenweis, 2007). Further-
more, GMXe has been augmented by a more flexible scheme for emission flux as-15

signment for aerosol compounds. Additionally, an emission parameterisation for ma-
rine organic aerosol has been implemented, using an approach following Vignati et al.
(2010).

2.1.1 Representation for the ageing of organic carbon

To describe the time evolution of the organic aerosol, GMXe has been extended by a20

scheme which describes the chemical ageing of organic carbon. In this configuration
the OC tracer is split up into an arbitrary number of species (6 for this study) which
represent organic carbon but which take the oxidation state in terms of the O:C ratio
into account. The scheme divides the OC tracer into the different species based on the
OH exposure time (cf. Fig. 4b of Jimenez et al., 2009); the oxidation state of the bulk25

OC is calculated using the time varying OH concentration of the respective grid box.
This is schematically displayed in Fig. 1.
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The underlying chemical basis of this representation is that the organic compounds
undergo a mixture of both heterogeneous in the aerosol phase and to a higher de-
gree gas phase oxidation reactions in a series of re-evaporation and condensation
processes (Donahue et al., 2006). The oxidation potential is described with the help of
the strongest, abundant oxidant of the troposphere OH. Since in many oxidation reac-5

tions of organic compounds OH is also recycled (e.g., Taraborrelli et al., 2009, 2012),
it is assumed that there is no net OH loss or consumption by the ageing process. An
additional consideration of other oxidants, e.g. O3, NO3 or halogens is also possible
with this approach, as the OH exposure time could be replaced by a total oxidant ex-
posure time; however at present robust observations of the exposure time have only10

been published for OH.
When the O:C ratio exceeds the threshold values of the individual tracers used in the

model (as listed in Table 1) the mass is transferred to the tracer with the next higher
oxidation state. In case of insufficient OH concentrations or too short an exposure
time only a fraction of the mass of a tracer is converted to the next higher oxidised15

one. The abbreviation WSOC represent “water soluble organic carbon”, as with higher
number of the compounds, the O:C ratio and therefore its hygroscopicity increases.
Since, according to measurements from all over the world Jimenez et al. (cf. Fig. 3 of
2009), the O:C ratio is almost linear to the κ value for organic aerosol, to each of the
O:C ratios a κ value is assigned according to the right axis of Fig. 1. Consequently,20

the water uptake of organic carbon is determined as sum of the individual contributions
from the compounds using the κ scheme, selecting the κ values as listed in Table 1.

In the standard configuration of the scheme, this ageing process is only allowed for
the organic carbon in the hydrophilic mode, but in one of the sensitivity tests, also the
hydrophobic organic carbon can undergo this ageing.25

In contrast to the ageing processes described in the 2-D volatility basis set (VBS)
(Donahue et al., 2011, 2012) as e.g. applied by Shrivastava et al. (2011) in the WRF-
CHEM model, this approach requires fewer tracers, making it computationally less ex-
pensive and suitable for global climate simulations. On the other hand, the other fea-
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ture of the VBS, namely the differentiation of the volatility and therefore the partitioning
between gas and aerosol phase is not reproduced with the presented approach. How-
ever, since in global climate models also the SOA is often described by the emission
of primary emitted particles that have implicitly formed by the condensation of oxidised
low volatility organic compounds originating from biogenic VOCs, the chosen approach5

does not limit the application for SOA organic carbon in climate studies.
Additionally, the fact that in general urban and remote, rural or stations downwind

from pollution centers show similar characteristics for the organic aerosol O:C ratio (Ng
et al., 2010; Andreae, 2009), provides a reasonable basis for the presented approach.

2.1.2 Non-equilibrium chemical processes in the aerosol10

For this work, GMXe has also been augmented by an explicit scheme for the calcu-
lation of non-equilibrium processes in the aqueous phase. For that purpose a set of
chemical reactions describing the uptake and release in the aqueous phase accord-
ing to a diffusion limited Henry’s law, dissociation and recombination reactions and
oxidation processes has been compiled. This set of equations is converted into a set15

of coupled differential equations by the KPP (Kinetic PreProcessor) software (Damian
et al., 2002), including a differential equation solver using a Rosenbrock method of the
third order with automatic time stepping control (Sandu et al., 1997). This approach
offers similar possibilities as the scheme described by Kerkweg et al. (2007), but since
it is treated decoupled from the gas phase chemistry due to the concept of operator20

splitting it is substantially cheaper from a computational point of view. Nevertheless, it
is computationally more expensive than neglecting non-equilibrium processes and it is
more suitable for process research than long-term climate studies.

With the help of this tool the uptake and dissociation of low molecular weight
organic compounds, e.g. formaldehyde (HCHO), formic acid (HCOOH), acetic acid25

(CH3COOH) is taken into account. However, since the scheme calculates the uptake
of these species into the aqueous phase of the aerosol, these compounds are cur-
rently not considered for aerosol hygroscopicity and water uptake calculations, but they
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do contribute to the total aerosol mass and participate in all aerosol microphysical pro-
cesses. Furthermore, it provides opportunities to explicitely calculate oxidation reac-
tions in the aerosol phase for organic and inorganic compounds, e.g. glyoxal production
or SO2 oxidation (Tost et al., 2010b).

2.2 Simulation setup5

For this study five simulations have been performed. All of them span a period of 2 yr,
with the data from the first year used as spin-up and not taken into account for the
analysis. The meteorological conditions are calculated in a free running climatological
mode, with climatological (years 1995–2005) sea surface temperatures originating from
the AMIPII database (Taylor et al., 2000). Greenhouse gas concentrations for the year10

2000 have been applied and are nudged towards the observations. The emission data
base for gaseous compounds are the IPCC-AR5 emissions for the year 2000 (Lamar-
que et al., 2010). Biomass burning emissions for gaseous compounds are taken from
the GFEDv3.1 inventory (van der Werf et al., 2010). Aerosol emissions are from the
AEROCOM data base, also representative for the year 2000, including also sea salt15

and mineral dust emissions (Dentener et al., 2006). The contribution of OC emissions
are from fossil and bio-fuel burning, biogenic sources (representing SOA) and biomass
burning. Additionally, also volcanic emissions of SO2 are taken from the Dentener et al.
(2006) data base.

Even though the aerosol optical properties and their CCN potential are calculated,20

the actual radiation and cloud interactions with the aerosol are excluded (as well as
chemical feedback) thus the meteorology is absolutely identical all simulations, which
allows a direct comparison of the data sets from the individual simulations without
taking the inter-annual variability into account. Instead, for aerosol radiation effects an
aerosol climatology and for cloud effects fixed cloud droplet and ice crystal numbers25

are assumed.
The five simulation are summarised in the following section:
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1. No-Ageing: In this simulation the ageing of organic carbon is ignored, and it can
serve as a standard aerosol simulation (comparable to the setup presented in
Pringle et al., 2010b).

