1 2	Enhancement and depletion of lower/middle tropospheric ozone in Senegal during pre- monsoon and monsoon periods of summer 2008: Observations and Model results.
3 4	Gregory S. Jenkins ¹ , Seydi Ndiaye ² , Moussa Gueye ² , Rachel Fitzhugh ^{3*} , Jonathan W. Smith ¹ , Abou Kebe ⁴
5	
6	
7	
8	
9	1. Howard University Program in Atmospheric Science, Washington DC 20059
10 11	 Lab for Atmospheric-Oceanic Physics-Simeon Fongang, Cheikh Anta Diop University, Dakar Senegal
12 13 14	 Department of Atmospheric Ocean and Space Science, University of Michigan, Ann Arbor, Michigan. *Now at ITT Corporation 1447 St. Paul Rochester, NY 14621
15	4. Senegal Meteorological Agency, Dakar Senegal
16	

17 Abstract

18	During the summer (8 June through 3 September) of 2008, nine (9) ozonesondes are
19	launched from Dakar, Senegal (14.75°N, 17.49°W) to investigate ozone (0 ₃) variability
20	in the lower/middle troposphere during the pre-monsoon through monsoon period.
21	Results during June (pre-monsoon period) show a reduction in O ₃ , especially in the 850-
22	700 hPa layer with SAL events. However, O ₃ concentrations are increased in the 950-
23	900 hPa layer where the peak of the inversion is found and presumably the highest dust
24	concentrations. We use the WRF-CHEM model to explore the observations of
25	elevated/reduced O ₃ concentrations during the pre-monsoon/monsoon periods. In the
26	transition period between 26 June and 2 July lower tropospheric (925-600 hPa) O_3
27	concentrations are likely enhanced by enhanced biogenic NO_X emissions from the
28	Saharan desert and Sahelian soils following several rain events on 28 June and 1 July.
29	During July and August (monsoon period), with the exception of one SAL outbreak,
30	vertical profiles of O_3 are well mixed with concentrations not exceeding 55 ppb between
31	the surface and 550 hPa.

1. Introduction

36	Understanding tropospheric ozone (O ₃) variability in the tropics remains an active
37	area of research with biomass burning, biogenic, anthropogenic and lightning being
38	important sources of ozone production in the tropics and deposition and heterogeneous
39	chemistry being important sink of O_3 in the tropics. Tropospheric O_3 is also a greenhouse
40	gas with positive radiative forcing and contributes to global warming. A likely source of
41	Northern Hemisphere summer season tropospheric O ₃ variability is associated with
42	Saharan dust events. Each year, between May and October, the Saharan Air Layer (SAL)
43	(Carlson and Prospero, 1972; Dunion and Veldon, 2004) is a dominant feature
44	influencing continental areas of West Africa and the Tropical Atlantic. The SAL is
45	characterized by dry, (low relative humidity), stable air (an inversion capped above the
46	marine boundary layer), a mid-level easterly jet and reduced visibilities from enhanced
47	dust. Potential sources of dust are found in Mauritania, Mali and Algeria during June-
48	July and August in association with the SAL (Middleton and Goudie, 2001).
49	A number of observational studies have shown reduced O ₃ in the presence of
50	Saharan dust (De Reus et al. 2000; Bonasoni et al. 2004). The desert aerosols can reduce
51	tropospheric O ₃ concentrations at a single location in multiple ways: (a) dust aerosols
52	may serve as deposition sites for O ₃ while also reducing photolysis rates. (b)
53	Heterogeneous chemistry on aerosol surfaces can reduce important precursors (OH, HO ₂)
54	associated with O ₃ production. (c) The production of Nitric Acid (HNO ₃), leading to
55	particulate nitrate can act as a sink for NO _X and limit O ₃ production (Zhang et al. 1994;
56	Jacob, 2000; Bian and Zender 2003; De Reus et al. 2000; Tang et al. 2003). Hence, the

SAL acts as a potential sink for O₃, reducing its greenhouse forcing while also scattering
solar radiation causing daytime cooling at the surface.

Recent observations of the SAL have examined its radiative impact (Myhre et al, 2003), chemical composition (Twohy et al. 2008), aerosol and water vapor structure (Ismail et al. 2010), and potential impact on African Easterly Waves (AEWs) and Tropical Cyclogenesis (Jenkins et al. 2008; Zipser et al. 2009). Here we report on the variability of lower/middle tropospheric O₃ (surface through 550 hPa) during the premonsoon and monsoon periods of 2008 at a location in the semi-arid Sahelian zone.

