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Abstract. We study the applicability of spheroidal model particlessionulating the single-scattering
optical properties of mineral dust aerosols. To assessatigerof validity of this model, calcula-
tions are compared to laboratory observations for five wfie dust samples at two wavelengths.
We further investigate whether the best-fit shape distiobstof spheroids for different mineral dust
samples have any similarities that would allow us to suggegtneric first-guess shape distribu-
tion for suspended mineral dust. We find that best-fit shagtéilolitions vary considerably between
samples and even between wavelengths, making definitivgeestigns for a shape distribution dif-
ficult. The best-fit shape distribution also depends stroogl the refractive index assumed and
the cost function adopted. However, a power-law shapeildigion which favours those spheroids
that depart most from the spherical shape is found to work wehost cases. To reproduce ob-
served asymmetry parameters, best results are obtained wawer-law shape distribution with an

exponent around three.

1 Introduction

The direct radiative impact of aerosols has been identifseah& of the main sources of uncertainty
in quantifying radiative forcing of the climate system (§@r et al., 2007). Mineral dust is one of
the most widespread types of aerosol in the atmosphere aldtively high optical depth (Sokolik

and Toon, 1996). In arid regions, rising concentrations oferal dust due to desertification may
even constitute the dominant anthropogenic mechanismefpomal radiative forcing (Myhre and

Stordal, 2001). The main sources of error in quantifying rddiative impact of mineral aerosols
are the refractive index (Myhre and Stordal, 2001), the pbascal morphology (e.g., Kahnert and
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Nousiainen, 2006; Kahnert et al., 2007) and, to a slighgdgée extent, the size distribution (Myhre
and Stordal, 2001). Accounting for aerosol morphology $® alital in remote-sensing applications
(e.g., Mishchenko et al., 2007). Both radiance and, everermsor polarisation can be strongly
modulated by particle nonsphericity (e.g., Mishchenkd.etl897; Schulz et al., 1998).

In climate studies, it is still common practice to model a@tmptical properties using the ho-
mogeneous sphere approximation (HSA). Spheroidal modéties have long been investigated
as a first-order improvement of the HSA (e.g., Mishchenk®31%chulz et al., 1999). The idea
behind this model is to introduce, in addition to the sizeapzeter, one additional shape parameter
while retaining a high degree of symmetry, thus keeping agatjpnal resource requirements man-
ageable. Comparisons of model results and measuremertatmthat spheroids are more versatile
than other symmetric model particles, such as polyhedisinsr (Nousiainen et al., 2006). They
have even proven superior to more advanced particle mduisntimic the shape statistics of min-
eral dust samples (Veihelmann et al., 2006). In recent yspheroids have been used operationally
in remote sensing, such as in AERONET retrievals (e.g., Dikbet al., 2006). Thanks to these
recent successes, spheroids are likely to become estdléhan operational standard model for
mineral dust.

However, there are important issues that have, so far, rert bdequately addressed. Valida-
tion studies have been confined to a fairly small selectiomeésurements. In Nousiainen et al.
(2006), comparison of modelling results with measuremeset® limited to scattering experiments
on feldspar aerosols at a wavelength682.8 nm. In Dubovik et al. (2006), this validation study
was repeated and supplemented by observations made farmteefeldspar sample &41.6 nm. To
increase our confidence in the spheroidal particle modeheeel to perform a more comprehensive
validation study, involving a larger selection of minerabktisamples with different size distributions
and mineral compositions. Specifically, we need to identify range of validity of the spheroidal
particle model. For instance, recent findings suggest thia¢reids in terms of single-scattering
properties may not be appropriate for modelling the opticaperties of highly absorbing aerosols
(Rother et al., 2006) and little is known about the perforoganf the spheroidal model particles
for mimicking scattering by dust particle ensembles witle@ive radii larger than about/m. Fi-
nally, to make use of the full flexibility of spheroids, mosleisually employ a shape distribution of
spheroids, i.e., an ensemble of spheroids with differgp¢etsratios. In principle, each aspect ratio
in the model can have a different weight, so we could intredasmany free parameters as we have
different aspect ratios in our model ensemble. Both in rensehsing and, even more so, in climate
modelling applications we need to reduce the number of feezameters by introducing reasonable
a priori assumptions about the shape distribution of sptierd his raises the difficult question: Can
we define a generic shape distribution that is likely to ptevgufficiently accurate model results for
a wide range of mineral aerosol compositions, size digiohs, and wavelengths, and for different
optical parameters?
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Addressing these issues is pivotal for a wide range of agipdins within remote sensing and
climate modelling. Here, we investigate these problemsdrjopming a comprehensive validation
study of the spheroidal particle model, assessing its rafigalidity, and studying the possibil-
ities and limitations of generic shape distributions. IrctS@, we briefly review the theoretical
background and in Sect. 3 we discuss the laboratory measateramployed in the comparisons.

Results are presented and discussed in Sects. 4 and 5,trespe@Vork is summarized in Sect. 6.

2 Methodology

We are primarily interested in modelling the elements of phase matrix, which for randomly
oriented particles has six independent elements (van d&,HI957):

P11(6) P12(0) 0 0
P(0) = Pi3(0) Paa(6) 0 0 . (1)
0 0  Ps3(0) P34(0)
0 0 —P34(0) Pusa(6)
Hered denotes the scattering angle, i.e., the angle betweendpagation directions of incident and
scattered light. In the comparison with measurements, weider the ratios;; /Py, for {35} #

{1,1}. The phase functio®;; is normalised according to

1 T

5/ Py1(0)sinf0dd =1. (2)
0

The phase matrix elements are most relevant for the intatwe of remote sensing observa-
tions of radiance, polarisation, and depolarisation satieor climate applications, we also need to
consider the asymmetry paramegervhich is the first Legendre moment of the phase function, i.e

1 T
9=1 / Py (0) cosfsinddo. ®
0

The asymmetry parameter is a measure for the partitionitvgdes radiation scattered in the forward
and backward hemispheres, which is important for quamtifyfhe impact of aerosols on the radiative
energy budget.

The size of the particles is often described relative to taeehength\ of the light with a so-called
size parametet,

2mr
= —_— 4
2=, (4)

wherer is the radius of a volume-equivalent sphere.

