

1 **Aerosol modelling in Europe with a focus on Switzerland**
2 **during summer and winter episodes**

3 **S. Aksoyoglu, J. Keller, I. Barmpadimos, D. Oderbolz, V. A. Lanz, A.S.H. Prévôt,**
4 **U. Baltensperger**

5 Paul Scherrer Institut, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, Switzerland

6 Correspondence to: S. Aksoyoglu (sebnem.aksoyoglu@psi.ch)

7

1

2 **Abstract**

3 This paper describes aerosol modelling in Europe with a focus on Switzerland during summer
4 and winter periods. We modelled PM_{2.5} (particles smaller than 2.5 μm in aerodynamic
5 diameter) for one summer and two winter periods in years 2006 and 2007 using the CAMx air
6 quality model. The meteorological fields were obtained from MM5 simulations. The
7 modelled wind speeds during some low-wind periods, however, had to be calibrated with
8 measurements to use realistic input for the air quality model. The detailed AMS (aerosol mass
9 spectrometer) measurements at specific locations were used to evaluate the model results. In
10 addition to the base case simulations, we carried out sensitivity tests with modified aerosol
11 precursor emissions, air temperature and deposition. Aerosol concentrations in winter 2006
12 were twice as high as those in winter 2007, however, the chemical compositions were similar.
13 CAMx could reproduce the relative composition of aerosols very well both in the winter and
14 summer periods. Absolute concentrations of aerosol species were underestimated by about 20
15 %. Both measurements and model results suggest that organic aerosol (30-38%) and
16 particulate nitrate (30-36%) are the main aerosol components in winter. In summer, organic
17 aerosol dominates the aerosol composition (55-57%) and is mainly of secondary origin. The
18 contribution of biogenic volatile organic compound (BVOC) emissions to the formation of
19 secondary organic aerosol (SOA) was predicted to be very large (> 95%) in Switzerland. The
20 main contributors to the modelled SOA concentrations were oxidation products of
21 monoterpenes and sesquiterpenes as well as oligomerization of oxidized compounds. The
22 fraction of primary organic aerosol (POA) derived from measurements was lower than the
23 model predictions indicating the importance of volatility of POA, which has not yet been
24 taken into account in CAMx. Sensitivity tests with reduced NO_x and NH₃ emissions suggest
25 that aerosol formation is more sensitive to ammonia emissions in winter in a large part of
26 Europe. In Switzerland however, aerosol formation is predicted to be NO_x-sensitive. In
27 summer, effects of NO_x and NH₃ emission reductions on aerosol concentrations are predicted
28 to be lower mostly due to lower ammonium nitrate concentrations. In general, the sensitivity
29 to NH₃ emissions is weaker in summer due to higher NH₃ emissions.

30

1 1 Introduction

2 Atmospheric aerosols are known to have adverse health effects. They also play an important
3 role in climate change by modifying the radiative balance of the atmosphere (IPCC, 2007).
4 PM_{10} concentrations in Switzerland frequently exceed the national ambient air quality
5 standards (20 and 50 $\mu\text{g m}^{-3}$, annual and daily averages, respectively). Several long-term PM
6 measurements as well as data obtained from field campaigns show that the organic portion is
7 highly abundant (Lanz et al., 2010b; Hueglin et al., 2006). Organic aerosol (OA) is composed
8 of both directly emitted primary OA (POA) and secondarily formed SOA. OA has significant
9 effects on climate and human health, but its sources and evolution in the atmosphere are not
10 yet fully understood. New studies indicate that oxygenated organic aerosol (OOA) is formed
11 from OA and its precursor gases, which becomes increasingly oxidized, less volatile, and
12 more hygroscopic (Jimenez et al., 2009). Analysis of the submicron aerosol in Switzerland
13 revealed that only a small fraction of OA originates from freshly emitted fossil fuel
14 combustion, and that a high fraction is composed of OOA (Lanz et al., 2009). This conclusion
15 was based on analyses of the organic aerosol mass spectra by positive matrix factorization
16 (Lanz et al., 2007) and by multi-linear engine 2 (Lanz et al., 2008). Modelling organic aerosol
17 is among the most demanding aspects of air quality simulations because the formation
18 processes and evolution are poorly understood. In spite of the recent improvements in air
19 quality models, organic aerosols can be underestimated by a large amount (Hodzic et al.,
20 2009). The recently-developed volatility basis-set approach (Donahue et al., 2006) improved
21 the agreement between organic aerosol model results and aerosol mass spectrometer (AMS)
22 measurements (Robinson et al., 2007; Dzepina et al., 2009; Tsimpidi et al., 2010; Hodzic et al.,
23 2010). The discrepancy between models and measurements has also been reduced by taking
24 into account other processes such as the formation of SOA via aqueous chemistry (Carlton et
25 al., 2008), oligomerization (Morris et al., 2006), the addition of new precursors (Zhang et al.,
26 2007; Carlton et al., 2010), the treatment of SOA hygroscopicity (Pun, 2008), the treatment of
27 SOA formation under low- NO_x conditions (Carlton et al., 2010).

28 Several PM measurements during January 2006 in Switzerland found exceptionally high
29 concentrations (Lanz et al., 2008). Additional measurements were made at Payerne in June
30 2006 and in January 2007 within the frame of EMEP (European Monitoring and Evaluation
31 Programme). These detailed aerosol measurements provide a good data base to test models
32 under different meteorological conditions over the complex terrain of Switzerland. In this

1 study, we used the MM5/CAMx model system to simulate the air quality in Europe in one
2 summer (June 2006) and two winter periods (January 2006, January 2007), focussing on the
3 particulate matter in Switzerland.

4

5 **2 Modelling method**

6 **2.1 Model setup**

7 We used the CAMx (Comprehensive Air Quality Model with extensions) model, version 4.51
8 (Environ, 2008) to simulate air quality in January 2006, June 2006, and January 2007. The
9 meso-scale model MM5, version 3.7.4 (PSU/NCAR, 2004) was used to generate the
10 meteorological fields for CAMx. Three nested model domains were used in a Lambert Conic
11 Conformal projection using 1-way nesting to cover a large part of Europe, central Europe and
12 Switzerland with horizontal resolutions of 27 km x 27 km, 9 km x 9 km, and 3 km x 3 km,
13 respectively (Fig. 1). The MM5 simulations with 31 terrain-following σ -levels up to 100 hPa,
14 were initialized by data from COSMO7 analysis (COSMO, 2002). Four-dimensional data
15 analysis (FDDA) using COSMO7 data was applied only for domains 1 and 2. The planetary
16 boundary layer (PBL) height was calculated using the Eta PBL option, with the Mellor-
17 Yamada scheme (Janjić, 1994). The CAMx simulations used a subset of 14 of the MM5 σ -
18 layers, of which the lowest had a thickness of about 40 m at a surface pressure of 950 hPa.
19 The model top was set at $\sigma=0.55$ which corresponds to a geometric layer top of about 7000 m
20 above sea level. The initial and boundary concentrations for the first domain were obtained
21 from the global model MOZART (Horowitz et al., 2003). The photolysis rates were
22 calculated using the TUV photolysis pre-processor (Madronich, 2002). The required ozone
23 column densities were extracted from TOMS data (NASA/GSFC, 2005). Dry deposition of
24 gases was based on the resistance model of Wesely, 1989). Surface deposition of particles
25 occurs via diffusion, impaction and/or gravitational settling. Separate scavenging models for
26 gases and aerosols were implemented in CAMx to calculate the wet deposition (Environ,
27 2008). The CB05 gas-phase mechanism was used (Yarwood et al., 2005). We performed the
28 simulations for the same periods as the detailed field campaigns where measurements were
29 conducted with an aerosol mass spectrometer (AMS) at Zurich in January 2006 (Lanz et al.,
30 2008) and at Payerne in June 2006 and January 2007 (EMEP campaigns) (Lanz et al., 2010a).