65

2. Observational data and Model Simulations

66 In preparation for ozonesonde launches Vaisala ECC6AB ozonesondes were 67 prepared 3-7 days in advance and launched in concert with RS92 radiosonde at 1200 68 UTC during June, July and August of 2008. Table 1 shows the 9 ozonesonde launches 69 from Dakar, Senegal (14.75°N, 17.49°W) during the period. Aerosol observations are 70 derived from the Aerosol Optical Thickness (AOT) measurements from the Aerosol Robotic Network (AERONET) at Mbour, Senegal (14.39°N, 16.59°W) and from the 71 72 Space-borne Ozone Monitoring Instrument (OMI) Aerosol Index (AI) for the summer of 2008. The 1 ° x 1° Deep Blue product from the Moderate Resolution Imaging 73 74 Spectrometer (MODIS) instrument aboard the AQUA satellite is used for AOT over land 75 areas. Daily averages of AOT are constructed from the hourly AOT data from Mbour, Senegal. Tropospheric Column Ozone (TCO) estimates for the summer of 2008 at 1° x 76 1.25° are also used (Ziemke et al. 2006.) 77

78

To address daily and seasonal tropospheric O₃ variations for comparision with the

79	measurements the Weather and Research Forecasting with Chemistry (WRF-CHEM)
80	model is used to simulate O ₃ concentrations over West Africa during the summer of 2008
81	(Grell et al. 2005). The WRF-CHEM computes gas phase chemistry with 55 prognostic
82	species and 134 reactions (Fast et al. 2005). The WRF-CHEM simulations use 30 km grid
83	spacing, 27 vertical levels and the top of the model is 50 hPa. The biogenic sources of
84	volatile organic compounds are computed (Guenther et al. 1995) and the model is
85	initialized from a uniform state with O ₃ concentrations that increases with height to the
86	stratosphere. NCEP final analyses at 6-hour intervals provide meteorological initial and
87	boundary conditions to the WRF-CHEM. Here we define the pre-monsoon period as the
88	month of June and the monsoon period from July through September.
89	
90	3. Results
91	Figures 1a-d show the satellite derived TCO values across West Africa and the
92	Eastern Atlantic for June through September 2008. A north-south gradient of TCO
93	values with higher TCO values are generally found over the Sahara relative to Sahelian
94	and Guinean regions of West Africa. The TCO gradient is weakest and strongest during
95	June and August respectively. During June, TCO values of 37-40 DU are found over the
96	desert regions with slightly lower values to the south (Figure 1a). However, by August
97	TCO values are considerably lower over the Sahelian and Guinea regions of West Africa.
98	Figures 2a-c show the OMI AI along with the AOT from Mbour, Senegal for the period
99	of ozonesonde launches during 2008. There are a number of high AI/AOT days
100	associated with SAL outbreaks during June and July and considerably fewer days in
101	August. The numbers of days where AI was greater than 2.5 during June, July and
102	August were five (5), three (3) and one (1) respectively. The numbers of days where

103 AOT values are greater than 0.6 during June, July and August are seven (7), four (4) and

104 two (2), respectively. The OMI AI is positive correlated to the Mbour AOT values with

105 correlation values of 0.82, 0.86 and 0.79 during June, July and August respectively.

106 TRMM daily averaged rain amounts for a 5° ×5° (11.5-16.5°N, 12.5-17.5°W) box over

107 Senegal and Gambia shows very little precipitation until the end of June when wetter

108 conditions begin and continue through July and August (Figure 2d).

Figure 3a shows ozonesondes for the summer of 2008 with a range in O_3

110 concentrations from approximately 20-80 ppb between the surface and 450 hPa. Table 1

shows that highest column ozone in the 925-550 hPa layer is found on 12 June (20.5 DU)

112 with 14.2 DU on 2 July. The lowest column ozone in the 925-550 hPa layer is found on

113 27 September (6.4 DU) followed by 8 June (6.6 DU). Figure 3b shows the two vertical

114 profiles of O_3 between the end pre-monsoon period and the start of the monsoon season;

a significant enhancement is found between the surface and 600 hPa. We discuss

116 possible causes for elevated O_3 during the transition period in Section 3.2.

117 *3.1 Pre-monsoon O₃ measurements*

118 There are three (3) ozonesonde launches, 8, 10, 15 June with OMI AI values > 2

119 which are associated with SAL events in Figure 2. During the pre-monsoon period

120 (Figure 4a), O₃ concentrations are reduced on 8 and 10 June relative to the other profiles,

especially in the 850-600 hPa layer. These are also the two days with the lowest 925-550

122 hPa column ozone during the pre-monsoon period (Table 1). In the 950-900 hPa layer,

123 just below the depleted layer there is also evidence of enhanced O₃ concentrations. Figure

4b shows low relative humidity (< 20%) at approximately 950 hPa for 8, 10, 12 and 15

125 June, which begins to increase at pressure levels less than 700 hPa, except for 12 June

126 where RH values rapidly increase above 900 hPa. Figure 4c shows a temperature

127 inversion is present for all pre-monsoon ozone profiles, but the very strongest

temperature inversions are found for 8, 10 and 15 June. It is at the peak of temperature

129 inversion that increases in O₃ concentrations are found (Figure 4a). This is also the

130 altitude where high dust concentrations are found (Ismail et al. 2010).

131 Figures 5a-h show OMI- AI with 925 hPa streamlines along with the Deep Blue AOT

132 overlain by 700 hPa streamlines for comparison during the pre-monsoon period.