The geometry of the spheroidal model particles is charaet#by the aspect ratio=a/b, where
b denotes the dimension of the spheroid along the main rottieymmetry axis, and denotes
the corresponding dimension perpendicular to that axis.rofage spheroidg< 1) is obtained by
rotating an ellipse about its major axis, while an oblatesspld ¢ > 1) is constructed by rotating an

ellipse about its minor axis.
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For parametrising the shape distribution, i.e., a distidvuof spheroidal aspect ratios, it is more
convenient to use a shape paramétéKahnert et al., 2002a) rather than the aspect ratidhe
shape parameter is defined as

e—1 :e>1 (oblate)
§=4q 1-1/e:e<1 (prolate) (5)
0 : e=1 (sphere).

If we increasen for an oblate spheroid, then bothand ¢ will increase linearly witha. On the
other hand, if we increadefor a prolate spheroid, thenwill decrease hyperbolically, whilg will
decrease linearly witth. The linearé-scale lends itself more easily for parametrising the shape
distribution.

Previous attempts to fit modelled or measured referenceesiogt matrices with a shape distri-
bution of spheroidal model particles have consistentlyshthat spheroids with large values |gf
contribute most to the best-fit ensemble (e.g., Kahnert428@usiainen et al., 2006). For this
reason, it has been suggested to parametrise the shajisutistraccording to a simple power law

p(&) =ClE"n=0, (6)

where the normalization factor is

Emaz
C= €| dE. (7)

Emin
The power law gives the largest weight on those spheroidstiiey most from the spherical shape.
The power-law index: is an empirical parameter that has to be chosen such as tdtgivieest
agreement between modelling results and observations ONER shape retrievals of atmospheric
dust particles reported by Dubovik et al. (2006) also resulh a shape distribution that favored
high-aspect ratio spheroids.

We make use of a database of pre-computed single-scatfgnpgrties for mineral dust particles
(Dubovik et al., 2006). From the database, we can directhjere the scattering-matrix elements
for any given aspect ratio averaged over a given size digioib within 0.012< x < 625 (Dubovik
et al., 2006). In the samples there are particles whose simTRter exceeds this range. These
particles are thus ignored, but their contribution to thdrinalements is estimated to be negligi-
ble. Scattering cross sections are also extracted, as theweaded for weighting when computing
shape-distribution integrated quantities. The resukscampared to laboratory measurements of
five different samples at two wavelengths, which are furtfiscussed in Sect. 3. The refractive
indicesm of the samples are only known within a certain confidence earfgpr this reason, we
perform computations for five different valuesrafwith Re¢n) = 1.55 and 1.7, Im¢) = 0.001 and
0.01, and a central value ef = 1.6+ 0.003i. The feldspar sample was additionally modeled with
m=1.6+0.001¢, m=1.640.017, m = 1.55+0.003¢, andm = 1.740.003:. These values are based
on the estimated range of provided by Volten et al. (2001) and Moz et al. (2001). The model
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shapes include nine aspect ratios for oblate spheroidsewittl.2, 1.4,..., 2.8, and nine aspect
ratios for prolate spheroids with= 1/1.2, 1/1.4, .., 1/2.8. This corresponds to shape parameters of
£=0.2,0.4...,1.8 (oblate), and = —0.2,—0.4,...,—1.8 (prolate). In addition, corresponding results
for spheres are computed-=£ 1, £ =0).

The size-averaged optical properties are calculated gmoraling to each of the model shapes for
all five samples at both wavelengths. The volume-equivalizetis assumed. The use of area equiv-
alence was also briefly tested, but its performance app¢atael comparable to that of the volume
equivalence in reproducing the measured scattering, seefuconsiderations using different size
equivalences were deemed unnecessary. The ensemblgavptese matrix is obtained averaging
over the 19 aspect ratios weighted by the assumed shapbutistn and also by their corresponding
scattering cross sections, which specify the total powatteed in all directions. Different shape
distributions have been tested, with a focus on|¢{fffe model given in Eq. (6).

3 Measurements

We test our model by comparing the simulations with labasatoeasurements of the scattering
matrices of different dust samples. The measurementslar feom the Amsterdam Light Scatter-
ing Database (Volten et al., 2006). An example of a measuratiesing matrix (with error bars) is
shown in Fig. 1 along with example computations of spherwoittgrated over the size distribution
of the loess sample. From the samples included in the datataschose feldspar, red clay, green
clay, loess, and Saharan dust. These samples have beerreddagi/olten et al. (2001) except for
the green clay that was measured byfida et al. (2001). The size distributions of the samples have
been measured using a Fritsch laser particle sizer (KondrVandenberghe, 1997) and are also re-
ported in the database. Although the samples have not béented in the atmosphere, their shapes
and compositions can be considered to be representatitenospheric dust, and their sizes cover
the expected size range. Presently, no measured scatteatges exist from samples collected
from the atmosphere.

The properties of the samples are summarized in Table 1. fidwtiee radii ¢-.g) of the samples
range from1.0 pm to 8.2 um and the effective standard deviations of radimsg:{ from 1.0 to 2.0.
Following Hansen and Travis (1974), these quantities dfieattas

T d
S muCL ®

\/f r—rfom‘ n(r )dr' ©)

2 [ mr2n(r)dr
By replacingr by r.g in Eq. (4), we can define the effective size parameter
The samples have been measured at wavelengthsl df nm and632.8 nm, and cover scattering
angles fromb° to 173°. Angles from5° to 170° have been measured wifi angular resolution,
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and angles larger tharv0° with 1° resolution. The origins and the characteristics of the $asnp
vary. For example, the shapes of the loess and Saharan dystdraps most representative of the
atmospheric aerosols as they are collected from surfacesidepThe feldspar sample, on the other
hand, was ground from a feldspar rock and might thus be mg@anthan natural dust particles, but
its size distribution resembles that of atmospheric dubgitkground conditions. The clay samples
are commercial.

The measured scattering matric#s,are related to the phase matrix in Eg. (1) by an unknown
normalisation coefficient? =~ - F. Both F andP are so-called Mueller matrices. The element
ratios P; /P11 can thus be directly compared to the measurgdFi,, but the phase functiof;
first needs to be properly normalised according to Eq. (2wéler, to compute the normalisation
integral we need to have the phase function for the entiralangange from 0to 180°. As we have
no direct measurements of the forward-scattering dirastithe phase function between angles from
0° to 5° are obtained directly from the corresponding computatidiee simulated results are then
matched with the observed phase function at the scattenigig &= 5°. The backscattering angles,
which do not contribute much to the normalisation integaak extrapolated simply by using the
measured value at 173or all angles from 174to 180°. Other methods for extrapolation have been
suggested, e.g., by Liu et al. (2003), Kahnert and Nousiaf{#606), and Kahnert and Nousiainen
(2007).

