

Interactive
Comment

Interactive comment on “Organic carbon and non-refractory aerosol over the remote Southeast Pacific: oceanic and combustion sources” by L. M. Shank et al.

C. O'Dowd

colin.odowd@nuigalway.ie

Received and published: 18 August 2011

Comment Review on: Organic carbon and non-refractory aerosol over the remote Southeast Pacific: oceanic and combustion sources by L. M. Shank, S. Howell, A. D. Clarke, S. Freitag, V. Brekhovskikh, V. Kapustin, C. McNaughton, T. Campos, and R. Wood

We feel that this is a poorly developed manuscript which seems to contain unsupported bias towards our previous work. The manuscript neglects many important works which provide very strong evidence pointing to a natural source of the discussed marine organics. Inclusion and balanced discussion of these omitted works would render many

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

of the arguments presented in this manuscript unsupported.

(1) The manuscript does not reflect the state-of-the-art – in this context, we suggest the submission should not be accepted.

(2) The authors rely on sophisticated measurement technology to present their perspective; however, by omitting critical sampling and data analysis issues relating to the deployment and interpretation of these instruments and their data, it is difficult to have an acceptably high confidence level in the results.

(3) The authors claim the organics seen in clean marine air are anthropogenic, and that what is seen in supposed NE Atlantic studies is tarnished by pollution; however, this is not supported by their advanced instruments that they deploy – see the next point.

(4) The authors should demonstrate that, in the first instance, the AMS is operated correctly: were particles dried or sampled wet? It is normal to operate dry. If so, it is likely that organics internally mixed with sea spray will not be sampled due to sea salt bounce. How was the AMS regularly calibrated? You should be able to provide the mass spectra to support your claim on organics origin and demonstrate what organics are natural and anthropogenic. You should compare with Ovadnevaite et al. (2011) mass spectra. Why is the mass spectra not shown, isn't this the point of such an instrument? The second reviewer also raises these critical points and additional points relating to the sensitivity of the SP2 – we are also surprised to see such high precision data presented without even a mention of the instrument in the instrumentation section.

(5) Any credible progression of this manuscript should include a critical and respectable evaluation of the results in the related key publications listed below and the key technical issues outlined above. We won't go into more detail, Ref 2 has elaborated on many of the key points and provides an excellent analysis of the key short comings of this manuscript both from a technical and scientific perspective so there is no point to repeat the main flaws of this manuscript further.

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

Interactive
Comment

(6) To conclude, in our opinion, this manuscript should not be accepted! It is quite far off being an objective and informed scientific document in its current state. We don't believe that the arguments presented on the origin of marine organics can be supported once the works listed below are taken into account. Many of these works provide the most robust evidence relating to the origin of the previously report marine organics (e.g. using multiple techniques ranging from isotope analysis to mass spectrometry to HNMR) – for such experienced scientists, these omissions are quite surprising!

Colin O'Dowd & Darius Ceburnis

Ceburnis, D., Garbaras, A., Szidat, S., Rinaldi, M., Fahrni, S., Perron, N., Wacker, L., Leinert, S., Remeikis, V., Facchini, M. C., Prevot, A. S. H., Jennings, S. G., and O'Dowd, C. D.: Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis, *Atmospheric Chemistry and Physics Discussions*, 11, 2749–2772, doi:10.5194/acpd-11-2749-2011, 2011.

Dall'Osto, M., Ceburnis, D., Martucci, G., Bialek, J., Dupuy, R., Jennings, S. G., Berresheim, H., Wenger, J., Healy, R., Facchini, M. C., Rinaldi, M., Giulianelli, L., Finessi, E., Worsnop, D., Ehn, M., Mikkila, J., Kulmala, M., and O'Dowd, C. D.: Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview, *Atmos Chem Phys*, 10, 8413-8435, 10.5194/acp-10-8413-2010, 2010.

Darecki, M., and Stramski, D.: An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, *Remote Sens Environ*, 89, 326-350, 10.1016/j.rse.2003.10.012, 2004.

Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E. D., de Leeuw, G., Martino, M., Woeltjen, J., and O'Dowd, C. D.: Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates, *Geophys Res Lett*, 35, L17814, 10.1029/2008gl034210, 2008.

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Gregg, W. W., and Casey, N. W.: Sampling biases in MODIS and SeaWiFS ocean chlorophyll data, *Remote Sens Environ*, 111, 25-35, 10.1016/j.rse.2007.03.008, 2007.

Long, M. S., Keene, W. C., Kieber, D. J., Erickson, D. J., and Maring, H.: A sea-state based source function for size- and composition-resolved marine aerosol production, *Atmos Chem Phys*, 11, 1203-1216, 10.5194/acp-11-1203-2011, 2011.

Miyazaki, Y., Kawamura, K., and Sawano, M.: Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios, *Geophys Res Lett*, 37, L06803, 10.1029/2010gl042483, 2010.

Narukawa, M., Kawamura, K., Li, S. M., and Bottenheim, J. W.: Stable carbon isotopic ratios and ionic composition of the high-Arctic aerosols: An increase in delta C-13 values from winter to spring, *J Geophys Res-Atmos*, 113, D02312, 10.1029/2007jd008755, 2008.

O'Dowd, C. D., Langmann, B., Varghese, S., Scannell, C., Ceburnis, D., and Facchini, M. C.: A combined organic-inorganic sea-spray source function, *Geophys Res Lett*, 35, -, Artn L01801 Doi 10.1029/2007gl030331, 2008.

Ovadnevaite, J., O'Dowd, C., Dall'Osto, M., Ceburnis, D., Worsnop, D. R., and Berresheim, H.: Detecting high contributions of primary organic matter to marine aerosol: A case study, *Geophys Res Lett*, 38, L02807, 10.1029/2010gl046083, 2011.

Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T. S.: Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting, *P Natl Acad Sci USA*, 107, 6652-6657, 10.1073/pnas.0908905107, 2010.

Sciare, J., Favez, O., Sarda-Esteve, R., Oikonomou, K., Cachier, H., and Kazan, V.: Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: Evidence of a biogenic marine organic source, *J Geophys Res-Atmos*, 114, D15302, 10.1029/2009jd011998, 2009.

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Ceburnis, D., C.D. O'Dowd, S.G. Jennings, M. C. Facchini, L. Emblico, S. Decesari, S. Fuzzi, J. Sakalys, Elucidation of production mechanisms of water soluble and insoluble organic carbon in marine air and associated gradient fluxes over the Northeast Atlantic, Geophys. Res. Letts. VOL. 35, L07804, doi:10.1029/2008GL033462,, 2008

Interactive comment on Atmos. Chem. Phys. Discuss., 11, 16895, 2011.

ACPD

11, C7919–C7923, 2011

Interactive
Comment

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