133 Elevated aerosol loadings on 8, 10 and 15 June are associated with either northerly or

134 northeasterly winds at 925 hPa (Figures 5 a, b, d). In contrast, winds with a southerly

135 component are found on 12 June and 26 June (Figures 5c, 5e). Moreover an African

136 Easterly Wave (AEW) (Burpee et al. 1972) at 700 hPa streamlines, exits the continent on

137 12 June and is associated elevated RH, cloudiness and precipitation in Dakar. Reduced

138 O₃ concentrations between 850 and 600 hPa on 8, 10 June in concert with higher AI/AOT

139 from Saharan dust support depletion through heterogeneous chemistry.

140 3.2 Pre-Monsoon/Monsoon Transition

Satellite and aircraft observations along with modeling studies have identified
NO_x emissions from soil as an important source of tropospheric NO_x during June, July
and August in Sahelian and Saharan zones (Jeagle et al. 2004; Van der A et al. 2008;
Williams et al 2009; Delon et al. 2008; Delon et al. 2010). Pulses of biogenic NO_x
emissions are released into the atmosphere from the soil at the end of the dry season with
the first rains. During the 2006 African Monsoon Multidisciplinary Analyses (AMMA)

147 campaign (Redelsperger et al. 2006), aircraft measurements flown over wet/dry soils

148 during the AMMA field campaign show higher NO_X concentrations in the boundary layer

149 over the recently wet soils (Stewart et al. 2008). O₃ concentrations are significantly

150 higher over wet soils when compared to dry surfaces and low correlations with CO imply

151 that NO_X production is not associated with anthropogenic or biomass burning sources

152 (Stewart et al. 2008). A sharp gradient in O₃ concentrations are found implying produced

153 locally O_3 estimated at 1 ppb h⁻¹ from soil NO_X .

154 Figure 3b shows that O₃ concentrations between 950 and 600 hPa are considerably 155 higher at the start of the monsoon period (2 July) when compared to the end of the pre-156 monsoon period (26 June). O_3 concentrations are more than 10-20 ppb larger on 2 July 157 when compared to 26 June. The enhancement of O_3 coincides with several rainfall 158 events in Senegal that the vicinity of Dakar on 28, 30 June (Figures 6 a,b). TRMM daily 159 rain estimates were highest on 1 July with daily amount approaching 80 mm in some 160 areas to the east of Dakar (Figure 6d). The rainfall was associated with the passage of an 161 AEW on 1 July and a plausible cause for O₃ enhancement between 26 June and 2 July by 162 biogenic NO_x emissions from wet Sahelian soils.

163 *3.3 Monsoon O₃ measurements*

164 During the monsoon period, the vertical profiles of O_3 are nearly uniform on 2 July,

165 27 August and 3 September, except for 2 August when there is a SAL event affecting

166 Senegal (Figure 7a). The 2 August measurement shows the enhance/depletion pattern of

167 O₃ concentrations in the vertical profile as in earlier SAL events with enhancement near

168 the peak of the SAL temperature inversion and depletion immediately above this level.

169 Figure 7b shows humid conditions over Senegal during July, August and September

170 except for 2 August when a SAL event occurred over Senegal. The 2 August vertical 171 profile of relative humidity shows values less than 10% in the 950-900 hPa layer. In 172 contrast a very moist profile can be found on 27 August with RH values between 90 and 173 100% from 950 through 750 hPa. A large temperature inversion is found on 2 August in 174 association with the SAL event with smaller temperature inversions found during the 175 other three monsoon launches (Figure 7c). Table 1 shows that during the monsoon 176 period the lowest column O₃ is found on 27 August in association with the highest 177 relative humidity in the 925-550 hPa layer.

178 Figures 8a-h show OMI- AI with 925 hPa streamlines along with the Deep Blue AOT

179 overlain by 700 hPa streamlines for comparison during the monsoon period. During this

180 period, only 2 August shows elevated AI and AOT in association with a thermal low

181 (heat low) over Southern Mauritania (Figure 8b). During the other three days (2 July, 27

182 August, 3 September), the highest AI or AOT values are found over higher latitudes (>

183 20 degrees). Also evident at 700 hPa are strong AEWs, which have closed vortices on 2

184 July, 27 August and 3 September (Figure 8a, c, d).

3.4 WRF-CHEM simulations of elevated O₃ concentrations on 12 June and reduced O₃
concentrations during the monsoon period.

187 Table 1 shows that during the period of 10 June through 12 June, the 925-550 hPa

188 column O₃ is increased by a factor of 2.77; between the SAL air mass and the passage of

- the AEW. This is followed by a decreased by nearly a factor of 1.8 between 12 and 15
- 190 June. The elevated O₃ concentration on 12 June could be due to: (a) a stratospheric
- 191 intrusion; (b) a biogenic pulse of NO_X from Sahelian soils enhancing O₃ or; (c) lightning-

192 NO_X which enhances O_3 concentrations that is then transported to the lower/middle 193 troposphere (Grant et al. 2008). To address a possible stratospheric influence, the WRF-194 CHEM is initialized at four different times at 0000 UTC, 1 June: 1200 UTC, 4 June: 1200 195 UTC 5 June; 1200 UTC 6 June to simulate elevated O_3 concentration for the period 10-12 196 June. Figures 9 a-d show for the period of 8 June and 13 June that higher concentrations 197 of O_3 are found in the middle and upper troposphere based on vertical profiles of O_3 at 198 14.5 °N, 17.5° W near Dakar, Senegal, in a region of weak sinking motion. WRF-199 CHEM forecasts that are initialized on 5 and 6 June show O₃ concentrations in the 90 to 200 120 ppb range at the 200-300 hPa levels with values of 35-50 ppb extending downward 201 into middle to lower troposphere (Figures 9c, d).