1 Simulated aerosol species with particle sizes smaller than 2.5 μm included sulphate, nitrate,
2 ammonium, POA, SOA and elemental carbon (EC). The condensable organic gases (CG) are
3 formed from the oxidation of the aromatic precursors TOL (toluene) and XYL (xylene), as
4 well as of the biogenic precursors isoprene, monoterpenes and sesquiterpenes (see Table 1 for
5 the SOA precursor reactions). Partitioning of condensable organic gases to secondary organic
6 aerosols was calculated using a semi-volatile equilibrium scheme called SOAP (Strader,
7 1999). Properties of CG/SOA pairs used in CAMx are given in Table 2. Oligomerization is
8 taken into account in a rather simple way in CAMx. It was assumed that the SOA
9 oligomerized to a non-volatile form with a lifetime of about 1 day (Kalberer et al., 2004).
10 Oligomerization slowly forms organic aerosol oligomers called SOPA (anthropogenic) and
11 SOPB (biogenic), and it was shown to increase SOA yields (Morris et al., 2006). Pun and
12 Seigneur (2007) reported that oligomerization may be pH-dependent and therefore further
13 work is needed to correctly simulate this process. Aqueous sulphate and nitrate formation in
14 cloud water were calculated using the RADM aqueous chemistry algorithm (Chang et al.,
15 1987). Cloud production of SOA is not taken into account in CAMx. Partitioning of inorganic
16 aerosol constituents between the gas and particulate phases was modelled with ISORROPIA
17 (Nenes et al., 1998). The model results for each episode were evaluated mainly at locations
18 where detailed aerosol measurements were available: Zurich (January 2006) and Payerne
19 (June 2006 and January 2007). In addition to the base case simulations, sensitivity tests were
20 performed with modified parameters such as precursor emissions (two simulations with a
21 50% emission reduction of either NH_3 or NO_x), air temperature ($\pm 5^\circ\text{C}$) and deposition
22 (on/off).

23 **2.2 Emissions**

24 Gridded emissions from various sources refer to a specific year. To harmonize data from
25 different sources and reference years, emissions were converted to a common reference year,
26 2005. The annual emissions and time functions for Europe were provided by the Freie
27 Universität Berlin (FUB) (Stern, 2003; Builtjes et al., 2002). The spatial resolution was 0.125
28 deg x 0.25 deg. The region of Lombardy in northern Italy was treated differently using hourly
29 emissions (CITY-DELTA, 2002). Emissions in Switzerland were also calculated separately.
30 Annual road traffic emission data with a spatial resolution of 250 m as well as the spatial
31 distributions of total annual NMVOC emissions from industry and households with a
32 resolution of 200 m were provided by INFRAS (Heldstab and Wuethrich, 2006; Keller and de

1 Haan, 2004). The total NMVOC emission was split into the CB05 species following the rules
2 of Passant (2002). Annual NO_x , $\text{PM}_{2.5}$ and PM_{10} emissions from residential activities, heating,
3 industry, off-road traffic, rail transport and agriculture/forestry on a 200 m resolution as well
4 as ammonia emissions from manure, waste treatment and road traffic on a 1 km resolution
5 were taken from Meteotest. Industrial and residential emissions include substantial
6 percentages of biomass burning. In Switzerland, about 75% of the residential PM_{10} emissions,
7 10% of the industrial and 23% of the agricultural and forestal emissions are released by
8 biomass combustion. Currently, the annual PM emissions from road traffic are about 3-4
9 times higher than those from domestic wood burning in our inventory. Primary particulate
10 emissions were split as 40% elemental carbon (EC) and 60% OA (Szidat et al., 2006)

11 Biogenic emissions for the CAMx domains were calculated using European and Swiss land
12 use inventories and MM5 meteorological data. For each European country the deciduous and
13 coniferous forest fractions were split into separate tree species according to Simpson et al.
14 (1999). Inside Switzerland, the global data were replaced by data of the “Arealstatistik” (100
15 m resolution) issued by the Federal Office of Statistics (BFS, 1999) and by forest data (1 km
16 resolution) taken from the “Landesforstinventar” (Mahrer and Vollenweider, 1983). About
17 24% of the Swiss area is covered by forests of which 71% are coniferous. Norway Spruce
18 (*pinus abies*) and fir (*abies alba*) are the most abundant species (49% and 15% of the trees,
19 respectively). Monoterpenes are the most important biogenic VOC species in Switzerland,
20 emitted mainly by Norway Spruce and fir trees. Isoprene in Switzerland, on the other hand, is
21 emitted mostly by oak trees, which constitute only 2% of the Swiss forests. The method for
22 the estimation of biogenic emissions is given in Andreani-Aksoyoglu and Keller (1995),
23 which was updated using recent literature data. The emission rates of sesquiterpenes were
24 assumed to be 10% (in moles) of those of monoterpenes, based on data relevant for Swiss
25 forests in Steinbrecher et al. (2009).

26 **2.3 Meteorology**

27 **2.3.1 Winter 2006**

28 Before evaluating the results of chemistry-transport model CAMx, we analysed the
29 meteorological variables because they are essential for the dispersion and vertical mixing of
30 pollutants. We modelled the meteorological parameters between 1 January and 10 February
31 2006. We classified the meteorological conditions into 5 periods using the time series of

1 measurements at various meteorological stations in Switzerland (see Fig. 2 for Payerne).
2 During the first period (1-5 January), the measured air temperatures were mostly above zero,
3 wind speed was moderate and there was no precipitation except at the beginning. The second
4 period (6-16 January) was characterized by low-wind speed and an extended fog layer over
5 the Swiss Plateau (region between the Jura and the Alps), as well as lower temperatures. Then
6 a warm front arrived, causing precipitation, higher wind speed and a rapid temperature
7 increase in the third period (17-22 January). Mixed conditions prevailed during the fourth
8 period (23 January-4 February). In the last period (5-10 February), temperatures and wind
9 speed increased. The model reproduced the wind direction and precipitation quite well most
10 of the time. However, there was some difference (with a maximum of ± 5 °C) between the
11 measured and modelled temperature in the lowest model layer. The effect of such a difference
12 in temperature on pollutant concentrations was investigated with sensitivity tests and is
13 discussed in section 3.3. The meteorological model could reproduce wind fields reasonably
14 well for the days with strong winds, but overestimated the low-wind speeds especially in
15 periods II and IV. A common element between periods II and IV was the prevalence of
16 temperature inversions. The comparison of vertical profiles of potential temperature predicted
17 by MM5 with those from soundings at Payerne clearly shows that the temperature inversions
18 during the periods II and IV could not be reproduced (see Fig. 3 for some examples).
19 Temperature inversions were further investigated by examining the differences between the
20 potential temperatures ($\Delta\theta$) at Payerne and Chaumont. These stations are relatively close to
21 each other (about 25 km) and the elevation at Chaumont is about 650 m higher than at
22 Payerne. Thus $\Delta\theta$ can be used as a way to detect the presence of a temperature inversion. As
23 shown in Fig. 4, there was a sharp decrease in the measured $\Delta\theta$ at the beginning of period II.
24 At the end of that period $\Delta\theta$ increased abruptly. We note that a similar sharp decrease in $\Delta\theta$
25 occurred also in period IV. This implies the development of a temperature inversion. The
26 contrast between low-wind (II and IV) and high-wind periods (I, III and V) can be clearly
27 seen in Fig. 4. During the times when the meteorological model results do not follow the
28 observations, the vertical structure of the atmosphere is not simulated accurately, which is
29 consistent with the findings from the comparison of simulated and observed profiles of
30 potential temperature (Fig. 3). We also compared the modelled wind speeds at higher
31 altitudes with measurements on a television tower at Uetliberg (1043 m a.s.l.). Fig. 5 shows
32 that wind speeds at higher vertical levels were also overestimated as in the case of surface
33 layer.

