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We first want to thank the comments raised by Referee #1 about the PMF. We agree
that the information provided about the application of PMF was not sufficient in the
previous version of the manuscript. In the revised version of the ms we have added the
information necessary to assess the rigorousness of the PMF analysis, including: a)
minimum and maximum values of calculated mean signal-to-noise (S/N), percentage of
data above the detection limit (%ADL), and relative errors for major and trace elements
included in the PMF analysis; b) theoretical (degrees of freedom of the system) and
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calculated values of the objective function Q; c) selection of the optimal number of
sources; d) behaviour of the scales residuals; e) quality of the regression analysis of
the factor scores from PMF (G matrix) to PM mass. Moreover, in this revised version
of the ms, we have run again the PMF model by including phosphorus (P) in the data
matrices. In the revised version of the manuscript, paragraphs 2.6 (Positive Matrix
Factorization) and 3.4 (Positive Matrix Factorization modelling) were rewritten as follow:

2.6 Positive matrix factorization The identification of the chemical profile of the poten-
tial sources contributing to PM10 levels and composition was identified by analyzing
the PM10 composition data set with the Positive Matrix Factorization model, version
2 (PMF2; Paatero, 1997). PMF model is a factor analytical tool that provides the
chemical profile and contribution of the identified sources to each aerosol constituent
(Paatero and Tapper 1994; Paatero 1997). The PMF model solves the matrix prob-
lem X= G×F+E where X is the matrix of daily chemical speciated data while G and F
are the unknown matrixes of factor scores (source contribution) and loading (source
profile), respectively, and E is the matrix of residuals (difference between measured
and calculated specie concentrations). The problem is solved by minimizing the ob-
jective function Q = E/S where S is the matrix of the uncertainty in each data value.
The minimization of Q is based on the error-weighted least-squares method, thus the
calculation of the matrix S is a crucial point so that the model gives the right weight
to the input data and consequently the most reliable results. In the present study, the
matrix S was calculated following the procedure described in Amato et al. (2009) and
Escrig et al. (2009). With this method the uncertainties of the analytical procedures
described in the section 2.3 are propagated jointly with the uncertainty related with the
subtraction of the blank filters that are different filters from the sampled ones. The ap-
plied formula gives higher relative errors for small concentration data near the limit of
detection. Once the uncertainties were calculated the number of species used within
the PMF model was selected by looking at their signal-to-noise ratio (S/N) which pro-
vides a criterion to separate the species which retain a significant signal from the ones
dominated by noise. Only species with S/N values higher than 2 were selected for
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the present study, thus weak species were not introduced in the model (Paatero and
Hopke, 2003). Moreover, since S/N is sensitive to sporadic values much higher than
the level of noise, the percentage of data above detection limit (%ADL) was used as
complementary criterion for specie selection. The combination of both criteria allowed
to select 21 species for the PMF2 analysis with averaged S/N, %ADL and relative error
of major elements ranging respectively between 2.0, 32% and 85% for Cl- and 8.4,
70% and 14% for Ca. For trace elements S/N, %ADL and relative error between 2.0,
30% and 80% for Sb and 8.5, 70% and 14% for Ti, respectively, were calculated. In
order to avoid bias in the results the data matrix was uncensored, i.e. negative or below
detection limit values were included as such in the analysis without substituting them
with below detection limit indicators (Paatero, 2007). Once the input data and errors
matrices were prepared the PMF2 model was run in robust mode (Paatero, 1997) for
source identification and apportionment. The optimal number of sources was selected
by inspecting the variation of Q from PMF with varying number of sources (from 2 to 4)
and by studying the physical meaningful of the calculated factors. Because Izaña is a
remote site, the aerosol sampled at this observatory is aged and very well mixed. Con-
sequently, only a limited number of sources can be expected from PMF analysis. In the
present work a 3-factor solution was selected. The theoretical value of Q should be ap-
proximately equal to the number of degrees of freedom of the system [n × m – (p × (n
– m)] (Paatero et al., 2002) where n, m and p are the number of samples, species and
factors respectively. In our case the degrees of freedom were 3766 (k=2), 3591 (k=3),
and 3416 (k=4) for i and j of 196 and 21 respectively, while the calculated Q were 5742
(k=2), 3818 (k=3), and 2901 (k=4). For k=4 the above condition was not satisfied being
the Q calculated from the PMF smaller than the theoretical value of Q, i.e. the model
simulated the data better than the errors allowed. Moreover, in the four-factor solution
the additional factor did not have a meaningful chemical profile being loaded with al-
most all used species. One additional criteria used to evaluate the meaningfulness of
the calculated sources was the inspection of the ratios between specific compounds
pairs in the calculated chemical profiles. As shown in the following of this work with the
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three-factor solution the values of the selected ratios in the calculated chemical profiles
were very close to the corresponding ratios calculated starting from the ambient exper-
imental data. Moreover, in the three-factor solution 90-100% of the scaled residuals
were located between the optimal range -2 and +2 (Juntto and Paatero, 2004). Once
the number of sources was selected the rotational ambiguity was handled by means of
the Fpeak parameter (Paatero et al., 2005) by studying the variation in the Q values by
varying Fpeak from -0.8 and +0.8. It was found that Q was minimized without rotations
and an Fpeak of 0.0 was selected for the final PMF solution. After regression of the
factor scores from PMF (G matrix) to PM mass the model was able to simulate 98% of
measured PM mass with a coefficient of determination of 0.99.