202 The elevated levels are consistent with the observations between 10 and 12 June 203 where a large increase is found in the lower/middle troposphere (Figures 4a). For 204 example, O_3 values of 20 ppb are found near 600 hPa on 10 June but increase to nearly 205 65 ppb on 12 June. Figure 10 provides further support for a stratospheric intrusion when 206 comparing O₃ concentrations on 10, 12 June for 1000-150 hPa levels. On 12 June O₃ 207 values greater than 400 ppb are found just below 200 hPa. The enhancement of O_3 208 relative to 10 June is found throughout the lower, middle and upper troposphere. Hence, 209 O3 elevated concentrations from the lower stratospheric is supported by observations and 210 WRF-CHEM results during the period of 10-12 June.

Next we use WRF-CHEM to explore the lower O₃ concentrations that are
relatively well mixed during August and September. Table 1 shows low 925-550 hPa
column O₃ under moist and low aerosol loading conditions. In particular, 27 August and 3
September measurements show low concentrations of O₃ that are well mixed relative to

215	the O_3 measurements under humid conditions (Figure 7a). There are several factors that
216	could lead to well mixed, reduced O_3 concentrations in the monsoon season: (a)
217	increased O_3 and NO_X deposition; and (b) the northward transport of O_3 poor air from
218	areas to the south of the Sahel.
219	First, a reduction in O ₃ concentrations during the monsoon period is expected
220	because of increased deposition with the rapid growth of vegetation. After June, the
221	northward movement of the monsoon and the accompanied southwest moist flow leads to
222	increased instability and precipitation. The precipitation supplies an important source of
223	moisture for vegetation growth of West Africa (Guinea region northward to the Sahel).
224	The expansion of vegetation leads to increased deposition and a north-south gradient in
225	deposition rates and hence ozone in the lower troposphere. Measurements in Senegal
226	during 2006 estimate a maximum deposition velocity of 1.5 cm-s ⁻¹ with higher values
227	noted during precipitation events (Grant et al. 2008). The removal of NO_X through
228	dry/wet deposition would lead to reduced O ₃ concentrations in lower latitudes relative to
229	the drier semi-arid and arid regions in the Sahelian zone and Sahara desert (Delon et al.
230	2010).
221	Second northward surges in the managen flow or the passage of AEWs should lead

Second, northward surges in the monsoon flow or the passage of AEWs should lead to an overall poleward transport of O₃ poor air in the lower troposphere, because of more vegetation and higher deposition rates in lower latitudes; onshore flow from the Atlantic ocean would also transport in O₃ poor air. Conversely surges of dry air from desert regions should lead an equatorward transport of enriched O₃ concentrations to lower latitudes. An example of this process is the low O₃ concentrations in the lower troposphere measured at Dakar, Senegal for 27 August, and 3 September. In each case,

238	very moist conditions with 925 hPa flow coming from Atlantic Ocean (Figure 8c) and
239	lower latitudes (Figure 8d) are found with the approach or passage of an AEW (Figures
240	8g, h) at 700 hPa. AEWs on 2 July and 27 August are associated with Tropical Cyclones
241	Bertha and Ike, respectively (Rhome 2008; Berg 2008). The monthly averaged TCO
242	values (Figure 1) along with recent measurements during the AMMA field campaign
243	support a north-south gradient in the lower troposphere with lower O ₃ concentrations
244	found in equatorward latitudes of West Africa (Saunois et al. 2008).
245	To examine simulated seasonal O ₃ concentrations and its relationship to relative
246	humidity we show WRF-CHEM forecasted 925 hPa 12-hour instantaneous O_3
247	concentrations and relative humidity averaged over the area of 14-16° and 18-16°W for
248	June, July and August and early September (Figure 11). The highest O ₃ concentrations
249	are found during the month of June with significant reductions simulated during the
250	months of July and August. Simulated O_3 concentrations of 10-20 ppb are common at
251	925 hPa during the monsoon period (Figure 11a) relative to June. The lower simulated
252	O ₃ concentrations are found when the simulated relative humidity (RH) at 850 hPa values
253	begins to increase (Figure 11b). Elevated 850 hPa relative humidity can be used as a
254	proxy of the monsoon flow during July, August and September. The simulated increases
255	in relative humidity are in agreement with satellite observed wetter conditions during July
256	and August (Figure 2d)
257	