2. Ageing-LO: In this simulation the ageing of organic carbon is taken into account.
All hydrophilic organic carbon is emitted into the compound with the lowest O:C5

ratio, representing an almost hydrophobic particle which increases its hygroscop-
icity only via the ageing. This should be represented by the name “LO” meaning
“Low Oxidation state”.

3. Ageing-BG: This setup, named according to the “Best Guess” of the emission at-
tribution, is similar to the Ageing-LO case, except for a different assignment of the10

hydrophilic organic carbon emissions, i.e. 10 % of the total hydrophilic SOA emis-
sions are emitted in the lowest O:C class, 15 % in the WSOC1, 20 % in WSOC2
and 5 % in WSOC3 each for Aitken and accumulation mode. Similarly the hy-
drophilic fraction of the biomass burning emissions is assigned with 20 %, 30 %,
40 % and 10 %, respectively. In addition the hydrophilic emissions from marine15

organics are also emitted with the same fractions into the accumulation mode.

4. Aerchem: This setup is identical to the Ageing-BG configuration, except for the
additional treatment of dissolution and non-equilibrium chemistry, described by
the sub-submodel “Aerchem” (Sect. 2.1.2).

5. Insol : This setup has identical emission allocation as Ageing-BG, but in addition it20

allows ageing to also occur for the hydrophobic material. In hydrophobic aerosol
the chemical conversion the organic material is converted to more hydrophilic
matter such that the aged organic matter is transferred into the hydrophilic modes,
i.e. this process represents another pathway for hydrophobic organic aerosols to
become hydrophilic besides the above mentioned aerosol microphysical ageing25

and cloud processing.
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3 Results and discussion

3.1 Global budget of organic carbon aerosol compounds

To analyse the impact of the ageing process, the global atmospheric burden of the
organic carbon aerosol compounds is displayed in Fig. 2 on a logarithmic scale. The
blue bars represent the simulation without ageing, the red bar the Ageing-LO case, the5

yellow the Ageing-BG, the green the results from the Aerchem and the brown the Insol
simulation. Except for the Insol case, the total organic carbon atmospheric burden in all
modes is similar, independent of the considered ageing and the emission redistribution.
For the hydrophobic Aitken mode OC, all simulations except Insol maintain a similar
burden since the ageing only indirectly affects the hydrophobic mode via changes in the10

size in the hydrophilic modes, which can subsequently effect the aerosol microphysics.
On the other hand, since in the Insol configuration the OCki is directly modified by the
ageing (allowing transformation into the hydrophilic mode) its burden is substantially
reduced (almost up to 80 %).

For the hydrophilic Aitken mode, the differences in the burden mainly originate from15

the ageing and the attribution of the emissions, e.g. since less OC mass is directly emit-
ted in the OCks tracer in the Ageing-BG simulation, but into species representing higher
O:C ratios, the burden of OCks is lower than in the Ageing-LO simulation. The differ-
ence between the No-Ageing and the Ageing-LO simulation originates mostly from the
ageing itself. Differences between Ageing-BG and Aerchem must be attributed to the20

modified size distribution due to the uptake of additional compounds in the Aerchem
simulation, but they are negligibly small. The most prominent differences occur in the
Insol simulation. The first reason is emission redistribution similar to the Ageing-BG
setup, but especially for the OCks tracer there is almost an order of magnitude decrease
in the burden. This is due to the ageing of the hydrophobic material. This conversion25

process occurs at a faster rate than the conversion via the microphysical processes
of coagulation and coating by hydrophilic material, such that un-aged OC is hardly
converted any more to hydrophilic OC with a low O:C ratio, but only into categories
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of higher O:C ratios. One additional aspect to consider is that during the ageing the
particles also undergo microphysical aerosol processes, such that for most OC com-
pounds the mass is moved from the Aitken to the accumulation mode. In addition, the
ageing increases the CCN potential of the fine mode organic aerosol such that nucle-
ation scavenging becomes more efficient, and hence causes a more efficient removal5

process for organic carbon aerosol, compared to the other scenarios.
In principle the same processes also explain the differences in the accumulation

mode mass distribution, again with the Insol simulation showing substantially reduced
burden (reduction of ≈20%). For the lower O:C ratio tracers the burden is even higher
in this simulation due to the transfer of aged material that originates from both the hy-10

drophobic and hydrophilic Aitken modes. For the three simulations in which the ageing
is only allowed for the hydrophilic modes, there is hardly any difference for the higher
O:C ratio tracers, whereas for the lower O:C ratio compounds the emission redistribu-
tion both in the Aitken and in the accumulation mode contribute to the differences.

For the coarse mode the Insol simulation does not a show reduced burden in the15

total: a reduced atmospheric load is found for the un-aged compounds but for the other
compounds the burden is even increased. This is due to the more efficient ageing and
the shift into the largest particle size representation via cloud processing with respect
to the total organic aerosol mass before the aerosol loss processes remove the organic
carbon aerosol mass from the atmosphere. Due to the enhanced emissions at higher20

O:C ratio in the Ageing-BG, Aerchem and Insol simulation, the burden of the tracers
representing higher O:C ratio are slightly enhanced compared to the Ageing-LO case.

Note, that there is hardly any difference in the total OC mass in the case without
ageing compared to any of the sensitivity tests with the exception of the Insol scenario.
This shows – as for the other modes – that the ageing process itself hardly disturbs the25

global mass distribution (except for the Insol case, due to the additional transfer to the
hydrophilic mode). A comparison with observations as shown in Pringle et al. (2010a)
is therefore hardly affected and shows a similar agreement (therefore not repeated in
this manuscript). The respective surface mixing ratios are presented in Fig. 2 of the
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Supplement. Furthermore, a comparison of the OC column burdens for the five simu-
lations is presented in Fig. 1 of the Supplement; this shows only very small deviations
between the different scenarios.

3.2 O:C ratio and κ value

In addition to the global mass in each tracer representing the oxidation state of the5

organic aerosol via the O:C ratio, the geographic distributions of the oxidation state are
analysed. Since in the No-Ageing simulation ageing is not allowed to occur, the O:C
ratio is constant, and we assume a typical κ value for organic carbon (κOC of 0.1 (e.g.,
Pringle et al., 2010b; Wex et al., 2009; Pöschl et al., 2010)), thus the corresponding
O:C ratio is approximately 0.48, according to the setup definition in Table 1. For the10

other simulations, a mean O:C ratio of the organic aerosol is calculated from the O:C
ratios of the individual tracers as defined in Table 1 and the mixture of the individual
tracer mixing ratio resulting in a weighted mean O:C ratio for each model grid box.
Detailed figures, describing the contributions of the individual OC tracers to the total
organic carbon in each mode are shown in Figs. 4–15 of the Supplement.15

Figure 3 shows in panel a the annual mean O:C ratio for the Ageing-BG simula-
tion at the surface. The geographic pattern is characterised by lower O:C ratios in
the mid-latitude storm tracks on both hemispheres with lowest values in the Southern
Hemisphere. Due to the low OH levels in this region (displayed in Fig. 3 of the Supple-
ment) the oxidising capacity of the atmosphere is low, resulting only in a slow, inefficient20

ageing process. Towards the tropics with higher OH levels, the O:C ratio increases, es-
pecially over the oceans and in other regions without pollutants competing for oxidants
(e.g. the Sahara).

