- 1 Q10-Table 1. Geolocations and research periods of the suitable AERONET stations for
- 2 aerosol trend analysis in alphabetical order. [Yoon et al., 2011]

Selected AERONET Stations	Regions	Countries	Geolocations (lat.[°]/lon.[°]/ alt.[m])	Periods
(a) Avignon	Western Europe	France	43.93/4.88/32	2001~200
(b) Banizoumbou	West Africa	Niger	13.54/2.66/250	2002~20
(c) Beijing	East Asia	China	39.98/116.38/92	2003~20
(d) Dakar	West Africa	Senegal	14.39/-16.96/0	2004~20
(e) GSFC	North America	USA	38.99/-76.84/87	1995~20
(f) Ispra	Western Europe	Italy	45.80/8.63/235	2001~20
(g) Mauna⊥Loa	Free troposphere (Pacific)	USA	19.54/-155.58/3397	1998~20
(h) MD_Science_Center	North America	USA	39.28/-76.62/15	2000~20
(i) Mongu	South Africa	Zambia	-15.25/23.15/1107	2000~20
(j) Ouagadougou	West Africa	Burkina Faso	12.20/-1.40/290	2000~20
(k) SEDE_BOKER	Middle East	Israel	30.86/34.78/480	2003~20
(I) Sevilleta (m) Shirahama	North America	USA	34.35/-106.89/14/7	1998~20
(m) Shiranama	East Asia	Japan Osuth Miles	33.69/135.36/10	2003~20
(n) Skukuza (a) Salar Villara	South Africa	South Africa	-24.99/31.59/150	2000~20
(o) Solar_Village	Middle East	Saudi Arabia	24.91/46.40/764	2001~20

2 Q7-Figure 1. Number of SeaWiFS swaths per day [Patt, 2010]

3	3		
4	1		
5	5		
6	5		
7	7		
8	3		
9)		
10)		

1

2 Q10-Figure 3. Comparison between SeaWiFS and AERONET AOTs (670 and 443 nm) over

3 East Asia [Lee et al., 2004]

4

Q10-Figure 4. Comparison between MERIS and AERONET AOTs (443 nm) over Europe
regions [von Hoyningen-Huene et al., 2011]

Q11-Figure 5. Total averages (black one enclosed with parentheses at right vertical axis),
temporal unweighted (blue one on the left upper part), and weighted (red one on the right
upper part) trends of Å ngström Exponent (440–870 nm) and AOT (440 nm) at the AERONET
station, Ispra. [Yoon et al., 2011]

Q21-Figure 7. Annual and seasonal trends of BAER monthly AOTs (443 and 555 nm)
including their standard deviation for the several regions.

3 Q22-Figure 8. Seasonal AOT (440nm) distribution over the specific regions.