4. Discussion and Summary

260	During the pre-monsoon period reductions of O_3 concentrations in the lower
261	troposphere associated with SAL outbreaks. Figures 12 a-d show the vertical profiles of
262	O_3 concentration, relative humidity and temperature in the 1000-750 hPa layer for the
263	four SAL events that occurred during the summer of 2008. Similar vertical profiles of
264	O ₃ concentrations (> 50 ppb for 2 August) are found in three of the four ozonesondes:
265	An increase in O_3 concentrations is found to overlap with a temperature inversion and
266	very low relative humidity (Figures 12a, b, d). Above the layer where O ₃ concentrations
267	are enhanced, there is a depleted layer of O_3 in the 900-750 hPa layer. The depleted O_3
268	layer is Figure 12 is consistent with the earlier results of De Reus et al. (2000) and
269	Bonasoni et al. (2004) with heterogeneous chemistry being a primary source of O_3
270	depletion (Zhang et al. 1994; Tang et al. 2004). Tang et al. (2004) show through
271	modeling studies and aircraft observations that losses of O ₃ and HNO ₃ through direct
272	interaction with dust were large during observed dust storms in the ACE-Asia field
273	campaign.
274	

275 Figure 13a depicts the changes in aerosol concentrations, relative humidity and O₃ 276 concentrations, during a ideal SAL events with significant dust loading, based on the 277 findings from this study. During this SAL event, a vertical profile of O₃ would show: 278 Layer A – from the surface to 950 hPa with slowly increasing O₃ concentrations and low 279 aerosol concentrations; Layer B- a 50-100 hPa layer with elevated O₃, high aerosols 280 concentrations and a strong temperature inversion; Layer C - a 100-200 hPa layer with 281 reduced O₃ concentrations and smaller sized aerosols. One might expect the largest losses 282 of O₃ in layer B in association with heterogeneous reactions but the observations show

283	that this is not observed and hence there must be a source of O_3 . The most likely source
284	would be biogenic sources of NO_X from Saharan soils that have been lifted that act as a
285	source of atmospheric O_3 in downstream regions. The exact mechanism for O_3
286	enrichment by Saharan dust remains uncertain.
287	A suggested mechanism for enhancing O ₃ concentrations in this shallow layer
288	may come from the activation of a biogenic NO_X pulse when encountering moist
289	conditions (Figure 13b). Nitrate formation on dust aerosols is an end-product after
290	heterogeneous reactions between HNO3 and dust aerosols. Gravitational settling of
291	aerosols between 900-600 hPa that may lead to significant amount aerosols with nitrate
292	on its surfaces through heterogeneous processes which accumulate just above the
293	inversion. At Dakar, very moist conditions ($RH > 80\%$) are found from the surface to the
294	950 hPa just below the inversion associated with the SAL. Even though the inversion
295	inhibits vertical motions, some mixing between the SAL layer and shallow moist layer
296	below is possible.
297	Vlasenko et al. (2006) show in laboratory studies that nitrate-coated dust aerosols
298	will increase their hygroscopicity in the presence of high relative humidity. Twohy et al.
299	(2009) and Ismail et al. (2010) show that some SAL events have areas of enhanced
300	moisture embedded within the SAL and that dust particles from the desert have
301	hydroscopic properties and can serve as cloud condensation nuclei (CCN). A critical
302	threshold of moisture on the surface of the aerosols could lead water stressed microbes to
303	denitrify and release airborne biogenic NO_X leading to higher O_3 concentrations.
304	Other findings reported also include:

305	• Elevated O ₃ concentrations on 12 June are likely caused by a stratospheric
306	intrusion based on WRF-CHEM results and potentially enhanced NO_{X}
307	emissions from dry Sahelian soils with the passage of an AEW. However,
308	lightning-NO _X leading to O ₃ enhancement followed by downward vertical
309	transport by convective downdrafts cannot be ruled out as an additional
310	source for 12 June (Jenkins et al. 2008b; Grant et al. 2008).
311	• During the transition between the pre-monsoon and monsoon periods (26
312	June and 2 July) a significant enhancement of O ₃ concentrations in the
313	lower/middle troposphere are found after precipitation events in area
314	surrounding Dakar on 28 June and 1 July 2008. We suggest that pulses of
315	biogenic NO_X emissions from dry Sahelian soils are the primary cause of
316	enhanced O ₃ concentrations consistent with early studies (Stewart et al.
317	2008; Delon et al. 2008; Delon et al. 2010).
318	• Low O ₃ concentrations are found in the 925-550 hPa layers during the
319	monsoon period (27 August and 3 September) and likely linked to dry
320	deposition of O_3 and dry/wet deposition NO_X and HNO_3 during the
321	monsoon period (Grant et al. 2008; Delon et al. 2010).
322	Additional chemical, radiative and aerosol measurements along with chemical
323	modeling on a regional basis in West Africa will provide additional insights into the
324	processes that control O ₃ concentrations in the lower troposphere.
325	Acknowledgements

- 326 This work was supported by ATM-0621529. We thank all of the Met operators for their
- 327 help in this project. We thank Didlier Tanre for their efforts in establishing and
- 328 maintaining the Mbour, Senegal site.