Over the tropical rainforests the mean O:C ratio at the surface is around 0.48 in
Amazonia and more than 0.5 in Central Africa. This is caused by the balance of high OH25

formation rates, but substantial OH depletion by other compounds, e.g. isoprene. This
agrees with observations, e.g. Pöschl et al. (2010) report a mean value of 0.44 for the
AMAZE-08 campaign in the Amazonian rainforest, but also with laboratory experiments
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(e.g., Hallquist et al. (2009), and references therein). However, it should be noted,
that the recently found OH recycling over the tropical rain forest (e.g., Lelieveld et al.,
2008; Taraborrelli et al., 2009) is not included in these model simulations, which could
potentially lead to even higher simulated O:C ratios; on the other hand, this could be
balanced by a different assignment of the emissions into lower O:C ratio tracers (like5

an intermediate between the Ageing-LO and Ageing-BG scenarios).
Also other modelling studies, e.g. Shrivastava et al. (2011) using the 2-D VBS and

a simplified version of it find a strong gradient (their Fig. 5) in the simulated O:C ratio
from the continental aerosol to the ocean over Mexico. Their time resolved aerosol
mass spectrometer measurements and their model simulations show varying values10

with a mean value of around 0.35 to 0.4 for Mexico City, but values of more than 0.6
over the ocean. Even though the values for Central Mexico of our model simulations
slightly exceed the low observed values, potentially due to an underestimation of the
anthropogenic pollutants forming SOA and due to the large grid box of a global model,
the gradient towards the ocean is nevertheless accurately captured.15

Other data, collected by Ng et al. (2010), also show a relatively good agreement,
with a tendency of the model to underestimate the high O:C ratio values, both in indus-
trialised and remote regions of Europe, North America and East Asia. Fig. 4 shows this
comparison of the simulated data (red symbols) with observed values (blue symbols)
for the average OOA. Since the observation data is from various years, and mostly20

the season has not been mentioned in the study of Ng et al. (2010) the annual av-
erage value of the mass weighted O:C ratio has been used for the simulation data,
sampled at the location of the station (including a linear interpolation algorithm). Given
the large grid box size, the uncertainties in the temporal resolution and local conditions
this comparison should be regarded more under qualitative than quantitative aspects.25

An estimate for the temporal variability is marked by the error bars, representing the
temporal 1σ range. The analysis from Ng et al. (2010) also shows that there is a huge
range of O:C ratios depending whether low- or semi-volatile organic aerosol is mea-
sured. The model formulation of the different OC compounds can be translated to also
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cover a similar range, with the low O:C ratio tracers resembling SV-OOA and those
with a high O:C ratio LV-OOA, such that the mean O:C ratio of the total aged organic
aerosol is described. The simulated data provide a good representation for the lower
O:C ratios, whereas for the observations of highly oxidised organic aerosol the agree-
ment is not captured. Even though the model shows a similar tendency in increasing5

values as the observations, the magnitude cannot be reproduced. This partly results
from the model formulation not allowing higher oxidation states than 0.7, such that in
the mean oxidation state those values can only be reached after maximum oxidation
time with no influence of any freshly emitted organic aerosol. The O:C ratios of above
0.7 have been neglected, since the corresponding κ values for higher O:C ratios have10

not been reported and a linear interpolation to higher values might not be valid.
Ng et al. (2010) report maximum O:C ratios for certain types of organics exceeding

1.0, which then in the mean can substantially increase the observed values above the
simulated ones. This might indicate the relevance of other oxidants playing a role in
the oxidation process that have been neglected in the current model formulation or the15

OH concentrations have been underestimated in the model. Alternatively, the O:C ratio
of biogenic aerosols could have been underestimated at emission stage, such that the
remote stations which are more influenced by aged anthropogenic and fresh biogenic
organic aerosol result in underestimated values. However, in comparison with data
from Amazonia a higher biogenic O:C ratio would result in worse agreement in those20

regions. However, this requires more laboratory and field data, e.g. if the oxidation
capacity would have been known together with the O:C ratios along the atmospheric
transport pathways, a better parameterisation could have been developed. Neverthe-
less, the qualitative agreement with observations is encouraging given the simplified
nature of the parameterisation which does not resolve the detailed chemical reactions25

involved in the aging process.
The variability in the O:C ratio is relatively low (in terms of the standard deviation of

the mean O:C ratio value), such that in a comparison with the O:C value from the No-
Ageing simulation the difference from the constant value is in most regions statistically
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significant with respect to an unpaired z-test and a 90 % confidence interval, except
for the black dotted areas in Fig. 3a. This measure for the statistical significance is
applied throughout the whole manuscript. This means that the spatial variability of the
O:C ratio is far from being constant, thus with a constant representation of the O:C
ratio and consequently a constant κ value, spatial phenomena cannot be captured5

accurately.
Panel b of Fig. 3 shows the vertical distribution of the annual average zonal mean

O:C ratio. Lowest values are obtained in the mid-latitude storm tracks, as already de-
scribed above. However, with increasing altitude the O:C ratio constantly increases.
This is due to the fact that there is less competition for oxidants at the elevated altitude,10

i.e. therefore higher OH levels (see also the Supplement). Another even more impor-
tant aspect is that, except for rapid transport by deep convection, the organic carbon
aerosol requires a relatively long time to reach higher altitude. Since the ageing is a
function of the OH exposure time, the O:C ratio also increases with extended atmo-
spheric residence time. This agrees with the observations shown in Shrivastava et al.15

(2011), that at elevated altitude, i.e. in aircraft measurements, the O:C ratio can be
substantially enhanced. Upper tropospheric aerosol is especially highly oxidised. This
also agrees with the results from Schmale et al. (2011), who found that organic aerosol
in the polar upper troposphere is close to the maximum oxidation level, even exceeding
the maximum obtained in the simulations. In this work the uppermost class of O:C ratio20

represented by the WSOC5 tracer has an O:C ratio value of 0.7 thus a higher value
cannot be obtained with this setup, even if all organic aerosol were to have under-
gone complete ageing. It is clear from the zonal mean plot that, in line with the surface
fields, most values are significantly different from the constant value of the reference
simulation; the number of data points contributing to the regions of low significance25

are shown in lower graph of this panel (with a potential maximum value of 128 points,
resulting from the zonal average of the model resolution).

