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Abstract. We study the applicability of spheroidal model particles for simulating the single-scattering

optical properties of mineral dust aerosols. To assess the range of validity of this model, calcula-

tions are compared to laboratory observations for five different dust samples at two wavelengths.

We further investigate whether the best-fit shape distributions of spheroids for different mineral dust

samples have any similarities that would allow us to suggesta generic first-guess shape distribu-5

tion for suspended mineral dust. We find that best-fit shape distributions vary considerably between

samples and even between wavelengths, making definitive suggestions for a shape distribution dif-

ficult. The best-fit shape distribution also depends strongly on the refractive index assumed and

the cost function adopted. However, a power-law shape distribution which favours those spheroids

that depart most from the spherical shape is found to work well in most cases. To reproduce ob-10

served asymmetry parameters, best results are obtained with a power-law shape distribution with an

exponent around three.

1 Introduction

The direct radiative impact of aerosols has been identified as one of the main sources of uncertainty

in quantifying radiative forcing of the climate system (Forster et al., 2007). Mineral dust is one of15

the most widespread types of aerosol in the atmosphere with relatively high optical depth (Sokolik

and Toon, 1996). In arid regions, rising concentrations of mineral dust due to desertification may

even constitute the dominant anthropogenic mechanism for regional radiative forcing (Myhre and

Stordal, 2001). The main sources of error in quantifying theradiative impact of mineral aerosols

are the refractive index (Myhre and Stordal, 2001), the nonspherical morphology (e.g., Kahnert and20
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Nousiainen, 2006; Kahnert et al., 2007) and, to a slightly lesser extent, the size distribution (Myhre

and Stordal, 2001). Accounting for aerosol morphology is also vital in remote-sensing applications

(e.g., Mishchenko et al., 2007). Both radiance and, even more so, polarisation can be strongly

modulated by particle nonsphericity (e.g., Mishchenko et al., 1997; Schulz et al., 1998).

In climate studies, it is still common practice to model aerosol optical properties using the ho-25

mogeneous sphere approximation (HSA). Spheroidal model particles have long been investigated

as a first-order improvement of the HSA (e.g., Mishchenko, 1993; Schulz et al., 1999). The idea

behind this model is to introduce, in addition to the size parameter, one additional shape parameter

while retaining a high degree of symmetry, thus keeping computational resource requirements man-

ageable. Comparisons of model results and measurements indicate that spheroids are more versatile30

than other symmetric model particles, such as polyhedral prisms (Nousiainen et al., 2006). They

have even proven superior to more advanced particle models that mimic the shape statistics of min-

eral dust samples (Veihelmann et al., 2006). In recent years, spheroids have been used operationally

in remote sensing, such as in AERONET retrievals (e.g., Dubovik et al., 2006). Thanks to these

recent successes, spheroids are likely to become established as an operational standard model for35

mineral dust.

However, there are important issues that have, so far, not been adequately addressed. Valida-

tion studies have been confined to a fairly small selection ofmeasurements. In Nousiainen et al.

(2006), comparison of modelling results with measurementswere limited to scattering experiments

on feldspar aerosols at a wavelength of632.8 nm. In Dubovik et al. (2006), this validation study40

was repeated and supplemented by observations made for the same feldspar sample at441.6 nm. To

increase our confidence in the spheroidal particle model, weneed to perform a more comprehensive

validation study, involving a larger selection of mineral dust samples with different size distributions

and mineral compositions. Specifically, we need to identifythe range of validity of the spheroidal

particle model. For instance, recent findings suggest that spheroids in terms of single-scattering45

properties may not be appropriate for modelling the opticalproperties of highly absorbing aerosols