329	References
330	Berg, R.: Tropical Cyclone Report Hurricane Ike (AL092008), National Hurricane Center
331	http://www.nhc.noaa.gov/2008atlan.shtml, 2008.
332	
333	Bian, H. and Zender C. S.: Mineral dust and global tropospheric chemistry: Relative roles
334	of photolysis and heterogeneous uptake, J. Geophys. Res., 108, 4672,
335	doi:10.1029/2002JD003143, 2003.
336	Bonasoni, P. et al.: Aerosol-ozone correlations during dust transport episodes, Atmos.
337	Chem. Phys. 4, 1201-1215, 2004.
338 339 340	Burpee, R. W.: The Origin and Structure of Easterly Waves in the Lower Troposphere of North Africa, J. Atmos. Sci., 29, 77-90, 1972.
341	Camara, M., Jenkins, G. S., Konare, A.: Impact of dust on West African Climate during
342	2005 and 2006, Atmos. Chem. Phys., 10, 3053-3086, 2010.
343	Carlson T. and Prospero, J. M.: The Large-Scale Movement of Saharan Air Outbreaks
344	over the Northern Equatorial Atlantic, J. Appl. Meteorol., 11, 283-297, 1972.
345	De Reus, M. et al.: Airborne observations of dust aerosols over the North Atlantic during
346	ACE2: Indications for heterogeneous ozone destruction, J. Geophys. Res., 105,
347	15-263-15,275, 2000.
348	Delon, C., Reeves, C. E., Stewart, D. J., Serça, D., Dupont, R., Mari, C., Chaboureau, J
349	P., and Tulet, P.: Biogenic nitrogen oxide emissions from soils – impact on NO_x
350	and ozone over West Africa during AMMA (African Monsoon Multidisciplinary
351	Experiment): modelling study, Atmos. Chem. Phys., 8, 2351-2363, 2008.

- 352 Delon, C., et al.: Atmospheric nitrogen budget in Sahelian dry savannas, Atmos. Chem.
 353 Phys., 10, 2691-2708, 2010.
- Dunion, J. P., and Velden C. S.: The impact of the Saharan air layer on Atlantic tropical
 cyclone activity, B. Am. Meteorol. Soc., 85, 353–365, doi:10.1175/BAMS-85-3356 353, 2004.
- Fast, J., et al.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the
 vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model,
- 359 J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721, 2006.
- 360 Grant et al.: Ozone Transport by Mesoscale Convective Systems in Western Senegal,
- 361 Atmos. Environ., 42, 7104–7114, 2008.
- Grell, G. A., et al.: Fully coupled "online" chemistry within the WRF model, Atmos.
 Environ., 39, 6957–6975, 2005.
- Guenther, A. et al: A global model of natural volatile organic compound emissions, J J.
 Geophys. Res., 100, 8873-8892, 1995.
- Ismail, S. et al.: LASE Measurements of Water Vapor, Aerosols and Cloud Distributions
 in Saharan Air Layers and Tropical Disturbances, J. Atmos. Sci., 67, 1026-1047,
 2010.
- Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 24,
 2131-2159, 2000.
- 371 Jaeglé, L et al.: Satellite mapping of rain-induced nitric oxide emissions from soils, J.
- Geophys. Res., 109, D21310, doi:10.1029/2004JD004787, 2004.

373	Jenkins, G.S., Pratt, A. Heymsfield, A. Possible linkages between Saharan dust and
374	Tropical Cyclone Rain Band Invigoration in Eastern Atlantic during NAMMA-
375	06, Geophys. Res. Lett., doi:10.1029/2008GL034072, 2008.
376	Jenkins, G. S., Camara, M., Ndiaye, S.: Observational Evidence of enhanced
377	middle/upper tropospheric ozone via convective processes over the Equatorial
378	Tropical Atlantic during the summer of 2006, Geophys. Res. Lett., 35,
379	doi:10.1029/2008GL033954, 2008b.
380	Middleton, N. J. and A. S. Goudie, A. S.: Saharan dust: Sources and trajectories, T. I.,
381	Brit. Geogr., 26, 165-181, 2001.
382	Myhre, G. A. et al.: Modeling the radiative impact of mineral dust during the Saharan
383	Dust Experiment (SHADE) campaign, J. Geophys. Res., 108, 8579,
384	doi:10.1029/2002JD002566, 2003.
385	Redelsperger, J. L., Thorncroft, C. D., Diedhiou, A. Lebel, T., Parker, D. J., Polcher, J.:
386	African Monsoon Multidisciplinary Analysis: An International Research Project
387	and Field Campaign, B. Am. Meteorol. Soc., 87, 1739–1746, 2006.
388	Rhome, J. R.: Tropical Cyclone Report Hurricane Bertha (AL022008), National
389	Hurricane Center http://www.nhc.noaa.gov/2008atlan.shtml, 2008.
390	
391	Saunois, M. et al.: Factors controlling the distribution of ozone in the West African lower
392	troposphere during AMMA (African Monsoon Multidisciplinary Analysis) wet
393	season campaign, Atmos. Chem. Phys., 9, 6135-6155, 2009.