While there are large changes between the No-Ageing and the Ageing-BG scenarios
due to the introduction of OC aging, the changes between the other scenarios (which
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all include aging) are more subtle; they reflect deviations due to the uncertainty in the
best way to represent the aging. In the following sections the Ageing-BG simulation
is chosen as a reference for difference plots, as this gives us a “best guess” baseline
simulation. This allows us to examine the impact of different aging assumptions on the
global distribution of O:C.5

As stated in Sect. 2.2, in the Ageing-BG scenario the emitted OC is divided be-
tween different O:C categories, but this division of aerosol between O:C categories is
uncertain, thus in this section we consider an additional sensitivity scenario in which
all hydrophilic OC is emitted into the lowest O:C category. The lower panels of Fig. 3
show the relative difference of the Ageing-LO to the Ageing-BG simulation: the left10

panel shows the surface and the right the zonal average distribution. The emission of
all OC into the lowest O:C ratio tracer leads to a reduction of the simulated O:C ra-
tio of up to 30 % in the Southern Ocean. Also the tropical rainforests, which have high
organic aerosol emissions and surface mixing ratios, are subject to a substantial reduc-
tion of up to 20 % in the O:C ratio. The anthropogenic OC emissions in East Asia are15

not affected by the change in the distribution of the hydrophilic OC emissions as they
are mostly emitted into the hydrophobic mode. For this reason, the differences in these
regions are small and not statistically significant. Since the ageing affects both simu-
lations similarly, the oxidation capacity of the atmosphere cannot make up for the O:C
ratio difference at the emission, thus near the surface this characteristic is maintained20

for most of the aerosol lifetime. However, at higher altitudes, the differences quickly
converge towards zero, i.e. the ageing of OC above the boundary layer, which is impor-
tant due to the longer atmospheric residence time, is efficient enough to equilibrate the
O:C ratio. Thus at these altitudes there is little sensitivity to the emission assumptions
and the O:C ratio is controlled mainly by the OH mixing ratios. This is even true in the25

tropics where the two simulations differ more significantly, i.e. fewer points are of “low
significance” but the differences in the O:C ratio nevertheless remain almost negligi-
ble. This is also obvious from the gradient of the ageing curve in Fig. 1, which shows
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a quick response to changes for low O:C ratios and slower impact for more oxidised
compounds.

The difference plots for the other two sensitivity simulations are provided in Fig. 16
of the Supplement. Both show differences not exceeding ±5% (with slightly more im-
portance for the Insol simulation) with mostly low statistical significance, indicating that5

the ageing is hardly affected by additional compounds in the aerosol phase (Aerchem),
and only slightly impacted by ageing already starting in the hydrophobic Aitken mode
due to the low contribution of the small particles in a mass weighted mean oxidation
state. For this simulations only over tropical oceans and Southern Asia the difference
are between 5 and 10 % and the significance level is reached, such that this additional10

ageing results mainly from the shorter atmospheric residence time (in agreement with
the budget calculations from Fig. 2).

As the O:C ratio of the aerosol increases with aging so too does the hygroscopicity
value κ (Petters and Kreidenweis, 2007), as shown by Jimenez et al. (2009). Conse-
quently, more aged organic aerosol will contribute more to the aerosol water uptake.15

This dependence is seldom accounted for in global models, which typically assume a
constant κORG value (e.g., Wex et al., 2009; Pöschl et al., 2010). This is the approach
adopted in the No-Ageing scenario where a κORG value of 0.1 is assumed. To pro-
vide an estimate for the organic kappa, the results from the Ageing-BG simulation are
shown in Fig. 5 as the organic κ sampled at the height of the boundary layer (and20

then determining the annual average), which is a typical cloud formation altitude. For
comparison with the No-Ageing case the constant value of 0.1 is marked by the sharp
transition in the colour scale from green to yellow. This threshold marks regions in
which the alternative description of OC and its ageing leads to increased or reduced κ
values.25

For the hydrophilic Aitken mode (upper panel) most continental regions are char-
acterised by a lower κ value, i.e. the relatively freshly emitted organic carbon is less
hygroscopic than assumed in the No-Ageing simulation. However, over the oceans a
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substantial increase in hygroscopicity is observed, except for the subpolar regions in
the high latitudes. For most regions the differences are statistically highly significant.

For the accumulation mode in almost all regions a substantial increase is found of-
ten exceeding a 50 % increase threshold, except for the storm tracks in the Southern
Ocean in which due to the low OH mixing ratios hardly any ageing occurs. However,5

material reaching Antarctica has long enough residence times, that also an increase in
the hygroscopicity is simulated.

These characteristics are even more pronounced for the coarse mode, resulting in
a more than 100 % increase in the organic κ over the tropical oceans and the desert
regions. Also for the tropical continents a significant increase in the κ value has been10

calculated resulting in a higher potential activation of the organic aerosols into cloud
droplets. Especially for the coarse mode, but also for the accumulation mode this in-
crease in κ for the organic aerosol is not only an effect of the OH concentrations, but
also of the general age of the aerosol particles. Since the microphysical processing re-
quires a certain amount of time before the aerosol particles grow due to condensation15

and coagulation, they are naturally longer affected by the OH exposure and encounter
more ageing.

The right column of Fig. 5 shows the relative difference between the Ageing-LO sim-
ulation (where the organic carbon is emitted fully into the lowest O:C category) and
the Ageing-BG scenario. Especially for the Aitken mode, the continents are subject20

to a substantial and significant decrease in the organic κ in the Ageing-LO scenario,
whereas over the oceans the differences are mostly small and largely insignificant. For
the accumulation mode, the differences over the continents become smaller (around
10 %), but they are still significant in some regions e.g. South America. The substan-
tial decrease in κORG in the Ageing-LO scenario in the Southern Ocean results from25

the different emission assignment of organic compounds emitted from the ocean. In
the coarse mode the differences become even smaller due to the longer atmospheric
residence time, such that the large differences originating from the emission attribution
reduce to a few % in the coarse mode κORG value, with little statistical significance over
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most continents, whereas over the oceans the influence from the accumulation mode
emission attribution is transferred into the coarse mode via microphysical aerosol age-
ing and cloud processing. The substantial differences between the two scenarios can
directly be related to the emission assignment. However, one has to note, that over the
oceans the organic aerosol and therefore the organic κ is of minor importance, since5

sea salt dominates the aerosol population and its hygroscopicity.
The other two simulations (Aerchem and Insol) show smaller deviations, the corre-

sponding figures are presented in the Supplement (Fig. 17). For the Aerchem experi-
ment the simulated fields of κORG are very similar to those in the Ageing-BG scenario
since the additional uptake does not contribute to the hygroscopicity as it accounts10

for dissolved material. Consequently, the differences are below any statistical signifi-
cance. For the Insol simulation the largest differences occur in the hydrophilic Aitken
mode. This results from the additional treatment of the hydrophobic, freshly emitted
and not microphysically aged organic carbon from mostly anthropogenic sources. The
strongest effects are seen over the ocean due to the higher OH mixing ratios that arise15

in marine regions because there are fewer competing oxidation reactions. For the larger
modes the differences become smaller and less significant because they are affected
by microphysical aging in addition to the chemical ageing and both these processes
can convert material from the hydrophobic to hydrophilic size modes.