1 **2.3.2 Summer 2006**

2 The summer period in June 2006 was divided into 3 parts (Fig. 6). Measurements and model
3 predictions for meteorological parameters matched reasonably well in the first period (1-11
4 June), which was mostly dry with increasing temperatures and moderate to strong winds. In
5 the second period (12-16 June), low wind speeds and night temperatures were overestimated
6 by the model. This implies that the model underestimates the radiative cooling during the
7 night. Strong radiative cooling at night leads to strong stratification which in turn is associated
8 with high pollution levels. Inadequate representation of this phenomenon in the model
9 probably contributes to an underestimation of pollutant levels after 12 June. During the first
10 period the night-time surface inversion was not very strong. In the second period however,
11 there was a surface inversion with a strong gradient that was not properly reproduced by the
12 model. After 17 June (period III), there were several days with rain and the model
13 performance varied as a result of these varying meteorological conditions. In general, MM5
14 could reproduce most of the parameters such as wind direction, precipitation and temperature
15 reasonably well at the surface except low-wind speeds.

16 **2.3.3 Winter 2007**

17 January 2007 was warmer and had different meteorological conditions than January 2006
18 (Fig. 7). Temperatures were above zero except for a few days. During the first period (1-12
19 January), the wind speed was moderate to strong and some precipitation occurred. The second
20 period (13-17 January) was dry and the wind speed was low. In the third period (18-25
21 January), the wind speed became higher and the temperature started decreasing. The wind
22 speed was low again in the last period (26-31 January). The model-measurement agreement
23 becomes worse under low-wind conditions (in the second and fourth period) as seen in the
24 case of the previous year.

25 **2.3.4 Modification of the wind fields**

26 Meteorological variables such as wind speed and planetary boundary layer height (PBL) are
27 the crucial parameters for the vertical mixing and dispersion of pollutants and thus these have
28 a strong effect on surface concentrations. The simulation of the wind fields over complex
29 terrain is known to be challenging (Liu et al., 2007; Baertsch-Ritter et al., 2004). Inspite of
30 using FDDA techniques to obtain more realistic meteorological data, the modelled wind
31 speeds still show discrepancies compared to measurements, especially over regions where

1 wind speeds are low both in winter and summer periods (see Figs. 2, 6, 7). Wind speed is
2 crucial for the photochemical modeling as high speeds dilute air pollution plumes and reduce
3 pollutant concentrations. The average measured wind speeds at 12 surface meteorological
4 stations were 1.7 m s^{-1} , 1.8 m s^{-1} , and 2.5 m s^{-1} for January 2006, June 2006 and January
5 2007, respectively whereas the simulated wind speeds in the lowest layer of the smallest
6 domain were 2.8 m s^{-1} , 2.9 m s^{-1} , and 3.5 m s^{-1} . In a sensitivity test, reducing the wind speed
7 by a factor of two in all domains and layers improved the results of the low-wind speeds
8 significantly. Therefore, the reduced wind speeds were used in further simulations for the
9 low-wind periods. The used procedure ensured mass conservation. We changed only the
10 horizontal wind fields (u , v) for each vertical level. Since only these fields are transferred to
11 CAMx, which then calculates the vertical component w at the layer interfaces internally, the
12 mass conservation is fulfilled. The comparison of wind speeds before and after the
13 modification is shown at some stations for each simulation period (Fig. 8).

14 An example for the effect of reduced wind speed on pollutant concentrations in each episode
15 is shown in Fig. 9. Carbon monoxide (CO) can be used as a proxy for the quality of the
16 meteorology since its concentration does not change rapidly due to chemical reactions. The
17 CO concentrations were underestimated during the low-wind periods where there were
18 significant differences between model predictions and measurements of wind speed.
19 Reducing the wind speed after June 12 improved the model performance for CO. The
20 comparison of the modelled PM concentrations ($\text{PM}_{2.5}$) with the AMS measurements is also
21 shown in Fig. 9. Modelled PM concentrations increased by a factor of 2-3 when wind speeds
22 were reduced in low-wind periods and matched measurements much better. All the
23 simulations with CAMx discussed in the following sections were performed with modified
24 wind speeds.

25 **3 Results and Discussion**

26 **3.1 Total aerosol**

27 The modelled $\text{PM}_{2.5}$ refers to the sum of primary aerosol (EC and POA) and secondary
28 inorganic (particulate nitrate, sulphate, ammonium) and organic aerosol (SOA). The predicted
29 monthly average $\text{PM}_{2.5}$ concentrations in the European and Swiss domains (27 km and 3 km
30 resolutions, respectively) are shown in Figs. 10-12 for all episodes. In January 2006, the
31 modelled concentrations reach up to $70 \mu\text{g m}^{-3}$ around the Ruhr area (Germany) and Krakow

1 (Poland) where there are substantial industrial emissions (Fig. 10). Primary aerosol dominates
2 modelled PM_{2.5} at Krakow whereas aerosols are mainly secondary around the Ruhr area.
3 Elevated levels can be seen around the large urban areas as well. Monthly average PM_{2.5}
4 concentrations in the high-resolution Swiss domain (3 km x 3 km) are highest over the Swiss
5 Plateau (region between Jura mountains and Alps) and they exceed the national ambient air
6 quality standards especially in areas downwind of Zurich (modelled daily averages are as high
7 as 65 $\mu\text{g m}^{-3}$) and Basel. The short-term standard for PM₁₀ concentrations averaged over 24 h
8 is 50 $\mu\text{g m}^{-3}$ in Switzerland. The long-term measurements suggest that the PM_{2.5}/PM₁₀ ratio is
9 about 0.75 (Gehrig and Buchmann, 2003). High concentrations are also predicted in the
10 southern part of the modelled domain.

11 The second winter episode in January 2007 was much warmer than January 2006. As seen in
12 Fig. 11, the distribution of predicted PM_{2.5} particles in January 2007 is similar to the case in
13 January 2006, however, concentrations are lower.

14 In summer, the distribution of PM_{2.5} particles in Europe is different from winter, as
15 exemplified in Fig. 12. Although highest levels can still be seen around the Ruhr area (mainly
16 particulate nitrate and primary aerosols) and Krakow (mainly primary aerosols and particulate
17 sulphate), large urban areas are predicted to have much lower PM_{2.5} concentrations in summer
18 than in winter. The model predicted that a significant contribution to PM_{2.5} in the European
19 domain is due to SOA especially in the region from Berlin to the Adriatic sea (Fig. 13).