4 Results

To compare simulations and measurements, we apply the megiasime distribution, select a refrac-
tive index, and average the simulations over sizes and stegpdescribed in Section 2. The quality
of fit is then evaluated by computing a cost function that djfies the (dis)agreement between the
simulations and measurements. As the preferred cost matie use the area between the mea-
sured and modeled matrix elements (i.e., the well-knbwnorm; see, e.g., Kreyszig, 1993, page
994). The area is calculated only for scattering angles ahwimeasurements are available, and it
is normalised by dividing it with the angular span of the meaments £ = 168° for all samples
considered here), and then expressed in percentages. Veethiarerror-quantity):

100%
V=80
Here,P = P;; /P11, except that for the phase functiéh= P;;. The advantage here is that the errors

173°
/ |Pype — Pas | dO. (10)
50

of different scattering-matrix elements are readily corapée with each other. On the downside,
the measurement uncertainty is not taken into account. Mveuat to give more emphasis for side
scattering, we can use the Ildg() instead ofP;; when calculating the) for the phase function.

Indeed, we have mainly used the logarithmic form, as it gimese even weight for all measurement

angles.
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We also experimented with many other cost functions, irinlyig? errors, Eq. (A7), summed over
measurement points, and the so-callgdvalue, which is defined such that&it’% of all observation
points the discrepancy between measurements and sirmsagismaller thadg,. In the case ok?
anddg statistics, the cost function for assessing the agreenstwelen measurements and model is
calculated at the measurement points excluding® 1172, and 173 to preserve angular equality
in the analyses.

We note that we have restricted ourselves to using homogenb@hly symmetrical model par-
ticles with smooth surfaces; real mineral particles aregutarly shaped, expected to be inhomo-
geneous and are likely to be composed of birefringent angl #misotropic mineral species (e.g.,
Nousiainen, 2009). Moreover, we have assumed that theclgaptioperties are not size or shape
dependent while, for real atmospheric dust particles, ithisot necessarily the case. For exam-
ple, Claquin et al. (1999) propose different mineralog@sday and silt fraction particles. More
recently, physical and optical properties have been meddar different size classes of airborne Sa-
haran dust in the SAMUM campaign (Heintzenberg, 2009). Messrefractive indices were found
to be varying in-between different size classes (Otto e2@D9), which is not surprising considering
that also the chemical composition was found to vary (Kanefi@l., 2009).

4.1 Assessing the overall performance of spheroids

We first want to establish how well the model of spheroids wddt our samples. One way to do
it would be to treat the shape distribution and the refracindex as free parameters and apply a
fitting algorithm to find optimal values for these and then paie the cost function. However, since
only positive weights are possible in the shape distrilmyteonon-linear fitting algorithm must be
used, and such methods are not guaranteed to locate thé iglisiimum even when multiple initial
states are used. We thus adopt a simpler method where weigateshow well the measurement
points are bracketed by simulations of individual spheabghapes. If a measurement point lies
outside the range of those matrices covered by differerasptios, then it is impossible to fit that
measurement point with any shape distribution. This lead®uonsider how well this necessary
condition for successful fitting is met for different sangl&he non-linear fits are only performed
for selected cases and are considered in more detail inoGetR.

Investigations on how well the measured scattering-matérments can be covered by spheroids’
of different shapes and refractive indices are thus perdinThe term coverage refers to the per-
centage of measurement points that are within the rang@ebtay considering the spheroids size-
integrated values for all aspect ratios separately. Thissgan indication of how well the measure-
ments can be modeled by using spheroids.

In Fig. 2 three scattering-matrix elements)at 632.8 nm have been plotted for each sample
studied. Shown are both the measurement error bars andvbeages by different spheroids. The
length of the error bar covered is accounted when calcgatoverages, so that one single outlier
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point with a huge error bar might lower the coverage peragntignificantly, which is exactly
what happens with the feldsp&k. /P11 element in the upper right corner of Fig. 2. The coverages
averaged over all matrix elements and for fhige element separately are shown in Table 2 for both
wavelengths. None of the measured samples are fully cotsrtite spheroid simulations. Feldspar
stands out as the one sample that can most readily be modittesphlieroids for both wavelengths.
Less than half of the measurement points for Saharan dusiheosther hand, are bracketed by the
simulations, making this sample very challenging for thedei@f spheroids. Overall, the average
coverage is better for samples with smaj}. Likewise, the standard deviation is smaller for samples
with small r.g, indicating that coverages are also more consistent betdierent phase matrix
elements for samples with smallg. Thus, the model of spheroids clearly seems more promising
for samples with smalt.;z. On the other hand, there does not seem to be systematiceditfes
between the wavelengths, although the effective size patearis over 40% larger at 441.6 nm than
at 632.8 nm wavelength.

In Fig. 3, the minimumy values, Eq. (10), of all scattering-matrix elements forhesample are
plotted as a function of the effective size parameter. Agsslope can be fitted to the data and
its existence clearly indicates that the spheroid modeksvbetter for smaller sizes, especially in
the case of the phase function. The slopes become slightileanif only the best-fit refractive
indices for each element are considered. It is interestingote that all the othey values show
strong dependence on size exceptRps/P1; and P4/ P11, which are reproduced quite well with
spheroids regardless of the size range. Moreover, the mmigh values of these elements do not
seem to depend much on the refractive index assumed. Thigbalply mostly due to the extensive
coverage provided to these elements by the model spheadidgjng us to obtain good fits with
different refractive indices.

4.2 Optimal shape distributions

Another, independent approach to assess the model of sggéesdo derive a shape distribution that
provides the optimal fit to the measurements. This fit can lieniged separately for each sample,
matrix element, and the refractive index. These optimizege distributions can be found by using
a nonlinear fitting algorithm based on the Levenberg-Mardfuaethod (for detailed description,
see Appendix).