Compared to observations it is difficult to judge which scenario is more realistic; e.g.20

the mass weighted global mean organic κ value for the accumulation mode is around
0.1 in the Ageing-LO scenario. However, especially for the fine mode aerosol in South
America a value of 0.15 as found by Pöschl et al. (2010) can only be obtained with
the Ageing-BG model configuration. Especially, for the tropical continents the low OC κ
values obtained in the Ageing-LO simulation underestimate most observations. How-25

ever, note that the assumption of the linear relation of O:C ratio and κORG, also differs
from data set to data set, e.g. the κORG of Pöschl et al. (2010) would correspond to
a larger O:C ratio than reported in their study. The O:C ratios reported by Ng et al.
(2010) mostly exceed the simulated values which corresponds to an even more en-
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hanced value for κORG than obtained from the model. Consequently, a mass weighted
value of κORG = 0.1 should be at least adjusted to slightly higher values of κORG≈0.14.
Nevertheless, for CCN properties of the aerosol it is also necessary to take the size dis-
tribution into account. Even though the mass weighted value of κORG might be higher
than previously estimated, a lot of small aerosol particles – dominated by the organic5

fraction in terms of composition – are characterised by a lower oxidation state and
hence lower κORG values, resulting in less efficient activation potential.

3.3 “Organic” aerosol water

The differences in the hygroscopicity of the organic aerosol directly affects the mass
of water which can be taken up by the organic compounds and thus affects the total10

aerosol water following the ZSR rule (Stokes and Robinson, 1966). Since most mi-
crophysical aerosol processes are influenced by the ambient aerosol size, i.e. the wet
diameter, the organic aerosol hygroscopicity also impacts the aerosol size distribution.
This section deals only with the fraction of the aerosol water attracted by the organics;
for total aerosol water uptake we refer to a previous study (Pringle et al., 2010b).15

Figure 6 displays in panel a the column burden of aerosol water attached to the
organic aerosol in the Ageing-BG simulation. The regions with largest organic aerosol
water are the tropical continents (due to biogenic emissions and biomass burning),
South East Asia due to anthropogenic, biomass burning and biogenic emissions and
to a lesser extent North America. The oceanic regions hardly contribute to organic20

aerosol water, except for transported organic aerosol outflow westwards of Africa. This
pattern is to a large extent similar to the total organic column burden (see Fig. 1 in the
Supplement). The organic κ value plays a secondary role such that even regions with
lower κORG have high water uptake due to OC when the OC burden is large.

An example for this can be seen in Amazonia, which is characterised by a relatively25

high organic κ value (cf. Fig. 5a) but there is less organic aerosol water due to the
lower OC burden compared to Central Africa.
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The upper right panel of Fig. 6 shows the relative contribution of the organic aerosol
water to the total aerosol water. This illustrates that in Central Africa and and in Central
South America (and to a lesser extent also South of the Sahel in Africa) organic aerosol
is one of the dominating compounds for water uptake. In regions of mixed pollution
from organic and inorganic aerosol the inorganic compounds ((NH4)2SO4, NH4HSO45

and NH4NO3) mostly contribute more to the total aerosol water (e.g., South-East Asia,
USA and Europe), whereas in regions additionally influenced by marine aerosol sea
salt dominates the aerosol water uptake.

The panels c and d represent the relative difference of the organic aerosol water from
the No-Ageing and Insol simulations to the Ageing-BG experiment. Since especially10

for the larger modes the organic hygroscopicity is significantly higher in Ageing-BG
compared to No-Ageing the water attached to the organic aerosol mass is substantially
smaller for the latter simulation. Except for the Southern Ocean with its relatively low
ageing, a reduction in the organic aerosol water burden of up to 50 % is calculated
when aging is not included; this is statistically significant in all grid boxes. This large15

change in water associated with OC is also obvious in the three columns for organic
aerosol water in Fig. 2.

The other three simulations show lower differences compared with the Ageing-BG
scenario. For the Insol simulation, values with ±25% are not exceeded, and statistical
significance is mostly limited to oceanic grid boxes due to the longer residence time20

and associated ageing (low significance is marked by the dotted regions in Fig. 6). The
regions characterised with larger differences between Insol and Ageing-BG are mostly
marine regions influenced by continental outflow. Therefore, the different water uptake
is not only influenced by differences in the organic κ, but also by potentially more
efficient removal processes due to the faster conversion of hydrophobic to hydrophilic25

modes.
The differences for the other two simulations (Fig. 18 of the Supplement) are sub-

stantially smaller (±10%), lacking mostly statistical significance. Only for Ageing-LO a
significant difference in the organic aerosol water is found in regions influenced by the
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marine OC emissions, and due to their low ageing caused by low OH concentrations,
the emissions assignment and corresponding κORG values influence the organic water.
However, the organic aerosol water plays a negligible role in those regions due to the
high hygroscopicity of sea salt dominating total aerosol water.

In the total burden (cf. Fig. 2), all of these differences balance each other and only5

small differences in the total organic aerosol water are found. Only the No-Ageing sce-
nario shows substantially less water in all three size modes, whereas the reduced
values of the Insol simulation are caused by the lower total OC burden.

3.4 Dissolution of low molecular weight organic compounds in the aerosol
phase10

As the aerosol water represents an aqueous phase reservoir for atmospheric trace
compounds, species can diffuse into the aerosol particles and go into solution. For or-
ganic compounds this is analysed for three relatively soluble compounds, i.e. HCOOH,
HCHO and CH3COOH summed together under the term of ORG. Figure 7a presents
the mixing ratio of the sum of these three compounds dissolved in aerosol water of the15

accumulation and the coarse mode for the surface layer. Due to the low aerosol water
content, the other modes are neglected in this study; generally the coarse mode domi-
nates the contributions by more than 80 %. The turquoise contour lines also provide the
percentage fraction of the total material (

∑
ORG = ORGgas+ORGaer) that is dissolved.