(Rother et al., 2006) and little is known about the performance of the spheroidal model particles

for mimicking scattering by dust particle ensembles with effective radii larger than about 1µm. Fi-

nally, to make use of the full flexibility of spheroids, models usually employ a shape distribution of

spheroids, i.e., an ensemble of spheroids with different aspect ratios. In principle, each aspect ratio50

in the model can have a different weight, so we could introduce as many free parameters as we have

different aspect ratios in our model ensemble. Both in remote sensing and, even more so, in climate

modelling applications we need to reduce the number of free parameters by introducing reasonable

a priori assumptions about the shape distribution of spheroids. This raises the difficult question: Can

we define a generic shape distribution that is likely to provide sufficiently accurate model results for55

a wide range of mineral aerosol compositions, size distributions, and wavelengths, and for different

optical parameters?
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Addressing these issues is pivotal for a wide range of applications within remote sensing and

climate modelling. Here, we investigate these problems by performing a comprehensive validation

study of the spheroidal particle model, assessing its rangeof validity, and studying the possibil-60

ities and limitations of generic shape distributions. In Sect. 2, we briefly review the theoretical

background and in Sect. 3 we discuss the laboratory measurements employed in the comparisons.

Results are presented and discussed in Sects. 4 and 5, respectively. Work is summarized in Sect. 6.

2 Methodology

We are primarily interested in modelling the elements of thephase matrix, which for randomly65

oriented particles has six independent elements (van de Hulst, 1957):

P(θ)=















P11(θ) P12(θ) 0 0

P12(θ) P22(θ) 0 0

0 0 P33(θ) P34(θ)

0 0 −P34(θ) P44(θ)















. (1)

Hereθ denotes the scattering angle, i.e., the angle between the propagation directions of incident and

scattered light. In the comparison with measurements, we consider the ratiosPij/P11 for {i,j} 6=

{1,1}. The phase functionP11 is normalised according to70

1

2

∫ π

0

P11(θ)sinθdθ=1. (2)

The phase matrix elements are most relevant for the interpretation of remote sensing observa-

tions of radiance, polarisation, and depolarisation ratios. For climate applications, we also need to

consider the asymmetry parameterg, which is the first Legendre moment of the phase function, i.e.,

g=
1

2

∫ π

0

P11(θ)cosθsinθdθ. (3)75

The asymmetry parameter is a measure for the partitioning between radiation scattered in the forward

and backward hemispheres, which is important for quantifying the impact of aerosols on the radiative

energy budget.

The size of the particles is often described relative to the wavelengthλ of the light with a so-called

size parameterx,80

x=
2πr

λ
, (4)

wherer is the radius of a volume-equivalent sphere.

The geometry of the spheroidal model particles is characterised by the aspect ratioǫ= a/b, where

b denotes the dimension of the spheroid along the main rotational symmetry axis, anda denotes

the corresponding dimension perpendicular to that axis. A prolate spheroid (ǫ < 1) is obtained by85

rotating an ellipse about its major axis, while an oblate spheroid (ǫ> 1) is constructed by rotating an

ellipse about its minor axis.
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For parametrising the shape distribution, i.e., a distribution of spheroidal aspect ratios, it is more

convenient to use a shape parameterξ (Kahnert et al., 2002a) rather than the aspect ratioǫ. The

shape parameter is defined as90

ξ=















ǫ−1 : ǫ> 1 (oblate)

1−1/ǫ : ǫ< 1 (prolate)

0 : ǫ=1 (sphere).

(5)

If we increasea for an oblate spheroid, then bothǫ and ξ will increase linearly witha. On the

other hand, if we increaseb for a prolate spheroid, thenǫ will decrease hyperbolically, whileξ will

decrease linearly withb. The linearξ-scale lends itself more easily for parametrising the shape

distribution.95

Previous attempts to fit modelled or measured reference scattering matrices with a shape distri-

bution of spheroidal model particles have consistently shown that spheroids with large values of|ξ|

contribute most to the best-fit ensemble (e.g., Kahnert, 2004; Nousiainen et al., 2006). For this

reason, it has been suggested to parametrise the shape distribution according to a simple power law

p(ξ)=C|ξ|n,n≥ 0, (6)100

where the normalization factorC is

C =

∫ ξmax

ξmin

|ξ|ndξ. (7)

The power law gives the largest weight on those spheroids deviating most from the spherical shape.

The power-law indexn is an empirical parameter that has to be chosen such as to givethe best

agreement between modelling results and observations. AERONET shape retrievals of atmospheric105

dust particles reported by Dubovik et al. (2006) also resulted in a shape distribution that favored

high-aspect ratio spheroids.