Optimizing the aspect-ratio weights separately for eactrimelement is a time-consuming pro-
cess and was, therefore, performed for a selected set mclyding all the samples and matrix
elements ah = 632.8 nm with one refractive index»§ = 1.55+0.001¢) used for the scattering com-
putations. In addition, fittings for the other wavelengih=441.6 nm) and use of other refractive
indices (Rém) =1.55 and1.7, Im(m) = 0.001¢ and0.01:) were tested for feldspar and loess sam-
ples. These represent samples with small and lasgeloess was chosen instead of Sahara due to
its better coverage.
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The fitting results (shown later in Fig. 7) reveal that in sarases, the optimal shape distribution
of spheroids reproduces the measured scattering matmugtesveell. As in the previous section, we
once again see that the spheroids seem to work best for sisiaégparameters: for feldspar, red clay,
and green clay, the fits are relatively good; whereas, f@ed@nd Saharan samples, the spheroids
cannot produce scattering patterns similar to the measmntsn Especially, the matrix elements
Py /Py1 and P4/ P11 prove to be impossible to reproduce using spheroids. Figp®duced with
the optimal shape distributions (not shown) leads t6 ar.g slope of 0.2 for the average of all
elements as well as for that %, alone.

One main goal of this study is to investigate the validity pheroidal model particles from a
broader perspective. For this reason, we are particulatgrested in general trends in the optimal
shape distributions. The optimal aspect-ratio weightsfatrix elements of all samples are collected
in Fig. 4. There the wavelength is taken tod32.8 nm and refractive index: = 1.55+0.001¢. An
immediate conclusion on the distribution is that extremeeasratios are clearly most common in
the best-fit shape distributions. The form of the total distion of weights encourages us to use
a power-law shape distribution as an a priori assumptiondrendetailed studies of the search for
the optimal value fon. Hence, a power-law functio@'- |£|" is fitted in Fig. 4 (solid black line),
resulting inn = 18. Alson =3 line (red) is plotted in the figure for reference. It is of irgst to note
that in a study by Nousiainen et al. (2006), the results feetbihe extreme shapes, which in that
study had¢| =1.6. Here as well, the extreme shapes are found to be strongbyffes, but as now

we have includedi| = 1.8, the|¢| < 1.6 had far less weight on the results.
4.3 £™ parametrisation

Nousiainen et al. (2006) suggested a simple one-parametesh@pe distribution for modelling
mineral dust based on their simulations for the feldspandantiere, we investigate how well such
a parametrisation works in general, and to what extent teefiie: varies between the samples. To
find the optimak, we vary its value from 0 to 18 and identify the value that gitlee smallest cost
functions. Atn = 18, the very extreme shapes=€ —1.8 and1.8) include 88% of the scatterers and
four most extreme shape§£ —1.8,—1.6,1.6 and1.8) contain 99% of the population. The upper
limit of n =18 was chosen to include the best-fit valuel&fobtained in the previous section. We
also tested other shape distributions, which are discuisgbé end of this chapter.

Table 3 summarizes the results for the optimal parametisheghe distributions under different

criteria. As the cost functions, we consider eight diffénaariations, namely:
— 2 for phase functiorP, ;;
— averagey? for the independent non-zero phase matrix elements, ergjue];;
— dgo for Pyy;

— averagejg, for all independent non-zero phase matrix elements;
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— the asymmetry parametegy

— ) value for logP;1);

— average) for all matrix elements, each with that produces the best fit;
— average) for all matrix elements withn that produces the best-fjt

Obviously, best fits are obtained at differenfor different samples; this is natural and expected.
Interestingly, with they? criteria they are often obtained either with the least(0) or the most

(n =18) extreme shape distributions considered. This is at lemslypdue toy? approach giving
huge emphasis to few points with very small measurementsriithe P;; element, often the most
important for practical considerations, however, is umifly best modeled with the equiprobable
distribution ¢ = 0) or, when considering area differenceg,(on average wit = 0.4. Unlike Py,

the best-fitn for the asymmetry parametgiis slightly larger.

There seems to be a common trend that the phase function ditsvhenn is very small, whilst
the fitting errors for polarisation components are minirdizéth values around: = 10 (which is
when 70% of scatterers hayg = 1.8 and 90% haveét| > 1.6) or even higher. This inconsistency
indicates that the model of spheroids is not entirely adeuia real mineral dust particles.

The spheroids perform, however, much better than the honeayes sphere approximation (HSA).
This improvement in modelling accuracy is particularlyazléor other samples except Sahara. The
matrix elements that improve most &g, / P11, P22/ P11 andPs3/ Py q; ¢ improvements are always
at least30% for the Sahara andh% for the other samples. When the whole scattering matrix is con
sidered, it is possible to read0% improvements on the average of all scattering matrix eleéspen
excluding Saharan sample. In some special cases, indivsdatering-matrix elements obtained
from HSA may produce better fits, but the averagever all matrix elements is always at leagt;
better for spheroids regardless of thealue or the refractive index (of those used here).

We experimented also with other kinds of shape distribstibesides theé™. The simplest cor-
rection, which slightly improved the results especially $mall values of:, was to leave three or
five of the most spherical shapes out altogether. Also a eadiaped distribution was investigated,
where the distribution peaked at the spherical shapes ardated towards the more extreme axis
ratios. This kind of distribution rarely matched the penfiance of the equiprobable distribution and
was thus abandoned.

Modeled matrix elements produced by oblate particles wampfeach other more than do models
by prolates, which might be why shape distributions of soldblate particles seem to produce
slightly better fits to the measurements than those compasesdy of prolates. A distribution that
consists of both oblates and prolates usually performsdwestll. It seems that both prolates and
oblates are needed when good fits are sought throughoutattersty matrix for the whole angle
span. Occasionally, a shape distribution tweaked intceeiginolate or oblate side yielded slight

improvements when compared to the simgtedistribution. However, introducing an asymmetry

10
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between oblates and prolates would introduce an additiveal parameter without consistent or
even notable improvement to the results.

While the spheroid scheme is superior to spheres, its pesfocais far from perfect especially for
samples with larger particles. The optimal shape distidingtseem to vary from sample to sample
but also, to some degree, between wavelengths. The lajdiesthat the optimal shape distribution

for spheroids is not unambiguously connected to the achades of the particles.
4.4 Robustness of model with respect to refractive index

The refractive indexn of the samples is one of the sources of uncertainty in ouyaaal Indeed, we
do not even know to what degree the samples can be charadevith a single refractive index. To
account for the uncertainty im, simulations have been conducted with a variety of valuessen
to bracket the expected range. Still, none of the values used is likely to be exadgigtrfor any of
the samples.