Due to the distribution of the gaseous compounds, the dissolution takes place mostly20

in continental tropical regions and the maritime continent.
The second panel of Fig. 7 expands the analysis to the total colum burden. Due to

the temperature dependency of the Henry’s law coefficient the dissolution becomes
more efficient with lower temperatures, but the aerosol water decreases with altitude,
such that these two effects compete with each other. Nevertheless, up to the mid-25

troposphere contributions to the ORGaer are not negligible. Considering the column
burden leads to a slightly different distribution than analysing the surface mixing ratios
alone: even though the regions with large uptake onto aerosol are the same, there
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are subtle changes: South America becomes dominant and the effect in the Northern
part of Central Africa is less important than in the more Southern part. Dissolution
effects visible in the surface layer in Northern America and on the Arabian peninsula
are unimportant for the total column, mainly due to the reduced aerosol water at higher
altitude.5

The total dissolution efficiency in the column load (ORGaer∑
ORG

·100 in %) is shown in

Fig. 7c. It shows that along the Western coast of South America this fraction exceeds
10 %, such that the uptake and dissolution of these soluble organics is not negligible.
Similar fractions are obtained over the maritime continent and South-East Asia and
to a lesser extent in the Southern part of Central Africa. In Europe and the USA the10

fraction does not exceed 5 %, suggesting that the consideration of this process is of
minor importance; this is due to lower total ORG mixing ratios and due to less efficient
uptake into the aerosol phase.

Finally, Fig. 7d brings this process into context by comparing the amount of dissolved
organic (ORG) to the burden of the “traditional” organic aerosol. In most continental15

OC source regions the contribution of the dissolved ORG is relatively small. However,
the importance of dissolved material increases with increasing atmospheric residence
time. This is most prominent over the tropical warm pool, where up to 90 % of the total
organic aerosol originates from dissolved compounds, but has also some relevance
over other regions, e.g. along the South American West coast. On the other hand it20

should be kept in mind that the presented compounds are generally restricted to the
tropics and that in most of the regions identified to be of importance for this process the
total “traditional” organic aerosol mass is relatively low resulting in large relative effects
and contributions.

In this study the uptake of methanol (CH3OH) has been neglected due to its lower25

solubility (≈ one order of magnitude smaller Henry’s law coefficient than acetic acid,
which additionally can dissociate in aerosol pH value regimes above 4). However, since
the gas phase mixing ratios can exceed those of the other considered compounds by
up to a factor of 5 the dissolution of this compound may have some impact. This, as
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well as the impact of glyoxal and other semi-volatile compounds and their aqueous
phase production (e.g., Ervens et al., 2011), will be analysed in a following study.

3.5 Impact on aerosol optical thickness

Aerosol water is one of the dominating compounds for aerosol optical depth (AOD)
(e.g., Pozzer et al., 2012), thus the treatment of the OC may affect the AOD. Fig. 85

displays the annual average AOD values in the Ageing-BG experiment. Overall the
simulated AOD distribution reproduces the global mean features; the dust sources of
the Sahara dominate the regime of high values. A second maximum is found in the
polluted regions of China, whereas Europe, the US East coast and also India are char-
acterised by medium values. The contribution from sea salt in oceanic regions usually10

does not exceed values of 0.2. The overall distribution looks similar to the annual av-
erage observations derived from MODIS and MISR both with respect to the patterns
and the magnitude. A more detailed analysis of the AOD values is presented in de Meij
et al. (2011).

The panels in the lower row of Fig. 8 show relative differences of two of the sensi-15

tivity simulations, whereas the graphs for the other two are found in the Supplement.
Even though the aerosol water associated with organic carbon is substantially lower in
the No-Ageing simulation compared to Ageing-BG (see Fig. 6c), the total AOD is only
slightly affected with hardly any statistical significance over much of the globe (in this
figure the regions with statistical significance are marked with a dotted pattern). Only20

in Central Africa, the region mostly dominated by the organic carbon contribution of the
aerosol as analysed above significant differences of a few percent are found. The en-
hanced water uptake leads to a slightly higher scattering. On the other hand, over the
maritime continent, the additional aerosol water and its interaction with other aerosol
compounds leads to a slightly reduced OC and more important particle number bur-25

den, such that the total extinction, which is already quite small, is even reduced by a
few percent. The low sensitivity of the AOD to the aging of the OC is due to the fact that
aging produces the largest changes in the organic aerosol water over the ocean where
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the AOD is low and where the organic fraction of the aerosol water has only a reduced
importance for the total aerosol water (see Fig. 6b). Furthermore, Fig. 6c also shows
that the smallest relative changes in organic aerosol water are over the ocean due to
the lower OC burden in those regions. Since the organics in Africa originate to a large
extent from biomass burning and exhibit a strong seasonality, the picture in the annual5

average smoothes out, seasonal averages show even stronger patterns (not shown).
The Insol simulation shows a statistical significant reduction over the whole tropics.
This is due to the lower organic aerosol burden, reducing the extinction. Additionally,
the interaction with other aerosol compounds also alters the size distribution (less co-
agulation due to a more efficient wet removal), such that even though the remaining10

particles are slightly larger, there are less particles than in the Ageing-BG scenario
(not shown), reducing the total extinction.

The Ageing-LO simulation (see Fig. 19 of the Supplement) shows only slight devi-
ations from Ageing-BG; except for the maritime continent none are statistically signif-
icant. For the Indonesian region the difference results from similar reasons as for the15

No-Ageing case. Similarly, in Aerchem the differences are below ±2% lacking statis-
tical significance; even though the additionally treated aerosol compounds (both inor-
ganic and organic) slightly contribute to the extinction, this effect is not important as
they do not influence the total aerosol water. Whether the change in extinction and
other aerosol properties is relevant for climate aspects, will be illuminated in an up-20

coming study, requiring the full interactive coupling of aerosols, radiation and heating
rates.

3.6 Impact on cloud properties

To analyse the potential impact of organic aging on cloud properties the cloud conden-
sation nuclei (CCN) concentration at the height of the boundary layer is calculated for25

all scenarios. A reference supersaturation of 0.4 % is assumed in the CCN calculation,
as described in Pringle et al. (2010b). We choose to examine CCN at the height of the
planetary boundary layer (PBL) as it is at this level that clouds typically form, thus it is
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generally representative of cloud base. The upper left panel of Fig. 9 presents the an-
nual mean CCN concentration at the PBL height. As one would expect, there is a strong
land sea contrast in CCN, with some outflow from continental regions, especially over
the tropical Atlantic Ocean. Highest CCN values are obtained in Central Africa, India
and China co-located with the strongest anthropogenic and biomass burning emissions5

of organic carbon. Due to their relatively small size at emission, the released mass cor-
responds to high particle emission number fluxes, which can grow by microphysical
and chemical processes until activation into clouds can occur. In most of these regions
nucleation of fresh particles plays a minor role due to the energetically preferred con-
densational processes. In addition to the regions with the highest CCN values also the10

biogenic and biomass burning contributions in South America, and the anthropogenic
pollution in the Eastern US and Eastern Europe cause regions with enhanced CCN
concentrations.