3.4 Positive matrix factorization modelling The PMF2 model was used to identify the
chemical profile of the sources that contribute to PM10 in the summer subtropical SAL.
This was done for assessing the consistency of the above performed interpretations
on the origin of the pollutants mixed with dust. Three potential sources affecting the
levels and chemical composition of PM10 were identified (Figure 15): 1. Source 1 is
traced by typical soil dust elements: Al, Ca, Fe, Mg, Mn, Ti, Rb, Sr, La and K. Accord-
ing to the model, this source accounts for 22.0 µg/m3 as averaged, i.e. 75% of bulk
PM10. Moreover, it accounted for 22%, 16% and 96% of the measured concentrations
of SO4=, NO3− and Ca respectively as average during the whole study period. This
source was also enriched in P and accounted for ∼60% of the mean concentration of
this element. The Fe/Al, K/Al, Mg/Al, Ca/Al ratios in the chemical profile of this source
were 0.53, 0.20, 0.16, 0.34, respectively in good agreement with the previously re-
ported ratios calculated from the measured ambient concentrations of these elements
(Table 3). 2. Source 2 shows a profile traced by SO4=, Ca, Na, Mg, V, Ni, As, Pb, P and
NO3-. The concentration of NH4+ in the chemical profile of this source is almost negli-
gible. The profile of the source includes SO4= and NO3−, present as Ca, Na and/or Mg
(only for sulphate) salts, and potential industrial tracers, such as V, Ni, As, and Pb. The
presence of species potentially affected by anthropogenic emissions (e.g. SO4=, Ni,
As, Pb) with soil dust elements (e.g. Ca, Na) suggest that this sources is related with
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interaction between pollutants and dust. As average during the whole study period, this
source accounted for 4.4 µg/m3 of PM10 (15% of bulk mass) and for 52%, 28%, 2%
and 20% of SO4=, NO3−, Ca and P respectively. 3. Source 3 exhibits a chemical pro-
file characterised by SO4=, NO3−, NH4+, Cl and P. This profile fits with that observed
in the regions where emissions from the phosphate based fertilizer industry is present:
Morocco, Eastern Algeria and Tunisia (Figures 8E, F and 10). This source accounts for
the presence of ammonium-sulphate [(NH4)2SO4] and ammonium-nitrate [NH4NO3],
even if the latter is expected to be present in very low concentrations. The ratios of
these compounds in the chemical profile were 0.37 and 0.35 respectively, very close to
the stoichiometric ratios for ammonium sulphate and nitrate (Chow et al., 1992). This
source accounted for 2.3 µg/m3 of PM10 (8% of bulk mass) and 22%, 53%, 0% and
20% of sulphate, nitrate, Ca and P, respectively. In general, the contributions of the
various sources obtained with PMF should be independented of one other if unrealistic
rotations are not present in the solution. However, a certain degree of correlation be-
tween specific source pairs can be observed if physical and/or chemical atmospheric
processes constraint such sources to be correlated (Kim and Hopke, 2008; Pandolfi et
al., 2011). In our case the moderate to high correlation observed between the three
profiles of sources, illustrated in Figures 15B-15D, evidence that the pollutants are very
well mixed with dust. At remote sites such as Izaña, aerosols are aged and very well
mixed, resulting in a relatively homogenous aerosol. This decreases the number of
sources that may be properly identified by receptor modelling.
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