One of the key questions related to this is whethenthdependence of scattering is sufficiently
linear over the considered interval that, when we brackehth/alues, we also bracket the single-
scattering properties. In Nousiainen (2007), the deperelef the asymmetry parameter on the
refractive index was studied for shape- and size distdmstiof spheroids. It was found thaide-
pends onn monotonically and fairly linearly over a wide range of refiige indices. For individual,
scattering-angle dependent phase matrix elements ttatisitus bound to be more complicated, but
luckily the angular forms of the matrix elements do not seefe overly sensitive to fairly modest
variations inm (e.g., Nousiainen and Vermeulen, 2003;ia et al., 2007). We are thus confident
that, to a large extent, we also cover the single-scattgniogerties in our treatment.

To estimate the sensitivity to refractive index, we take @sef look at the results for the nine
different values ofn for the feldspar sample and the five different values:dbr the other samples.
The summary of the results is given in Table 3. The first obwiobservation is that the best-fit
refractive index depends on the fitting criterion used. Kangple, for the feldspar sample for which
the spheroid model works best, we obtain bestsfifrom 1.55+0.0017 to 1.7+ 0.01: at \ = 441.6
nm, from one extreme to the other, depending on the criteatapted. The Saharan sample, on
the other hand, favors the complementary extremes fré8s+ 0.014 to 1.7+ 0.001:. Behaviour is
similar for A = 632.8 nm. This result strongly implies that it is very challengitmgreliably invert
both the optimal shape distribution and the refractive xnaereal dust particles from the angular
dependence of the scattering-matrix elements using simpldgel shapes such as spheroids. The
best-fitm also depends on the wavelength and varies between samplebebe are expected and
reasonable results.

To get more insight into the relation of the refractive indexi shape distribution, we plotted cost
functions bracketed over refractive indices for three dam(ieldspar, red clay, and Saharan dust) in
Fig. 5. The average error, Eq. (10), of all matrix elements and the asymmetrapester difference
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are shown for the wavelength ¢41.6 nm for three different values of (in columns). The longer
wavelength behaves quite similarly and is not shown. Feldsphilst being clearly well mimicked
with our model distributions, changes its 'best refractivdex’ behaviour with the changing shape
distribution. On average, a combinationraf=1.55+0.0017 andn = 3 works best for it, although
Py, can be best modeled with = 1.55+0.014. ¢ values forP;; (not shown) andy of red clay
(represented in fourth row of Fig. 5) are minimized with=1.55+ 0.01: for all n. Green clay
behaves similarly to the red clay and is not shown. The belaor total error is more varied.
Perhaps surprisingly, Saharan dust is the only particle tigpt shows a very consistent refractive
index behaviour for alh, averages ané;; (not shown) for both wavelengths. This might be partly
due to poor performance of spheroids on the Saharan sarspiégga errors may mask any subtleties
caused by differing refractive indices. For loess (not stipwhem = 1.7+ 0.0017 provides the best
fit on the average of all the elements and also onRheelement for the shorter wavelength. For
632.8 nm, the results of loess are not so conclusive as a lower aegbbpd a higher imaginary part
of the refractive index are also producing good modellirsytes forg. Overall, it seems that out of
our options, reasonably good choices for refractive irsligeuld bem = 1.55+0.0014 for feldspar,

m =1.5540.01¢ for both clays, andn = 1.7+ 0.001: for both loess and Sahara.

Finally, we tested whether the matrices could be fitted beeg a linear combination of dif-
ferent refractive indices rather than a single, fixed vallleus, we assumed that the samples could
be composed of multiple dust modes with their unique refradhdices; however, for simplicity,
each mode was assumed to have the same shape and sizetibstrilblore detailed considerations
are outside the scope of this study. For comparison, we aleolated the refractive indices that
produce the worst fits.

Curiously, none of the best or worst fits include the middlstaf our refractive index values,
m =1.640.003:. The reason for this is that our modeled scattering-matements in most of the
cases fall on one or the other side of the measurements, tsthéhanost extreme modelling results
will always be favoured witH00% concentration. This might indicate a problem with the oltera
suitability of the spheroid approach on real mineral dusir €&xample, if spheroids are incapable
of producing sufficiently strong depolarisation or tend tmler- or overestimate linear polarisation,
it would be natural for the distribution to favour the value that produces scattering matrices with
the smallest error. Thex-value thus retrieved might have little to do with the actuabalue of the
sample.

Alternatively, it could also be that the behaviour is contaddo possible size distribution errors;
it is well known that accurate measurements of size digiohware notoriously difficult (Reid et al.,
2003). Then again, the size dependence of the phase matniepts for shape-averaged spheroids
is not strong. This can be seen very clearly from Fig. 9 of Nanen (2009), where the simulated
phase matrices for the same samples as considered her@are $hheach case, the refractive index
and the shape distribution has been the same, so the ordyatiffes between the samples are their
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different size distributions. As can be seen, the phaseiceatare very similar. Therefore, errors in

the size distributions are not expected to be critical ferrésults obtained here.

5 Generic shape distribution

Spheroidal model particles are a promising alternativetadgeneous spheres for both climate forc-
ing and remote sensing applications. As a model geometngrsals are significantly more flexible
and provide, in most cases, more accurate results for theabptoperties of mineral aerosols than
homogeneous spheres. In the preceeding sections we hagtigated the versatility, but also the
limitations, of the spheroidal particle model by perforgnia comprehensive validations study. In
this section we determine whether we can give specific recamdations for a generic shape dis-
tribution of spheroidal particles that would provide suéittly accurate results for a wide range of
mineral dust samples, spectral bands, and for differentagtarameters. One challenge in using
spheroidal model particles in operational applicatiorng, & a climate model, is that the shape dis-
tribution introduces many free parameters (as many as wediagrete aspect ratios in our ensemble
of model particles). Also, possible shape distributioried#nces between available measured sam-
ples and real atmospheric dust lead us to seek for a genaype shistribution that would work for a
large range of dust particles thus also including thoseénatimosphere. By specifying an a priori
shape distribution, and by averaging the optical propeuieer this shape distribution, we reduce
the free parameters to the particle size and refractivexingist like in the homogeneous sphere
model. So replacing lookup tables based on spheres by ttasssl lon spheroids would be quite
straightforward.

In satellite remote sensing, it may be possible to optintieeshape distribution to get best agree-
ment with the measurements. However, it may be questionedeaningful it is to perform fitting
of optical observations with such a large set of free pararsetin climate models, on the other
hand, such a fitting procedure is not even possible in priecip the future, there might be source-
dependent shape information available for climate maatgllbut the authors are not aware of any
such data being available currently. Further, as shown tteeeconnection between the real shapes
and the best-fit shape distribution of spheroids may not éarciTherefore, a generic shape distri-
bution might be very usable for climate modelling purposésr such a purpose, it is best to use
a criterion that optimizes the asymmetry parametey; @sa key parameter in computing radiative
fluxes (e.g., Kahnert et al., 2005).