20 There were detailed AMS (PM₁) measurements at Zurich in January 2006, and at Payerne in
21 June 2006 as well as in January 2007. In addition, there were daily PM_{2.5} measurements at
22 Payerne in June 2006 and January 2007. Moreover, hourly PM₁₀ measurements were
23 available in all three episodes. A comparison of model predictions for PM_{2.5} in the high-
24 resolution domain (3 km x 3 km) with the available measurements in all episodes is shown in
25 Fig. 14. Clearly the particle concentrations were higher in January 2006 than in the other
26 episodes. In January 2006, model results and measurements were similar during the high-
27 wind periods (I and III), and the different measured size fractions yielded quite similar results.
28 In the low-wind periods (II and IV), on the other hand, model results were lower than
29 measurements on some days and there was a large difference between the measured PM₁₀ and
30 PM₁ concentrations in the second period indicating increased coarse mode levels. The average
31 concentration of modelled PM_{2.5} in January 2006 was 27.0 $\mu\text{g m}^{-3}$ which was close to the
32 average measured PM₁ concentration of 29.1 $\mu\text{g m}^{-3}$. In June 2006, model results (average

1 PM_{2.5} 8.1 $\mu\text{g m}^{-3}$) matched both daily PM_{2.5} (average 9.9 $\mu\text{g m}^{-3}$) and hourly PM₁ (AMS, 2 average 8.2 $\mu\text{g m}^{-3}$) measurements (which were similar) rather well. The high PM₁₀ 3 concentrations measured on 20-21 June 2006 correspond to a Saharan dust event observed at 4 that time. In January 2007, PM levels were lower than those in the previous year, and the 5 model (average PM_{2.5} 14.6 $\mu\text{g m}^{-3}$) reproduced the measured PM_{2.5} concentrations (average 6 13.3 $\mu\text{g m}^{-3}$) reasonably well .

7 Model predictions in the European domain were also compared with measurements. Fig. S1
8 shows the measured and modelled PM_{2.5} concentrations at Harwell (UK) for each of the
9 studied episodes. In spite of the coarser resolution of the European domain (27 km x 27 km)
10 the model could reproduce PM_{2.5} levels reasonably well most of the time. The average values
11 for model and measurements were 13.2 and 13.9 $\mu\text{g m}^{-3}$ in January 2006, 12.3 and 13.5 in
12 June 2006, respectively. In January 2007, model results were similar to measurements during
13 the first three weeks, however an overestimation occurred in the last week.

14 3.2 Chemical composition

15 The predicted chemical composition was compared with the AMS measurements. Although
16 the model results consist of PM_{2.5} and the AMS measures particles smaller than 1 μm , they
17 can be compared with each other since the difference between PM₁ and PM_{2.5} measurements
18 is usually rather small, as seen in Fig. 14. Both measurements and model results suggest that
19 in winter particulate nitrate and organic aerosol are the main components of aerosols (Fig.
20 15). This is the case for both winter episodes in 2006 and 2007 at Zurich and Payerne,
21 respectively. On the other hand, organic aerosol dominates the particle composition in
22 summer. The model reproduces the relative contribution of aerosol species very well both in
23 the winter and summer periods. The absolute concentrations from the AMS measurements are
24 about 20% higher than model predictions in winter and summer 2006. In winter 2007,
25 measured and modelled concentrations were similar except for modelled OA which was 17%
26 lower than the measurements. The model results were evaluated using the statistical
27 parameters such as the mean fractional error (MFE) and the mean fractional bias (MFB)
28 recommended by Boylan and Russell (2006) for aerosols. The statistical evaluation of model
29 results is shown in Table 3 for all the episodes. The lowest Root Mean Square Error (RMSE)
30 was obtained for EC in all episodes. The acceptable model performance criteria (MFE $\leq +75\%$
31 and $-60\% < \text{MFB} < +60\%$) were met for all species only in January 2007. Performance

1 criteria are met in January 2006 at Zurich for all species except sulfate. In June 2006, on the
2 other hand, performance criteria are not met for nitrate and ammonium. The performance
3 goals (when both $MFE \leq +50\%$ and $-30\% < MFB < +30\%$ are met) are obtained for OA in
4 Zurich and for EC in Payerne in June.

5 The highest organic aerosol concentrations were measured in January 2006 during the low-
6 wind period II at Zurich (Fig. 16). In general, the model could predict the low concentrations
7 of organic aerosols reasonably well in the high-wind periods. In the winter low-wind periods
8 (periods II and IV in January 2006 and 2007), however, the predicted OA is lower than the
9 measured concentrations for several days. In winter 2006, about 53% of the modelled organic
10 aerosols are predicted to be POA at Zurich. At Payerne, the fraction of POA is 38% and 26%
11 in January 2007 and June 2006, respectively (Table 4). The modelled POA fractions are
12 higher than those derived from measurements using factor analysis of the aerosol mass
13 spectral data (FA-AMS) (Lanz et al., 2008). Diurnal variations of POA and SOA predicted by
14 the model and derived from measurements are shown in Fig. 17 for all periods. Both
15 measured and modelled POA have two peaks in the winter periods; one in the morning and
16 the other in the evening, where measured POA is taken as the sum of hydrocarbon-like
17 organic aerosol (HOA) and wood burning organic aerosol (WBOA). Although morning peaks
18 are similar, the evening peak from the measurements appears much later than that of the
19 model indicating a more important contribution from wood burning that is underrepresented
20 in the model. The measured POA and SOA show similar diurnal variations whereas the
21 modelled SOA has no significant diurnal variation in winter. In summer, model and
22 measurements show similar diurnal variations, with higher POA in the morning and higher
23 SOA in the morning and at night. In general, the modelled SOA concentrations are lower than
24 the measurements while POA is overestimated, especially in summer. The fact that POA is
25 assumed to be non-volatile in CAMx can lead to too high POA and too low SOA, and better
26 agreement can be found using the volatility basis set developed by Donahue et al. (2006) as
27 shown for Mexico City (Hodzic et al., 2010b). Similar diurnal cycles of measured POA and
28 SOA in winter support the hypothesis that some part of SOA might originate from the aging
29 of POA.

30 The model results suggest that SOA originates mainly from biogenic VOCs in Switzerland.
31 This is in agreement with studies using ^{14}C in Zurich showing that biogenic sources are
32 dominant in summer (Szidat et al., 2006). The fractional compositions of modelled SOA for

1 all the three episodes are shown in Fig. 18. In general, SOA in the model is formed basically
2 from monoterpenes (blue), sesquiterpenes (green) and oligomerization of biogenic oxidation
3 products (red). The contribution from anthropogenic precursors to SOA was predicted to be
4 less than 1%. In the winter periods, monoterpenes produce more SOA than sesquiterpenes,
5 while the opposite is true in summer. In CAMx, sesquiterpene SOA is not allowed to partition
6 back to the gas phase at higher temperatures due to its lower volatility, therefore it remains in
7 the particulate phase. On the other hand, monoterpene SOA partitions to the gas phase at
8 higher temperatures, which leads to a lower fraction in summer. One should keep in mind that
9 the sesquiterpene emissions used in this study have a very high uncertainty. The assumption
10 of sesquiterpene emissions as 10% of monoterpene emissions might be too high. With lower
11 sesquiterpene emissions, the underestimation of OA would be significantly larger. The
12 emissions will be updated and a sensitivity study will be performed in the future.