The comparison with measurements of e.g. Martin et al. (2010), who observe 321
particles per cm3 near the surface in Amazonia in unpolluted periods, provide a good15

agreement with the simulated values in Ageing-BG of 324 CCNcm−3 in the surface
layer and 255 CCNcm−3 at PBL height, even though the meteorological conditions in
the observation and simulation period are only the same in the climatological sense.
For e.g. outflow from Beijing, Gunthe et al. (2011) report campaign mean values of
1700 CCNcm−3 at 0.7 % supersaturation, and the corresponding model values are20

1440 CCNcm−3 in the surface layer and 980 CCNcm−3 at PBL height with the same
limits concerning the meteorology, the higher supersaturation in the observations and
the wide grid mesh of a global model to reproduce local pollution phenomena.

The upper right panel of Fig. 9 analysis the effect of the ageing on cloud droplet
activation comparing the No-ageing with the Ageing-BG simulation. In South Amer-25

ica, the maritime continent and Scandinavia statistically significant regions with higher
CCN are found in cases in which the ageing is not allowed to take place. In contrast
to this the Arabian peninsula and Northern Africa are characterised by higher CCN in
case of ageing. However, in those regions the required supersaturation for activation
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is only seldom reached. In Central and Southern Africa also higher CCN values are
obtained when ageing is considered, but they are lacking significance, partly due to
the high annual variability of the CCN values. Nevertheless, the differences in some
regions can be attributed to the ageing process, e.g. the higher CCN values in Ageing-
BG compared to No-Ageing offshore from the African West coast are most likely a5

consequence of the higher activation potential of the aged and therefore more hygro-
scopic organic carbon aerosol originating from Central Africa. The differences for the
other simulations are presented in the Supplement. The differences of Ageing-LO and
Ageing-BG show a similar pattern as for the No-Ageing case, but with lower values,
stating that even though the ageing is allowed, the high oxidation states as in Ageing-10

BG are not reached. Aerchem shows differences of less than ±2%, resulting only from
the minor influence of the additional aerosol compounds on the aerosol size distri-
bution. Insol again is mostly influenced by the lower OC and corresponding particle
number burden, such that the higher κORG values cannot compensate for the reduction
in available particles for activation. Only in the spots in South America, Western Africa15

and Indonesia the additional OC transferred from the hydrophobic mode can enhance
the cloud droplet numbers significantly by up to 15 %.

To obtain additional information a histogram of the occurrences of high CCN values
is added in the lower panel of Fig. 9. Only values larger than 500 cm−3 are considered
for this analysis, since these values are obtained in regions in which the organic aerosol20

is a important contributor to the total aerosol population. The low CCN value spectrum
is provided in the Supplement, but shows ambiguous results. For all high CCN values
the distributions look similar: Insol has the lowest number of occurrences, this is due
to the faster conversion from hydrophobic to hydrophilic modes which reduces the total
OC burden and thus also the aerosol number. The second lowest values are obtained25

by the No-Ageing simulation, in which the OC contribution to the CCN is most lim-
ited. Ageing-LO is characterised by the highest CCN values, since the ageing process
favours increased hygroscopicity and therefore activation potential, but the activation is
slower compared to Ageing-BG such that the aerosol particles are subject to slightly
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smaller sink processes. Ageing-BG and Aerchem are intermediates (with almost no
differences as also found in Fig. 20c of the Supplement), similar to No-Ageing. In these
simulations there is always the competition between more efficient activation due to
enhanced hygroscopicity and lower particle numbers caused by more efficient removal
processes.5

In total the effect on CCN is relatively small, and only the analysis of the impact of OC
ageing on the radiative properties of the clouds will shed light onto the climate impact
of this process, which will be addressed in a follow-up publication.

4 Conclusions

This study investigates the impact of a simplified ageing parameterisation organic10

aerosol without using the full complexity of the 2 dimensional VBS (Jimenez et al.,
2009), such that it is suitable for global climate modelling. Even though the process-
ing of the organic aerosol has impacts on the characteristics of the aerosol, the global
distribution is not heavily modified, maintaining the agreement with observations ob-
tained from previous studies. Only the additional ageing of the hydrophobic mode or-15

ganic aerosol, resulting in a conversion into hydrophilic material, substantially alters
the organic carbon aerosol distribution, and leads to a substantial reduction in the at-
mospheric burden of approximately 15 % with substantial implications on radiative and
cloud properties.

The simulated O:C ratio of the aerosol shows a large variability close to the Earth sur-20

face and the emission sources of the organic carbon. With increasing altitude the distri-
bution gets more and more uniform; especially upper tropospheric aerosol is simulated
to have a high oxidation state due to its long atmospheric residence time. Comparisons
with values obtained from measurement campaigns show a reasonable agreement of
the simulated and observed values for the O:C ratio.25

The organic κ value derived from the O:C ratio consequently also shows a wide
range of values from close to zero to 0.2, depending on the atmospheric residence
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time. The simulated values are also in agreement with observations and it should be
considered whether a commonly assumed mean organic κ value of 0.1 is really suit-
able for global climate modelling due to the large dependency on particle size and the
geographical variability.

Assumptions on details in the ageing process cause only small differences in κORG,5

as pointed out by the low statistical significance of the deviations in the sensitivity
simulations, especially for larger aerosol particles and after an atmospheric residence
time of more than 12 h. The Ageing-BG or Aerchem simulations appear to be the most
realistic scenarios, compared to ground based field campaigns.

Based on the hygroscopic properties of the aerosol, the water uptake of organics10

has been discussed, and regions in Central Africa, Australia and South America have
been identified in which the water uptake by organics is the dominating effect for total
aerosol water. Compared to the situation of a constant water uptake by organic aerosol
(No-Ageing), enhanced amounts of aerosol water are calculated with the new ageing
parameterisation. However, this is only important in the regions identified above, since15

elsewhere more hygroscopic aerosol material dominates the total amount of aerosol
water.

Furthermore, a scheme for the additional dissolution of low molecular weight organ-
ics in the aerosol water has been developed and applied as a sensitivity test. The
outcome of this is, that up to 10 % of the sum of formaldehyde, formic and acetic acid20

can partition into the aerosol phase in certain regions and a global average of ≈4%.
For certain regions, especially the tropical warm pool, these compounds contribute to
more than 90 % of the simulated total organic aerosol mass. Therefore, this scheme
provides also potential for explanation of organic material found in the aerosol phase
in remote regions.25

The impact of the ageing process on aerosol extinction is found to show relative
deviations of only ±10%, caused by the relatively low importance of organic aerosol
water to total aerosol water and the modifications in the size distribution. Only changes
in the organic aerosol burden and particle number concentrations substantially alter
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the radiative properties. The magnitude of the effects on the total direct aerosol effect,
however, cannot be unambiguously provided at this moment.