By taking the average of the shape distributiomalues that minimize the error of the asymmetry
parameter for the best performing refractive index for gzenticle and wavelength, we get=2.9.
If only the clays and feldspar are taken into account, theidigion becomes slightly steepes:=
3.2. The standard deviations between different samples, henvave notably large, namelyin

both cases, meaning that quite likely the generic shapghiisbn is only able to portray different
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populations on average. Interestingly, the feldspar edag matrix is, in average, best minimized
with n = 3.0 for 441.6 nm andn = 2.5 for 632.8 nm.

In Fig. 6, values obtained from the comparisons of simulations andgoreaents are illustrated.
For each of the samples, we have used only one well perforneifigctive index, same for both
wavelengths. For feldspar we used= 1.5540.0014, for red clay and green clay. = 1.55+0.013,
and for loess and Sahara= 1.7+ 0.001i. Wider bars correspond to the wavelengtt6g2.8 nm,
whilst the thinner black bars on top of them represint6 nm. Each row corresponds to one sample
from smallest (feldspar) to the largest effective radieh@a). Three different representations of the
& distribution are shown for each scattering-matrix eleméntn lightest bars+ = 0) darkening
towardsn = 3 andn = 10 as indicated in the legend. The darkest rightmost bar reptes obtained
when using HSA. Logarithmic area difference was also ingagtd in the case dP;; element, but
it produced consistent results with the linear approachyesteft it out of the figure. It can be seen
that, in almost all cases throughout the matrix elements¢thmodels work better than the Mie
solution (HSA) regardless of the used. Only exceptions are seen in g ¥, element of loess
and Sahara sample, for which the Mie spheres perform gliletter than the equiprobable £ 0)
andn = 3 distributions, and in the Saharan sampies element ati41.6 nm, which is the only case
when the Mie solution is the best option. This confirms thagisny reasonable distribution of
spheroids tends to produce better results than the Mie seh&hen the asymmetry parameter is
the criterion, a reasonable first assumption for a sphetr@ges distribution is to use the power law
function withn = 3. For the polarisation elements it might prove profitableaeoiir heavily the
most extreme shapes € 18, which is the maximum used in our analyses).

When using a generic shape distribution= 3 distribution) to describe the optical properties of
any of our samples, the improvements compared to using H8 4exrerally huge. Only for the Sa-
haran sample do the spheroids fail to decrease the erroyomastry parameter from that produced
by Mie particles. For the other particles, spheroids desehe Mie error by0 — 100% (60% for
green clay ati41.6 nm, 70% for red clay at441.6 nm and more tha85% for both wavelengths of
loess. Feldspar for both wavelengths and clay&3at8 nm all havel00% improvement, meaning
that the model successfully reproduces the measured asyynpaeameter).

Performance of spheroids is illustrated in Fig. 7, wheredhtey scattering-matrix elements are
shown for all samples. Measurements, spheroids with0,3 and 10, the homogeneous sphere
approximation, and the optimal shape distribution res{8ction 4.2) are plotted. It should be
noted that the optimal distribution is acquired indepenigeior all matrix elements, making the
comparisons to theé™ model somewhat unfair. For all fitted shape distributionthimfigure (green
lines), the refractive index: = 1.55+ 0.001¢ has been used. For tl§&¢ models, on the other hand,
we have always used an that has been deemed best for the sample overall (see SBciTHis has
led us to usen = 1.55+0.001¢ for feldspar,,m = 1.55+0.01¢ for both clays andn =1.7+0.001¢
for loess and Saharan samples. When comparing this figureheithalues in Table 3, itis noted that
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the observed behaviour differs in some respects becaube oed refractive indices. For example,
while in Table 3 it can be seen that=1.55+0.0017 provides the smallest error for loess, with

n =0, the behaviour seen in Fig. 7 demonstrates how the choicenigfheer real refractive index,
herem = 1.7+ 0.001¢, also leads to a preference of different, in this case of gelas. Overall,

it can be seen that the optimally tuned elementwise shaprbdisons do not lead into universally

better results although locally the improvements might d@iole.

6 Summary and Conclusions

We started our investigation by identifying three open prois regarding the use of spheroidal
model particles in remote sensing and climate modelling. w&ated to (i) perform a more com-

prehensive validation study to test the applicability dfiemids to modelling mineral dust optical
properties; (ii) stake out the range of validity of the syg@al particle model; and (iii) investigate if

we can find a generic shape distribution of spheroids thatpsiGable to a broad range of mineral
dust samples. To address these questions we have used &tapetibns of spheroids to reproduce
the scattering matrix elements measured in a laboratorfiierdifferent mineral dust samples at
two wavelengths. We have made use of a database of pre-cedngingle-scattering properties for
spheroids by Dubovik et al. (2006). The measured scatteniaigix elements, as well as the size
distributions and the estimated ranges for the complexacéfe indices of the samples of inter-
est, have been obtained from the Amsterdam Light Scatt®atgbase (Volten et al., 2006). The
volume-equivalent size has been assumed.

Our results indicate that earlier validation studies thaterimited to feldspar aerosols may have
overestimated the versatility of spheroids for modellingenal aerosol optical properties. This is
especially true for mineral dust samples with larger effecsize parameters. Measurements of
the smallest particles can most readily be reproduced tthidsscattering characteristics of largest
particles are more difficult, often impossible, for sphdsoto mimic. There are also differences
in how the model fares on different scattering matrix eletserFor example, a generally poor
reproduction ofP,, element with spheroids indicates strong limitations irdprng depolarisation
properties of real dust particles.

We have also analysed the best-fit shape distributions &séimples at both wavelengths. We
have used a non-linear fitting algorithm to find optimal shdributions. The merit of this ap-
proach is to (i) obtain an upper bound for how faithfully thgheroidal particle model can fit the
measurements; and (ii) try to find a general pattern in thefiteshape distributions, which can help
in the development of a generic shape distribution thatdcbel used for atmospheric dust in cases
when optimisation is not possible and no additional infaioraabout dust particles is available.
The results indicate that shape distributions that put maight on the most extreme aspect ratios

often, but not always, provide the best fits of the measurésnen
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Based on this observation, we have investigated the pegiocen of a simple one-parameter
power-law shape distribution, Eq. (6). Other types of shdiptributions, some with more free pa-
rameters, were also considered, but they did not resultyirsigmificant or consistent improvements.
Accordingly, the best-fit power-law shape distributionsdisferent samples at different wavelengths
have been compared. The impact of using a different sizesalguice would most likely not have
extended beyond minor details in the results. In particutdas noted that different size equiva-
lences weight different aspect ratios differently, whigmnde partially compensated by the shape
distribution weights, thus the retrieved valueswahight be somewhat affected.