13 **3.3 Sensitivity tests**

14 The deviation between measured and modelled temperature in the lowest model layer was
15 about ± 5 °C (see Fig. 2). The effect of this difference on aerosol concentrations is
16 investigated by changing the temperature in the model by 5 °C. The variation in temperature
17 affects mainly particulate nitrate concentrations. The results showed that particulate nitrate
18 concentrations increased by up to $5 \mu\text{g m}^{-3}$ when the temperature was decreased by 5 °C (Fig.
19 19a). An increase in the temperature by the same amount, on the other hand, caused a
20 decrease of the nitrate levels by $2\text{-}3 \mu\text{g m}^{-3}$. SOA is also sensitive to temperature (Pun and
21 Seigneur, 2008). However, changes in SOA concentrations due to temperature variations
22 were very small (up to $0.2 \mu\text{g m}^{-3}$).

23 The effect of deposition processes on the aerosol concentrations was tested by switching off
24 both dry and wet deposition in the simulations for January 2006. Dry deposition of oxidized
25 gas-phase precursors of SOA is also included in CAMx. The total aerosol concentrations
26 increased without deposition (Fig. 19b). Deposition mainly affects inorganic aerosol
27 components, especially particulate nitrate due to efficient removal of nitric acid, and the
28 degree of change depends on the meteorological conditions.

29 There are very few studies in Europe about the sensitivity of aerosols to precursor emissions,
30 mainly in UK and northern Italy (Redington et al., 2009; Derwent et al., 2009; de Meij et al.,
31 2009). In this study, the sensitivity of inorganic aerosol formation to NO_x and NH_3 emissions

1 was investigated in whole Europe by two simulations for both January 2006 and June 2006,
2 where either NO_x or NH_3 emissions were reduced by 50%. Fig. 20 shows the differences in
3 monthly average $\text{PM}_{2.5}$ concentrations between the two simulations for both winter and
4 summer in both domains. The blue colour (negative values) shows regions where a 50%
5 reduction in NO_x results in a greater decrease of $\text{PM}_{2.5}$ than a 50% reduction in NH_3 , while
6 the red colour shows areas that are more sensitive to a reduction in NH_3 . These results suggest
7 that aerosol formation in most of the European domain in winter (Fig. 20, top left) is more
8 sensitive to NH_3 emissions except in central Europe and north west of France where blue
9 colour indicates a NO_x sensitivity. Using a moving air-parcel trajectory model, Derwent et al.,
10 (2009) predicted that aerosol formation in southern UK was ammonia-limited. This is in line
11 with our results for that region (Fig. 20, top left). As seen in Fig. 20 for the Swiss domain
12 (bottom left), aerosol formation in the Swiss Plateau is limited by NO_x emissions. On the
13 other hand, the red colour in the southern part of the model domain (southern Switzerland,
14 northern Italy) indicates a higher NH_3 sensitivity for aerosol formation. These results support
15 our earlier studies based on short-term simulations (Andreani-Aksoyoglu et al., 2008). In
16 summer, effects of NO_x and NH_3 emission reductions on aerosol concentrations are predicted
17 to be lower mostly due to lower ammonium nitrate concentrations (Fig. 20, right). In general,
18 the sensitivity to NH_3 emissions is weaker in summer due to higher NH_3 emissions. The land
19 area in Europe where aerosol formation is NO_x -limited in winter is about 3% whereas it goes
20 up to 55% in summer. We also tested the sensitivity of aerosol formation to emission
21 reductions lower than 50%. The changes due to 15% emission reductions of either NO_x or
22 NH_3 in January and June 2006 in the European domain are shown in Fig. S2. The results are
23 similar to those in Fig. 20 whereas absolute values are lower, as expected.

24 **4 Conclusions**

25 The aerosols in Switzerland were modelled with the regional air quality model CAMx for one
26 summer and two winter periods in 2006 and 2007 under different meteorological conditions.
27 The following findings can be extracted from this study:

28 - Both measurements and model predictions suggest that organic particulate matter and
29 particulate nitrate are the main aerosol components in winter. In summer, organic
30 aerosol, which is mainly secondary, dominates the aerosol composition.

31 - The relative contribution of aerosol components was modelled very well. The absolute
32 concentrations of aerosol components were in general reproduced rather well, except

1 for the cold winter 2006 where the bias was higher than in the other periods. The
2 acceptable model performance criteria were met for all investigated components in
3 January 2007.

4 - In January 2006, the highest PM_{2.5} concentrations were predicted around the Ruhr area
5 in Germany and Krakow in Poland; secondary inorganic aerosol and primary aerosol
6 were calculated to be the main components in those areas, respectively. In summer,
7 secondary aerosol dominated the aerosol composition both in Europe and in
8 Switzerland.

9 - The contribution of the biogenic emissions to the SOA formation in Switzerland was
10 predicted to be very large and to originate mainly from monoterpenes and
11 sesquiterpenes, as well as oligomerization of biogenic oxidation products.

12 - In all episodes, the predicted primary organic aerosol (POA) fraction was higher than
13 those derived from the AMS measurements (especially in summer), probably because
14 the volatility of POA has not yet been taken into account in the CAMx model.
15 Comparison of modelled and measured diurnal variations of POA and SOA indicates
16 an important contribution from wood burning that is underrepresented in the model.
17 The wood burning emissions will be updated in the near future.

18 - Sensitivity tests suggested that temperature and deposition have a strong effect mainly
19 on particulate nitrate. Nitrate concentrations were inversely correlated with
20 temperature. PM_{2.5} concentrations increased significantly (mainly inorganic aerosols)
21 when the deposition processes were switched off.

22 - Simulations with reduced NH₃ and NO_x emissions indicated that inorganic aerosol
23 formation is more sensitive to NH₃ emissions in a large part of Europe (97%) in
24 winter. The effect of NH₃ emission reductions on aerosol mass is predicted to be lower
25 in summer (45%). On the other hand, model results suggest that aerosol formation
26 over the Swiss Plateau is NO_x –limited in both seasons.

27

28 **Acknowledgements**

29 We thank MeteoSwiss, FUB, UBA, TNO, INFRAS, METEOTEST, EMPA, R. Alfarra and J.
30 Sandradewi for providing various data. The post-processing software provided by M.
31 Tinguely is gratefully acknowledged. We also thank the European Centre for Medium-Range

1 Weather Forecasts (ECMWF) for allowing the use of its Mozart data. This study was
2 financially supported by the Swiss Federal Office of Environment (FOEN).

3 **5 References**

4 Andreani-Aksoyoglu, S., and Keller, J.: Estimates of monoterpene and isoprene emissions
5 from the forests in Switzerland, *Journal of Atmospheric Chemistry*, 20, 71-87, 1995.

6 Andreani-Aksoyoglu, S., and Keller, J.: Estimates of monoterpene and isoprene emissions
7 from the forests in Switzerland, *Journal of Atmospheric Chemistry*, 20, 71-87, 1995.

8 Andreani-Aksoyoglu, S., Keller, J., Prévôt, A. S. H., Baltensperger, U., and Flemming, J.:
9 Secondary aerosols in Switzerland and northern Italy: Modeling and sensitivity studies for
10 summer 2003, *Journal of Geophysical Research*, 113, D06303,
11 doi:10.1029/2007JD009053, 2008.