394	Stewart, D. J., Taylor, C. M., Reeves, C. E., and McQuaid, J. B: Biogenic nitrogen oxide
395	emissions from soils: impact on NO_x and ozone over west Africa during AMMA
396	(African Monsoon Multidisciplinary Analysis): observational study, Atmos.
397	Chem. Phys., 8, 2285-2297, 2008.
398	Tang et al.: Impacts of dust on regional tropospheric chemistry during the ACE-Asia
399	experiment: A model study with observations, J. Geophys. Res., 109,
400	doi:10.1029/2003JD003806, 2004.
401 402 403	Twohy, C. H., et al.: Saharan dust particles nucleate droplets in eastern Atlantic clouds, Geophys. Res. Lett., 36, L01807, doi:10.1029/2008GL035846, 2009.
404	van der A. et al.: Trends, seasonal variability and dominant NOx source derived from a
405	ten year record of NO_2 measured from space, J. Geophys. Res., 113, ,
406	doi:10.1029/2007JD009021, 2008.
407	Vlasenko, A. et al.: Effect of humidity on nitric acid uptake to mineral dust aerosol
408	particles, Atmos. Chem. Phys., 6, 2147-2160, 2006.
409	Williams, J. E et al.: The influence of biogenic emissions from Africa on tropical
410	tropospheric ozone during 2006: a global modeling study, Atmos. Chem. Phys., 9,
411	5729-5749, 2009.
412	Zhang, Y., Sunwoo, Y., Kotamarthi, V., Carmichael, G. R.: Photochemical Oxidant
413	Processes in the Presence of Dust: An Evaluation of the Impact of Dust on
414	Particulate Nitrate and Ozone Formation, J. Appl. Meteorol., 33,813-824, 1994.

415	Ziemke, J. R. et al.: Tropospheric ozone determined from Aura OMI and MLS:				
416	Evaluation of measurements and comparison with the Global Modeling				
417	Initiative's Chemical Transport Model", J. Geophys. Res., 111,				
418	doi:10.1029/2006JD007089, 2006.				
419					
420					
421	Zipser, E.J. et al.: The Saharan Air Layer and the Fate of African Easterly Waves-				
422	NASA's AMMA Field Study of Tropical Cyclogenesis, B. Am. Meteorol. Soc., 90,				
423	1137–1156, 2009.				
424					
425					
426					
427	Figure Captions				
428	Figure 1. OMI/MLS Total Column Ozone for (a) June 2008; (b) July 2008; (c) August				
429	2008; (d) September 2008. Units are in DU.				
430	Figure 2. Daily area averaged (13-16°N, 16-19°W) OMI derived Aerosol Index (AI) and				
431	Mbour, Senegal AOT for:(a) June; (b) July; (c) 1 August-5 September; (d) Area averaged				
432	(11.5-16.5°N, 12.5-17.5°W) TRMM daily averaged precipitation for 1 June-5 September				
433	2006.				
434	Figure 3. 1000-450 hPa lower/middle tropospheric vertical profiles of O ₃ concentrations				
435	for: (a) all launches; (b) 26 June and 2 July. Units are ppb.				

436	Figure 4. 1000-450 hPa lower/middle tropospheric vertical profiles of: (a) O_3
437	concentrations; (b) relative humidity and (c) temperature for the pre-monsoon period.
438	Figure 5. Pre-Monsoon OMI AI/925 hPa streamlines and Deep Blue AOT/700 hPa
439	streamlines: (a, f) 8 June; (b, g); 10 June; (c, h) 12 June; (d, i) 15 June; (e, j) June 26.
440 441	Figure 6 . TRMM daily Precipitation amounts (a) 28 June; (b) 29 June; (c) 30 June; (d) 1 July. Units are mm.
442	
443	Figure 7. 1000-450 hPa lower/middle tropospheric vertical profiles of: (a) O_3
444	concentrations; (b) relative humidity and (c) temperature for the monsoon period.
445	Figure 8. Monsoon OMI AI/925 hPa streamlines and Deep Blue AOT/700 hPa
446	streamlines: (a, e) 2 July; (b, f); 2 August; (c, g) 27 August; (d, h) 3 September.
447	Figure 9. Time-height profiles of O_3 concentrations and vertical velocity at 14.5° N,
448	17.5°W for initial conditions beginning at: (a) 1 June 0000 UTC; (b) 4 June 1200 UTC;
449	(c) 5 June 1200 UTC; (d) 6 June 1200. Units in ppb and cm-s ⁻¹ .
450	Figure 10. 1000-150 hPa vertical profile of O ₃ at Dakar for 10,12 June, 1200 UTC.
451	Units in ppb.
452	Figure 11. WRF-Chem simulation of: (a) 925 hPa O ₃ concentrations for June, July and
453	August; (b) 850 hPa relative humidity for June, July and August.
454	Figure 12. 1000-750 hPa vertical profiles of O3 (blue), RH (green) and Temperature
455	(red) for identified SAL events. (a) 8 June; (b) 10 June; (c) 15 June; (d) 2 August. Units
456	are ppb for O ₃ , % for RH and Degree C for temperature.