Although relatively good results can be acquired by varshape distributions, it turns out that it
is not possible to suggest a single shape distribution toatdvbe the best choice in all cases. Not
only does the best-fit distribution vary between the samfiatit also varies between the wave-
lengths, the metrics used for specifying the goodness ahBtguantities fitted, and the refractive
index assumed. While it is rather reasonable that the bedisfiibutions would be different for
different samples that can consist of differently shapest garticles, it is disconcerting that it also
depends on the wavelength. This implies that the best-fiiessH&stributions do not necessarily cor-
relate with the actual dust particle shapes. Indeed, thedméis suggest that, when inverting dust
physical properties from the single-scattering propsytiee use of simplified model shapes, such as
spheroids, may lead to erroneous results even when thenagnéés good — the smallness of the
residuals in the fitting may not guarantee the accuracy aectress of the results.

Despite all shortcomings of the spheroidal particle modat this study revealed, our results
confirm that spheroids are superior to the homogeneouseplpgroximation (HSA) in almost all
cases. Also, for climate modelling purposes, in which weniyaiy to overcome the inaccuracy of
the HSA, a shape distribution with= 3 seems to be a reasonable choice. This distribution tends to
produce significantly more accurate asymmetry parametaesdhan the HSA approach. We thus
suggest & = 3 distribution to be used in climate models. When one wishegptonise the phase
function, an equiprobable:(= 0) or a very low value of: (n < 1) seems to perform better. When,
on the other hand, one aims at the best all-around repraductithe scattering-matrix, the optimal
value ofn often raises significantly; in half of our cases right up to epper limit ofn = 18. Also,
the best-fit shape distributions obtained using the nagalifitting algorithm resemble highshape
distributions.

Recently, a database of single-scattering propertiegifaxial ellipsoidal mineral dust aerosols
has emerged (Meng et al., 2010). Using tri-axial ellipsadsld possibly be the next logical step
towards better operational aerosol modelling, althouglnggall three principal axes differing from
each other increases the complexity of the model. Howelthiouwgh most likely further enhanc-
ing the fits, these new model shapes do not necessarily bnpgnare reliability into retrievals,
as their shapes are almost as distant from the real dustlpastiapes as spheroids are. It is thus
suggested that inversion algorithm developers used offteria in addition to small residuals to
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validate the retrievals. There are also other promisingeafiaurrently studied elsewhere, e.g.,
Poisson-Voronoi tessellation (Ishimoto et al., 2010) aodsymmetric hexahedra (Bi et al., 2010),
but single-scattering properties appear not to be cugrevthilable for sufficient size- and wave-
length range to consider climate model applications, fangxe.

Appendix A

Fitting of the Mueller matrix

Suppose we have a reference sample of particles with knoticebproperties. The Mueller matrix
elementsP; ;(0,) have been measured at discrete angles.,fx. The corresponding standard
deviations of these measurements are denoted; by. The scattering cross secti@r., can be
obtained by determining the size-distribution and refvadndex of the sample, and by performing
Lorenz-Mie computations.

Suppose further that we have a set of model particles, sugphesoids of different shape param-
eters¢y,...,& with corresponding Mueller matrix elemenfs"”ijm(e;gl), and with scattering cross
sectionsCsim(¢), I=1,...,L. Given a shape-mixture with distribution functipt¢), the averaged

sca

optical properties of an ensemble of model particles arergby

» 1 > .
(P(0) = Camy / P(§)Csca(§) P (656)dE, (A1)
(Caimy — /0 P(E)CrealE)d. (A2)
In discrete form this becomes
<Pz81jm(0)> <CSlm Zplcbca & Pmn(&fl)wh (A3)
sca l 1
Cssére? Zplcscw fl wr, (A4)

where the coefficienta; denote the integration weights of the numerical integratitethod em-
ployed.

The objective is to optimise the shape distribution weightsuch that the differential scattering
behaviour of the ensemble of model particles mimics thathefreference sample as closely as

possible. More specifically, we want to fit the quantity

9 3P1s-- 7pL Zplcsci gl PSlm(e;gl)wl (A5)
to the quantity

A; j(0) = CscaP;;(6) (A6)
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by optimising the weightg;, [ =1,...,L. Note that this approach is an extension of earlier work
Kahnert et al. (2002b); Kahnert (2004); Nousiainen et &00@). The main difference is that we
previously fitted the Muller matrix elements themselvesgermas in the present work we fit the
Mueller matrix elements scaled by the scattering crosssecthe former approach is equivalent
to the latter only if the model particles and the referencsteay all have the same scattering cross
section. Ideally, the measure employed for defining siagvetpnce of nonspherical particles would
ensure that nonspherical particles of equivalent sizeg fia@ same scattering cross section. In
practice, this is not always the case. For this reason, theaph employed in this study is slightly
more accurate than that employed in our earlier work.
The linear least-squares method solves the fitting problemihimising the quantity

X2:§:(Ai,j(ek)_le',j(ek;p17---7pL)>2. (A7)

Pt Tij.k

A problem is that the weights,,...,pr, should have the properties of probabilities, i.e., theyeltav
satisfy the constraints

L
Zplwl =1 (A8)
=1

0<p <1 (A9)

These constraints can be enforced by replacing the expressiEq. (A5) by

O 2Cea (&) P (06w

Bid‘(e;th,...,hLQ) Zizlh?nwm (A].O)
The weightshy,...,hy, are determined by minimising the quantity
K . 2
XQZZ(Aw(ek)—B,;Fék,h12,...,hL2)) . (A11)
k=1 bk
Finally, one sets
hi2
o= % (A12)
Zm:1h$n,wm

Equation (A12) ensures that the constraints given in Eg8) éad (A9) are satisfied. Substitution
of Eq. (A12) into Eq. (A10) yields an expression on the rigabhd side that is formally identical to
that of Eq. (A5). However, in Egs. (A10) and (A12) the coeéfitisp, are forced to be non-negative
and normalised to unity.