12 Baertsch-Ritter, N., Keller, J., Dommen, J., and Prévôt, A. S. H.: Effects of various
13 meteorological conditions and spatial emission resolutions on the ozone concentration and
14 ROG/NOx limitation in the Milan area (I), *Atmos. Chem. Phys.*, 4, 423-438, 2004.

15 BFS: GEOSTAT Benutzerhandbuch, Bern, 1999.

16 Boylan, J. W., and Russell, A. G.: PM and light extinction model performance metrics, goals,
17 and criteria for three-dimensional air quality models, *Atmospheric Environment*, 40, 4946-
18 4959, 2006.

19 Buitjes, P., van Loon, M., Schaap, M., Teeuwisse, S., Visschedijk, A. J. H., and Bloos, J. P.:
20 The development of an emission data base over Europe and further contributions of TNO-
21 MEP, Freie Universitaet Berlin / Institut fuer Meteorologie und Troposphaerischer
22 Umweltforschung, Berlin, 70, 2002.

23 Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., and
24 Weber, R. J.: CMAQ Model Performance Enhanced When In-Cloud Secondary Organic
25 Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements,
26 *Environmental Science & Technology*, 42, 8798-8802, 2008.

27 Carlton, A. G., Pinder, R. W., Bhave, P. V., and Pouliot, G. A.: To What Extent Can Biogenic
28 SOA be Controlled?, *Environmental Science & Technology*, 44, 3376-3380, 2010.

29 Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R.,
30 and Walcek, C. J.: A three-dimensional eulerian acid deposition model : Physical concepts
31 and formulation, *Journal of Geophysical Research*, 92, 14,681-614,700, 1987.

32 CITY - DELTA European Modelling Exercise. An Inter-comparison of long-term model
33 responses to urban-scale emission-reduction scenarios <http://aqm.jrc.it/citydelta/>, 2002.

34 COSMO: Newsletter No. 2, Deutscher Wetterdienst, Offenbach (D), 2002.

35 de Meij, A., Thunis, P., Bessagnet, B., and Cuvelier, C.: The sensitivity of the CHIMERE
36 model to emissions reduction scenarios on air quality in Northern Italy, *Atmospheric
37 Environment*, 43, 1897-1907, 2009.

38 Derwent, R., Witham, C., Redington, A., Jenkin, M., Stedman, J., Yardley, R., and Hayman,
39 G.: Particulate matter at a rural location in southern England during 2006: Model sensitivities
40 to precursor emissions, *Atmospheric Environment*, 43, 689-696, 2009.

1 Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled Partitioning,
2 Dilution, and Chemical Aging of Semivolatile Organics, *Environmental Science &*
3 *Technology*, 40, 2635-2643, 2006.

4 Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C.
5 D., Ziemann, P. J., and Jimenez, J. L.: Evaluation of recently-proposed secondary organic
6 aerosol models for a case study in Mexico City, *Atmos. Chem. Phys.*, 9, 5681-5709, 2009.

7 Environ: User's Guide, Comprehensive Air Quality Model with Extensions (CAMx), Version
8 4.4, Environ International Corporation, California., 2008.

9 Gehrig, R., and Buchmann, B.: Characterising seasonal variations and spatial distribution of
10 ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data,
11 *Atmospheric Environment*, 37, 2571-2580, 2003.

12 Heldstab, J., and Wuethrich, P.: Emissionsmuster. Raeumliche Verteilung und Ganglinien
13 fuer CO- /NMVOC-Emissionen, BAFU, Bern / Zürich, 15, 2006.

14 Hodzic, A., Jimenez, J. L., Madronich, S., Aiken, A. C., Bessagnet, B., Curci, G., Fast, J.,
15 Lamarque, J. F., Onasch, T. B., Roux, G., Schauer, J. J., Stone, E. A., and Ulbrich, I. M.:
16 Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic
17 aerosols, *Atmos. Chem. Phys.*, 9, 6949-6981, 2009.

18 Hodzic, A., Jimenez, J. L., Prévôt, A. S. H., Szidat, S., Fast, J. D., and Madronich, S.: Can 3-
19 D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico
20 City?, *Atmos. Chem. Phys.*, 10, 10997-11016, 2010.

21 Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie,
22 X., Lamarque, J.-F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P.: A
23 global simulation of tropospheric ozone and related tracers: Description and evaluation of
24 MOZART, version 2. , *J. Geophys. Res.*, 108, 4784, doi:4710.1029/2002JD002853., 2003.

25 Hueglin, C., Buchmann, B., and Weber, R. O.: Long-term observation of real-world road
26 traffic emission factors on a motorway in Switzerland, *Atmospheric Environment*, 40, 3696-
27 3709, 2006.

28 IPCC: Working Group 1 Report: The Physical Basis of Climate Change (Intergovernmental
29 Panel on Climate Change, 2007) <http://ipcc-wg1.ucar.edu/wg1-report.html>, 2007.

30 Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further Developments of the
31 Convection, Viscous Sublayer, and Turbulence Closure Schemes, *Monthly Weather Review*,
32 122, 927-945, 1994.

33 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prévôt, A. S. H., Zhang, Q., Kroll, J. H.,
34 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
35 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A.,
36 Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
37 P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, J.,
38 Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y.,
39 Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell,
40 L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y.
41 M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
42 Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and
43 Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, *Science*, 326, 1525-1529,
44 [10.1126/science.1180353](https://doi.org/10.1126/science.1180353), 2009.

1 Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prévôt, A. S. H., Fisseha,
2 R., Weingartner, E., Frankevic, V., Zenobi, R., and Baltensperger, U.: Identification of
3 polymers as major components of atmospheric organic aerosols, *Science*, 303, 1659-1662,
4 2004.

5 Keller, M., and de Haan, P.: *Handbuch Emissionsfaktoren des Strassenverkehrs 2.1.*
6 Dokumentation, INFRAS / UBA Berlin / UBA Wien / BUWAL, Bern, 127, 2004.

7 Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Prévôt, A. S.
8 H.: Source apportionment of submicron organic aerosols at an urban site by linear unmixing
9 of aerosol mass spectra, *Atmos. Chem. Phys.*, 7, 1503-1522, 2007.

10 Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., Szidat, S., Wehrli,
11 M. N., Wacker, L., Weimer, S., Caseiro, A., Puxbaum, H., and Prévôt, A. S. H.: Source
12 attribution of submicron organic aerosols during wintertime inversions by advanced factor
13 analysis of aerosol mass spectra, *Environ. Sci. Technol.*, 42, 214-220, 2008.

14 Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Mohr, C., DeCarlo, P. F., Weimer, S., Gianini,
15 M. F. D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and Baltensperger,
16 U.: Characterization of aerosol chemical composition by aerosol mass spectrometry in Central
17 Europe: an overview, *Atmos. Chem. Phys. Discuss.*, 9, 24985-25021, 2009.

18 Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., DeCarlo, P. F., Gianini,
19 M. F. D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and Baltensperger,
20 U.: Characterization of aerosol chemical composition with aerosol mass spectrometry in
21 Central Europe: an overview, *Atmos. Chem. Phys.*, 10, 10453-10471, 2010a.

22 Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., DeCarlo, P. F., Gianini,
23 M. F. D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and Baltensperger,
24 U.: Characterization of aerosol chemical composition with aerosol mass spectrometry in
25 Central Europe: an overview, *Atmos. Chem. Phys.*, 10, 10453-10471, 2010b.