457	Figure 13. (a) A depiction of relative humidity, aerosol and O ₃ concentrations in various					
458	layer of the lower	yer of the lower/middle troposphere associated with a SAL intrusion. The dash line				
459	represents the vertical profile of temperature. (b) Proposed mechanism for increasing O ₃					
460	in the 950-900 hI	Pa layer.				
461						
462						
463						
464						
465						
466						
467						
468						
469						
	Date (2008)	Time (UTC)	O ₃ 925-550 hPa	RH 925-550	OMI AI (13-	

Date (2008)	Time (UTC)	O ₃ 925-550 hPa (DU)	RH 925-550 hPa (%)	OMI AI (13- 16°N, 16-
				19°W)
8 June	1200	6.6	32.2	2.11
10 June	1200	7.4	37.3	1.29
12 June	1200	20.5	65.1	
15 June	1200	11.3	28.7	2.02
26 June	1200	10.5	37.2	1.98
2 July	1200	14.2	67.3	
2 August	1200	10.3	31.3	3.80
27 August	1200	6.4	88.5	0.58
3 Sept	1200	11.0	68.8	0.61

 Table 1: Surface -550 hPa Column O₃, Relative humidity and OMI AI index.

479 Figure 1. OMI/MLS Total Column Ozone for (a) June 2008; (b) July 2008; (c) August

480 2008; (d) September 2008. Units are in DU.

²⁰⁰⁸ ²⁰⁰⁸
Figure 2. Daily area averaged (13-16°N, 16-19°W) OMI derived Aerosol Index (AI) and
Mbour, Senegal AOT for:(a) June; (b) July; (c) 1 August-5 September; (d) Area averaged
(11.5-16.5°N, 12.5-17.5°W) TRMM daily averaged precipitation for 1 June-5 September
2006.

Figure 3. 1000-450 hPa lower/middle tropospheric vertical profiles of O₃ for: (a) all
launches; (b) pre-monsoon period and; (c) monsoon periods; (d) 26 June and 2 July.
Units are ppb.

493 Figure 4. 1000-450 hPa lower/middle tropospheric vertical profiles of: (a) O₃

(a) June 8 OMI AI /925 hPa Streamlines

(f) June 8 Deep Blue (AOD)/700 hPa Streamlines

V

(c) June 12 OMI AI /925 hPa Streamlines

5W

10W

(h) June 12 Deep Blue (AOD)/700 hPa Streamlines

10E

5Ē

30N

28N

26N

24N

22N

20N

18N

16N

14N

12N

10N

8N

6N 25W

20W

15W

(d) June 15 OMI AI /925 hPa Streamlines

(i) June 15 Deep Blue (AOD)/700 hPa Streamlines

497 Figure 5. Pre-Monsoon OMI AI/925 hPa streamlines and Deep Blue AOT/700 hPa

498 streamlines: (a, f) 8 June; (b, g); 10 June; (c, h) 12 June; (d, i) 15 June; (e, j) June 26.

Figure 6. TRMM daily Precipitation amounts (a) 28 June; (b) 29 June; (c) 30 June; (d) 1
July. Units are mm.

(a) 1000-450 hPa O3 concentrations (ppb) Dakar (Monsoon)

(b) 1000-450 hPa Relative Humidity (Dakar) - Monsoon

Figure 7. 1000-450 hPa lower/middle tropospheric vertical profiles of: (a) O₃

506 concentrations; (b) relative humidity and (c) temperature for the monsoon period

(a) 02 July OMI AI /925 hPa Streamlines

(e) 02 July Deep Blue (AOD)/700 hPa Streamlines

(b) 02 Aug. OMI AI /925 hPa Streamlines

(f) 02 Aug. Deep Blue (AOD)/700 hPa Streamlines

508

507

509

510

(c) 27 Aug. OMI AI /925 hPa Streamlines

(g) 27 Aug. Deep Blue (AOD)/700 hPa Streamlines

513

512

514 Figure 8. Monsoon OMI AI/925 hPa streamlines and Deep Blue AOT/700 hPa

515 streamlines: (a, e) 2 July; (b, f); 2 August; (c, g) 27 August; (d, h) 3 September.

520 Figure 9. Time-height profiles of O₃ concentrations and vertical velocity (w) at 14.5° N,

- 521 17.5°W for initial conditions beginning at: (a) 1 June 0000 UTC; (b) 4 June 1200 UTC;
- 522 (c) 5 June 1200 UTC; (d) 6 June 1200. Units in ppb and $cm-s^{-1}$.

Figure 10. 1000-150 hPa vertical profile of O₃ at Dakar for 10,12 June, 1200 UTC.

Figure 11. WRF-Chem simulation of: (a) 925 hPa O₃ concentrations for June, July and
August; (b) 850 hPa relative humidity for June, July and August.

Figure 12. 1000-750 hPa vertical profiles of O3 (blue), RH (green) and Temperature
(red) for identified SAL events. (a) 8 June; (b) 10 June; (c) 15 June; (d) 2 August. Units
are ppb for O3, % for RH and Degree C for temperature.

541

542 Figure 13. (a) A depiction of relative humidity, aerosol and O₃ concentrations in various

543 layer of the lower/middle troposphere associated with a SAL intrusion. The dash line

544 represents the vertical profile of temperature. (b) Proposed mechanism for increasing O_3

545 in the 950-900 hPa layer