Finally the optimised weightg; are substituted into Egs. (A3) and (A4) to obtain the best-fit
Mueller matrix and scattering cross section of the ensemibieodel particles. Note that Eq. (A7)
defines a linear least-squares problem. By contrast, EdL)(Adeds to be solved with non-linear
least-squares minimisation techniques. We employed datdmpproach for such problems known
as the Levenberg-Marquardt method (Press et al., 1992 fdlidher that the least-squares technique

requires that the number of known quantities should be &t lisgice as large as the number of
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unknowns. Thus, the number of scattering angles, at whiskrmwhtions are available, should be
at least twice as large as the number of model particles ieisemble, i.eX > 2L. In our case,
K=37, andL=17, so the condition is satisfied.
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Fig. 1. Measured and simulated scattering-matrix elements for the loess samnyaeedéngth\ = 632.8 nm.
The measurements are shown with small black dots and their errorhiffesent solid lines depict scattering
by different spheroids with refractive index of = 1.55 +0.0014, ranging from prolate (red) to oblate (blue)
aspect. The dashed black line is the corresponding simulation for aespher
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Fig. 2. Coverage of the measured scattering-matrix elements by model gfghete32.8 nm wavelength for the
matrix elementsP;1, — P12/ P11 and P2/ P11. Each row corresponds to one sample from smallest (feldspar)
to the largest effective radius (Sahara). Measurements are shitvdiamonds and error bars, and the shaded
area indicates the coverage by different spheroids (all shapesfadtive indices), excluding spheres. The
Mie spheres are shown with solid lines for each refractive index. Tmalige the measureB;; element, it

has been extrapolated with the= 3 model shape distribution for the anglesigf-5°.
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Fig. 3. Minimum ¢, Eq. (10), errors of the scattering-matrix elements as a function of fihetiee size
parameterc.s. All modeled refractive indices are included. The solid line (slope = i8.Bpear regression
representing the average of all dots while the dashed line (slope = 0@y for Py, .
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Best—fit shape distribution, 632.8 nm, 1.55 + 0.001i

P11
—P12/P11

P22/P11 4

P33/P11 s
—P34/P11
06F P44/P11
- - -average
— power law

04F ¢ .

Oox B 3610 &
*x 0 ¢ O

A 3%

02F

o ¢ * 3
o a a

" 8

= -3._.3._,« 7‘-_4_.",-’

spherical oblate (max. 2.8)

oA~ A

-
— — —

ol—i— ="
prolate (min. 1/2.8)

Fig. 4. Scatter plot of weights obtained for different spheroidal shapes ¥ittig different scattering-matrix
elements of all samples considered. The colors refer to differemilsanfeldspar (blue), red clay (gray), green
clay (green), loess (pink), and Saharan dust (black). Only thelemyth A = 632.8 nm has been considered
andm has been fixed at.55+0.001:. Solid lines represert® shape distributions with different values for
the black line shows = 18 that is the best value for this particular scatter plot, and the red line, pordig
ton = 3, is shown for reference.
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Fig. 5. Cost function dependence on the values of refractive indexColumns from left to right represent
different£™ distributions, Eg. (6), with = 0,3, and18, respectively. Small cost function values are shown
in blue whilst the worst fit values are shown in red. One should note frencdlorbars that the scale varies,
values increasing with increasing particle size. Three minerals aresespieel with441.6 nm, first two rows
representing feldspar, then the red clay and last two rows SahararFdusach mineral two cost functions are
shown on separate rows, namely the averagalue, Eq. (10), of all scattering-matrix elements (tot.) and that

of the asymmetry parameter error (g).
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Fig. 6. ¢ values, Eq. (10), for model scattering-matrix elements and asymmpatameter error compared to
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441.6 nm. Each row corresponds to one sample from the smallest (feldgpéne largest effective radii
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The darkest rightmost bar represents¢healue obtained when using Mie spheres.
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we have used =632.8 nm
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Table 1. Summary of the sample properties. The ando.s values have been computed from the measured
size distribution; the Rex) is an estimate; Imf) is estimated to be betwean 2 and10~° for all samples.

\ reg [pM]  oes Re&(m) main constituents production  origin colour

feldspar 1.0 1.0 15-1.6 K-feldspar, plagioclase, quartz crushed Finland t pigk

red clay 1.5 1.3 1.5-1.7 biotite, illite, quartz commercial France red brown

green clay 1.55 1.2 1.5-1.7 illite, kaolinite, montmorillonite, commercial France gree
quartz

loess 3.9 1.6 15-1.7 K-feldspar, illite, quartz, calcite, collected Hungary lloyebrown
chlorite, albite

Saharan dust 8.2 20 1.5-1.7 quartz, clay minerals, collected Saharan desert wylaitmvn
calcium carbonate
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Table 2. Percentages of spheroid coverages for different samples.

% | 441.6 nm | 632.8 nm
| Fia avg. o | Fn avg.
feldspar 100 92 5| 99 89
red clay 72 62 24| 71 58
greenclay| 84 61 29| 81 63
loess 76 55 35| 74 59
Sahara 23 43 34| 75 48
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Table 3. The best-fitn values of¢™ shape distributions, Eq. (6), using different criteria. The refradtidex
with which the best-fit value was obtained is indicateddy: 1.554-0.0014; b= 1.55+0.01¢; c=1.740.001¢
; d=1.7+0.01i. ande =1.6+0.003:. The last row shows the column averages when excluding the cases

with n =18.
| Fii  avg. 6o P dso(avg) g | ¥log(Pi1) ¢ avg. best ¢ all Best-g

441.6 nm

feldspar 0.0b 30a Oab Oab 2.7 1.1d 20a 6.2

red clay 0.0b 18c Oa od 1.3 0.1b 18 ¢ 8.8

greenclay| 0.0b 18d Oc Oc 1.0 0.4b 18¢c 6.5

loess 0.0d 18c Oa od 4.4 04c 18c 11.0

Sahara 0.0c 0.0c Ob Ob 0.0 00c 15c 9.7
632.8 nm

feldspar 6.0b 15b Oc Oc 9.4 0.7b 5.0a 8.2

red clay 0.0b 18d Oa od 3.1 0.2b 18c 9.3

greenclay| 0.0b 18d Oc lc 3.4 0.7b 18d 9.9

loess 0.0a 0.0a Ob Ob 5.7 0.1la 18c 7.0

Sahara 0.0c 0.0c Ob od 0.0 0.0c 09c 9.5

MEAN 0.6 9.45 0 0.2 3.1 0.4 11.7 8.8

w/o. 18 0.9 2.4 3.6
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