26 Liu, L., Andreani-Aksoyoglu, S., Keller, J., Braathen, G. O., Schultz, M., Prévôt, A. S. H.,
27 and Isaksen, I. S. A.: A photochemical modelling study of ozone and formaldehyde
28 generation and budget in the Po basin, *J. Geophys. Res.*, 112, doi:10.1029/2006JD008172,
29 2007.

30 Madronich, S.: The Tropospheric Visible Ultra-violet (TUV) model web page. , National
31 Center for Atmospheric Research, Boulder, CO. , <http://www.acd.ucar.edu/TUV/>, 2002.

32 Mahrer, F., and Vollenweider, C.: *Landesforstinventar LFI*, Eidgenössische Forschungsanstalt
33 für Wald, Schnee und Landschaft (WSL), Birmensdorf, 1983.

34 Morris, R. E., Koo, B., Guenther, A., Yarwood, G., McNally, D., Tesche, T. W., Tonnesen,
35 G., Boylan, J., and Brewer, P.: Model sensitivity evaluation for organic carbon using two
36 multi-pollutant air quality models that simulate regional haze in the southeastern United
37 States, *Atmospheric Environment*, 40, 4960-4972, 2006.

38 NASA/GSFC, Total ozone mapping spectrometer:
39 <http://toms.gsfc.nasa.gov/ozone/ozone.html>, 2005.

40 Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium
41 model for multiphase multicomponent inorganic aerosols, *Aquatic Geochemistry*, 4, 123-152,
42 1998.

43 Passant, N. R.: Speciation of UK emissions of non-methane volatile organic compounds,
44 AEA Technology, Culham, 289, 2002.

1 PSU/NCAR: MM5 Version 3 Tutorial Presentations, 2004.

2 Pun, B. K., and Seigneur, C.: Investigative modeling of new pathways for secondary organic
3 aerosol formation, *Atmos. Chem. Phys.*, 7, 2199-2216, 2007.

4 Pun, B. K.: Development and initial application of the sesquiversion of MADRID, *J.
5 Geophys. Res.*, 113, D12212, 2008.

6 Pun, B. K., and Seigneur, C.: Organic Aerosol Spatial/Temporal Patterns: Perspectives of
7 Measurements and Model, *Environmental Science & Technology*, 42, 7287-7293, 2008.

8 Redington, A. L., Derwent, R. G., Witham, C. S., and Manning, A. J.: Sensitivity of modelled
9 sulphate and nitrate aerosol to cloud, pH and ammonia emissions, *Atmospheric Environment*,
10 43, 3227-3234, 2009.

11 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M.,
12 Grieshop, A. P., lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols:
13 Semivolatile emissions and photochemical aging Science, 315, 1259-1262, 2007.

14 Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt,
15 N. C., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba,
16 U., Steinbrecher, R., Tarrasón, L., and Öquist, M. G.: Inventorying emissions from nature in
17 Europe, *Journal of Geophysical Research*, 104, 8113-8152, 1999.

18 Steinbrecher, R., Smiatek, G., Koeble, R., Seufert, G. n., Theloke, J., Hauff, K., Ciccioli, P.,
19 Vautard, R., and Curci, G.: Intra- and inter-annual variability of VOC emissions from natural
20 and semi-natural vegetation in Europe and neighbouring countries, *Atmospheric
21 Environment*, 43, 1380-1391, 2009.

22 Stern, R.: Erstellung einer europaweiten Emissionsdatenbasis mit Bezugsjahr 1995 und die
23 Erarbeitung von Emissionsszenarien für die grossraeumige Ausbreitungsrechnungen mit
24 REM/CALGRID, Freie Universitaet Berlin / Institut fuer Meteorologie und
25 Troposphaerischer Umweltforschung, Berlin, 84, 2003.

26 Strader, R., F. Lurmann, S.N. Pandis: Evaluation of secondary organic aerosol formation in
27 winter, *Atmospheric Environment*, 33, 4849-4863, 1999.

28 Szidat, S., Jenk, T. M., Synal, H.-A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A.,
29 and Baltensperger, U.: Contributions of fossil fuel, biomass burning, and biogenic emissions
30 to carbonaceous aerosols in Zurich as traced by ^{14}C , *J. Geophys. Res.*, 111, D07206,
31 doi:10.1029/2005JD006590, 2006.

32 Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J.
33 L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of
34 organic aerosol formation in the Mexico City metropolitan area, *Atmos. Chem. Phys.*, 10,
35 525-546, 2010.

36 USEPA: Guideline for regulatory application of the Urban Airshed Model, USEPA Report
37 No. EPA-450/4-91-013., 1991.

38 Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-
39 scale numerical models, *Atmospheric Environment*, 23, 1293-1304, 1989.

40 Yarwood, G., Morris, R. E., Yocke, M. A., and Whitten, G. Z.: Updates to the Carbon Bond
41 chemical mechanism: CB05. Final Report prepared for US EPA 2005.

42 Zhang, Y., Huang, J.-P., Henze, D. K., and Seinfeld, J. H.: Role of isoprene in secondary
43 organic aerosol formation on a regional scale, *J. Geophys. Res.*, 112, D20207, 2007.

1
2 Table 1: SOA precursor reactions included in CAMx (Environ, 2008).

Precursor	Reaction	CG Products ¹	K_{298} ² ($\text{ppm}^{-1} \text{min}^{-1}$)
Anthropogenic			
Toluenes	TOLA + OH	0.044 CG1 + 0.085 CG2	8.75E+03
Xylenes	XYLA + OH	0.027 CG1 + 0.118 CG2	3.71E+04
Biogenic			
Isoprene	ISP + O	none	5.32E+04
	ISP + OH	0.015 CG3 + 0.12 CG4	1.47E+05
	ISP + O ₃	none	1.90E-02
	ISP + NO ₃	none	9.96E+02
Terpenes	TRP + O	0.065 CG5 + 0.29 CG6	4.12E+04
	TRP + OH	0.065 CG5 + 0.29 CG6	7.76E+04
	TRP + O ₃	0.065 CG5 + 0.29 CG6	1.33E-01
	TRP + NO ₃	0.065 CG5 + 0.29 CG6	9.18E+03
Sesquiterpenes	SQT + OH	0.85 CG7	2.91E+05
	SQT + O ₃	0.85 CG7	1.71E+01
	SQT + NO ₃	0.85 CG7	2.81E+04

3 ¹: Yield values are in ppm/ppm
4 ²: Rate constants are shown for 298 K and 1 atmosphere in $\text{ppm}^{-1} \text{min}^{-1}$.
5

1 Table 2: Properties of CG/SOA pairs in CAMx (Environ, 2008)

Species	Molecular Weight (g mole ⁻¹)	Saturation Concentration ($\mu\text{g m}^{-3}$ at 298 K)	Heat of vaporization (kJ mole ⁻¹)
CG1/SOA1	150	7.82	66.8
CG2/SOA2	150	227	66.8
CG3/SOA3	130	0.726	42
CG4/SOA4	130	136	42
CG5/SOA5	180	3.92	75.5
CG6/SOA6	180	55.8	75.5
CG7/SOA7	210	0	-
SOPA	220	-	-
SOPB	220	-	-

2

1 Table 3. Statistical parameters for aerosol components at Zurich (urban background) and Payerne (rural) in three episodes. CE is
 2 the collection efficiency (determined from sulfate filter measurements) used in AMS measurements. EC was measured by an
 3 aethalometer. The bold numbers indicate the time when the model performance criteria are met (MFE \leq +75% and $-60 < MFB <$
 4 $+ 60\%$)*.