The same is valid also for a proxy for the indirect aerosol effect, namely diagnostically
calculated CCN at a fixed supersaturation. Also for the CCN the differences span up
a space of more than ±20%, but with a relatively low statistical significance. The his-5

togram analysis nevertheless points towards an increased CCN distribution for polluted
conditions, whereas for remote regions with low CCN values the result is ambiguous.

The climate impact of the results will be presented in a subsequent study, which
allows for full atmospheric climate feedback.

Overall, the representation of the ageing and information on the O:C ratio of the or-10

ganic aerosol provides useful additional information at the expense of relatively low
computational extra costs, which can benefit global aerosol chemistry climate simula-
tions by a more accurate process description.

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/12/10331/2012/15

acpd-12-10331-2012-supplement.pdf.
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Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gro-
mov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System
(MESSy2), Geosci. Model Dev., 3, 717–752, doi:10.5194/gmd-3-717-2010, 2010. 10335

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C.,
Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkan-5

ski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K.,
Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling:
a review, Atmos. Chem. Phys., 5, 1053–1123, doi:10.5194/acp-5-1053-2005, 2005. 10333

Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P.: Technical
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Table 1. List of O:C ratios and corresponding κ values for organic aerosol compounds

Species O:C ratio κ value

OC 0.3 0.01
WSOC1 0.38 0.05
WSOC2 0.46 0.09
WSOC3 0.54 0.13
WSOC4 0.62 0.17
WSOC5 0.7 0.21
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Fig. 1. Schematic curve of ageing of the organic carbon. The horizontal axis displays the OH
exposure time, whereas the vertical axis show the O:C ratio and corresponding κ values. The
horizontal coloured lines represent the threshold values for the O:C ratio for the individual OC
tracers.
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Fig. 2. Global atmospheric burden in kg (using a molar mass of 12, representing the carbon
in the OC compounds) of the organic carbon aerosol compounds in all modes. Additionally the
sum per mode, and the amount of aerosol water attached to the organic carbon are shown.
The different colours denote the simulations. Note the logarithmic scale for the mass.
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“Ageing-BG” simulation

a) Surface O:C ratio b) Zonal average O:C ratio

Relative difference: (“Ageing-LO” - “Ageing-BG”)/“Ageing-BG” * 100

c) Surface O:C ratio difference d) Zonal average O:C ratio difference

Fig. 3. Annual averages of the O:C ratio at the surface (panel a) and in the zonal average
(panel b) for the Ageing-BG simulation. The dotted regions are those in which the difference
to the constant O:C ratio of the reference simulations is of a low statistical significance. The
grey shaded area represents the zonal average orography, indicating less data points in these
regions. The lower panel in this graph determines the number of points with differences of low
significance. The red line represents the mean tropopause level. The lower panels (c, d) of the
figure show the relative differences (in %) for surface (c) and zonal average (d) between the
Ageing-LO simulation and the Ageing-BG setup. Again the black dotted regions mark regions
of low statistical significance for the differences between the two simulations, and the number
of points of low significance is displayed in the lower panel.
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Fig. 4. Comparison of the simulated O:C ratios in the surface layer and a collection of observed
O:C ratios from various measurement campaigns using different methods and instruments col-
lected and described by Ng et al. (2010). The blue symbols denote the observed values and
the red symbols the simulated annual mean values sampled at the station location. The error
bars denote the temporal model standard deviation (±1σ range).
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a) κ at PBL height in the Ageing-BG simulation b) Relative difference of the Ageing-LO simulation
to Ageing-BG

Fig. 5. Annual averages of the organic κ for the Ageing-BG simulation at the height of the
planetary boundary layer (PBL) (a). The individual panels represent the three larger hydrophilic
aerosol modes: Aitken, accumulation and coarse mode (from upper to lower panels). (b) dis-
plays the relative difference of the Ageing-LO simulation to the Ageing-BG scenario (“Ageing-
LO”− “Ageing-BG” / “Ageing-BG” ·100 in % for the three modes. The dotted regions are those
in which the differences are of low statistical significance.

10375

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/10331/2012/acpd-12-10331-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/10331/2012/acpd-12-10331-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 10331–10379, 2012

Improvements in
Organic Carbon
representation

H. Tost and K. J. Pringle

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

a) Organic aerosol water column burden in Ageing-
BG

b) Relative contribution to total aerosol water in
Ageing-BG

c) Relative difference of the organic aerosol water
column burden of No-Ageing to Ageing-BG

d) Relative difference of the organic aerosol water
column burden of Insol to Ageing-BG

Fig. 6. Annual averages of the organic aerosol water column burden (in mgm−2) for the Ageing-
BG simulation (panel a). Note the logarithmic scale. (b) shows the relative contribution (in %)
to the total aerosol water column burden for the respective column. Also note the irregular color
scale. (c) and (d) display the relative differences of the No-Ageing and Insol simulations to the
Ageing-BG scenario in %; dotted areas mark regions of low statistical significance.
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a) Surface mixing ratio of dissolved volatile organ-
ics

b) Column burden of dissolved volatile organics

c) Column burden ratio of dissolved to total volatile
organics

d) Column burden ratio of dissolved to total or-
ganic aerosol

Fig. 7. Panel (a) shows the annual averages of the surface mixing ratio of dissolved volatile or-
ganics, namely the sum of HCHO, HCOOH and CH3COOH in nmol/mol. The turquoise contour
lines represent the relative fraction to the total available sum of those compounds. (b) shows
the dissolved organic column burden in mgm−2. (c) displays the percentage fraction of the total
column burden of the sum of the three compounds, whereas in (d) the contribution of the dis-
solved material to the total organic aerosol (OC and the aged components) is presented. Note
the different color bars and sometimes non-linear scales.
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a) AOD in the Ageing-BG experiment

b) Relative difference in the AOD of No-Ageing
compared to Ageing-BG

c) Relative difference in the AOD of Insol compared
to Ageing-BG

Fig. 8. Annual averages of the total aerosol optical thickness at a wavelength of 550 nm. Panel
(a) presents the absolute value for the Ageing-BG simulation. The panels (b) and (c) illus-
trate the relative differences of the No-Ageing and Insol simulations to the reference displayed
above. In contrast to previous figures dotted areas mark regions of high statistical significance.
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a) CCN at top of the boundary layer height in
Ageing-BG

b) Relative difference in the CCN of No-Ageing
compared to Ageing-BG

Fig. 9. Annual averages of the total CCN at the top of the boundary layer height calculated
assuming 0.4 % supersaturation. (a) shows the absolute values (in #cm−3) for the Ageing-BG
simulation. (b) shows the relative difference to the No-Ageing simulation. The high statistical
significance in the differences is marked by the overlayed pattern. The panel in the lower row
represents a histogram for the five simulations taking only high CCN values (>∼ 500cm−3) into
account. The different colours represent the respective simulations.
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