5

Aerosols ($\mu\text{g m}^{-3}$)	January 2006 (Zurich)					June 2006 (Payerne)					January 2007 (Payerne)				
	Model CE=0.5	Obs.	RMSE	MFB	MFE	Model CE=1	Obs.	RMSE	MFB	MFE	Model CE=1	Obs.	RMSE	MFB	MFE
		(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)
NO ₃	9.56	11.47	7.26	-17	55	0.97	0.99	1.53	-91	140	6.89	5.66	3.00	36	58
SO ₄	3.11	6.06	4.76	-65	98	1.36	1.56	1.10	-28	63	1.82	1.43	1.87	3	74
NH ₄	3.90	5.58	3.37	-38	60	0.79	1.07	0.83	-49	77	2.67	2.07	1.27	36	58
OA	9.83	13.45	5.70	-28	39	4.51	6.00	3.10	-35	50	5.31	6.37	4.10	2	59
EC	3.50	2.17	2.22	43	56	0.69	0.95	0.46	-19	36	1.13	1.02	0.50	20	41

6 *Mean Fractional Bias, $MFB = \frac{1}{N} \sum_{t=1}^N \frac{C_{mod}(t) - C_{obs}(t)}{(C_{obs}(t) + C_{mod}(t))/2} \times 100$ Mean Fractional Error, $MFE = \frac{1}{N} \sum_{t=1}^N \frac{|C_{mod}(t) - C_{obs}(t)|}{(C_{obs}(t) + C_{mod}(t))/2} \times 100$

7 *N: number of effective data in the period without the spin-up day*

8 *C_{mod}(t) and C_{obs}(t) :simulated and observed concentrations at time t, respectively) ((USEPA, 1991; Boylan and Russell, 2006)).*

9

10

1 Table 4. The POA and SOA fractions from model simulations and from AMS
2 measurements using factor analysis.

periods	measurements		model	
	POA (%)	SOA (%)	POA (%)	SOA (%)
January 2006 (Zurich)	45	55	53	47
June 2006 (Payerne)	6	94	26	74
January 2007 (Payerne)	29	71	38	62

3
4

1 **Figure captions:**

2 Figure 1: Terrain heights (m asl.) of the model domains with horizontal resolutions of 27 km
3 x 27 km (domain 1), 9 km x 9 km (domain 2), 3 km x 3 km (domain 3).

4 Figure 2: Comparison of measured and modelled wind direction (deg), wind speed (m s^{-1}), air
5 temperature ($^{\circ}\text{C}$) and precipitation (mm) at Payerne (NABEL station) in January-February
6 2006.

7 Figure 3: Comparison of vertical profiles of potential temperature (K) at 12:00 local time
8 from soundings at Payerne (red) and from MM5 meteorological model (blue). Top left: 4
9 January (period I), top right: 9 January (period II), bottom left: 18 January (period III), bottom
10 right: 3 February (period IV).

11 Figure 4 : Difference of potential temperature ($\Delta\theta$) between Payerne (NABEL station, 489 m
12 asl.) and Chaumont (MeteoSwiss station, 1137 m asl.) during January-February 2006 (data at
13 12:00 UTC); measurements in red, MM5 model results in black.

14 Figure 5: Comparison of modelled wind speed (m s^{-1}) at the 6th model level (mid-point at
15 approximately 992 m asl.) with measurements at Uetliberg (ENET station, 1043 m asl.) in
16 January 2006.

17 Figure 6: Comparison of measured and modelled wind direction (deg), wind speed (m s^{-1}), air
18 temperature ($^{\circ}\text{C}$) and precipitation (mm) at Payerne (NABEL station) in June 2006.

19 Figure 7: Comparison of measured and modelled wind direction (deg), wind speed (m s^{-1}), air
20 temperature ($^{\circ}\text{C}$) and precipitation (mm) at Payerne (NABEL station) in January 2007.

21 Figure 8: Comparison of modelled and measured wind speed at Payerne (rural) in January
22 2006 (top), at Haerkingen (motorway) in June 2006 (middle) and at Duebendorf (suburban) in
23 January 2007 (bottom), before (left) and after the adjustment (right). The term
24 modelled/measured in each plot represents the slope of the correlation.

25 Figure 9: Effect of reduced wind speed on CO in June 2006 (Payerne), and on PM in January
26 2006 (Zurich), June 2006 (Payerne), January 2007 (Payerne).

27 Figure 10: Modelled monthly average PM_{2.5} concentration in January 2006 in the European
28 (27 km x 27 km) (top) and Swiss domains (3 km x 3 km) (bottom).

29 Figure 11: Modelled monthly average PM_{2.5} concentration in January 2007 in the European
30 (27 km x 27 km) (top) and Swiss domains (3 km x 3 km) (bottom).

31 Figure 12: Modelled monthly average PM_{2.5} concentration in June 2006 in the European (27
32 km x 27 km) (top) and Swiss domains (3 km x 3 km) (bottom).

33 Figure 13: Modelled monthly average secondary organic aerosol (SOA) concentration in June
34 2006 in the European domain (27 km x 27 km).

35 Figure 14: Comparison of PM₁ (hourly), PM_{2.5} (daily) and PM₁₀ (hourly) measurements with
36 PM_{2.5} (hourly) model predictions at Zurich in January 2006 (top), at Payerne in June 2006
37 (middle) and at Payerne in January 2007 (bottom).

38 Figure 15: Fractional composition of measured (left) and modelled (middle) aerosols as well
39 as absolute concentrations (right) in January 2006 at Zurich (top), in June 2006 at Payerne
40 (middle) and in January 2007 at Payerne (bottom).

41

1 Figure 16: Comparison of modelled and measured organic aerosols as well as modelled POA
2 and SOA in January 2006 at Zurich (top), in June 2006 at Payerne (middle) and in January
3 2007 at Payerne.

4 Figure 17: Diurnal variation of monthly average measured (AMS, PMF) and modelled POA
5 and SOA in January 2006 at Zurich (top), June 2006 at Payerne (middle) and January 2007 at
6 Payerne (bottom).

7 Figure 18: Fractional composition of modelled SOA at Zurich in January 2006 (left), at
8 Payerne in June 2006 (middle) and in January 2007 (right). AROM: aromatic precursors, ISP:
9 isoprene, TRP: monoterpenes, SQT: sesquiterpenes, POLA: polymerized anthropogenic SOA,
10 POLB: polymerized biogenic SOA.

11 Figure 19: Results of sensitivity tests, Zurich, January 2006. a) change in modelled nitrate
12 concentrations when air temperature is modified b) change in modelled $PM_{2.5}$ concentrations
13 when deposition processes are switched off.

14 Figure 20: Difference in monthly average aerosol concentration ($\mu g m^{-3}$) between two
15 simulations with a 50% emission reduction of either NO_x or NH_3 in January 2006 (left) and in
16 June 2006 (right) for both European (top) and Swiss (bottom) domains. Aerosol formation is
17 more sensitive to NO_x emissions in blue regions and more sensitive to NH_3 emissions in red
18 regions.

19

20