We make use of a database of pre-computed single-scatteringproperties for mineral dust particles

(Dubovik et al., 2006). From the database, we can directly retrieve the scattering-matrix elements

for any given aspect ratio averaged over a given size distribution within 0.012<x< 625 (Dubovik110

et al., 2006). In the samples there are particles whose size parameter exceeds this range. These

particles are thus ignored, but their contribution to the matrix elements is estimated to be negligi-

ble. Scattering cross sections are also extracted, as they are needed for weighting when computing

shape-distribution integrated quantities. The results are compared to laboratory measurements of

five different samples at two wavelengths, which are furtherdiscussed in Sect. 3. The refractive115

indicesm of the samples are only known within a certain confidence range. For this reason, we

perform computations for five different values ofm with Re(m) = 1.55 and 1.7, Im(m) = 0.001 and

0.01, and a central value ofm=1.6+0.003i. The feldspar sample was additionally modeled with

m=1.6+0.001i,m=1.6+0.01i,m=1.55+0.003i, andm=1.7+0.003i. These values are based

on the estimated range ofm provided by Volten et al. (2001) and Muñoz et al. (2001). The model120
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shapes include nine aspect ratios for oblate spheroids withǫ= 1.2, 1.4,..., 2.8, and nine aspect

ratios for prolate spheroids withǫ= 1/1.2, 1/1.4,..., 1/2.8. This corresponds to shape parameters of

ξ=0.2,0.4...,1.8 (oblate), andξ=−0.2,−0.4,...,−1.8 (prolate). In addition, corresponding results

for spheres are computed (ǫ=1, ξ=0).

The size-averaged optical properties are calculated corresponding to each of the model shapes for125

all five samples at both wavelengths. The volume-equivalentsize is assumed. The use of area equiv-

alence was also briefly tested, but its performance appearedto be comparable to that of the volume

equivalence in reproducing the measured scattering, so further considerations using different size

equivalences were deemed unnecessary. The ensemble-averaged phase matrix is obtained averaging

over the 19 aspect ratios weighted by the assumed shape distribution and also by their corresponding130

scattering cross sections, which specify the total power scattered in all directions. Different shape

distributions have been tested, with a focus on the|ξ|n model given in Eq. (6).

3 Measurements

We test our model by comparing the simulations with laboratory measurements of the scattering

matrices of different dust samples. The measurements are taken from the Amsterdam Light Scatter-135

ing Database (Volten et al., 2006). An example of a measured scattering matrix (with error bars) is

shown in Fig. 1 along with example computations of spheroidsintegrated over the size distribution

of the loess sample. From the samples included in the database, we chose feldspar, red clay, green

clay, loess, and Saharan dust. These samples have been measured by Volten et al. (2001) except for

the green clay that was measured by Muñoz et al. (2001). The size distributions of the samples have140

been measured using a Fritsch laser particle sizer (Konert and Vandenberghe, 1997) and are also re-

ported in the database. Although the samples have not been collected in the atmosphere, their shapes

and compositions can be considered to be representative of atmospheric dust, and their sizes cover

the expected size range. Presently, no measured scatteringmatrices exist from samples collected

from the atmosphere.145

The properties of the samples are summarized in Table 1. The effective radii (reff ) of the samples

range from1.0 µm to 8.2 µm and the effective standard deviations of radius (σeff ) from 1.0 to 2.0.

Following Hansen and Travis (1974), these quantities are defined as

reff =

∫

r
r ·πr2n(r)dr
∫

r
πr2n(r)dr

, (8)

σeff =

√

∫

r
(r−reff)2πr2n(r)dr

r2eff
∫

r
πr2n(r)dr

. (9)150

By replacingr by reff in Eq. (4), we can define the effective size parameterxeff .

The samples have been measured at wavelengths of441.6 nm and632.8 nm, and cover scattering

angles from5◦ to 173◦. Angles from5◦ to 170◦ have been measured with5◦ angular resolution,
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and angles larger than170◦ with 1◦ resolution. The origins and the characteristics of the samples

vary. For example, the shapes of the loess and Saharan dust are perhaps most representative of the155

atmospheric aerosols as they are collected from surface deposits. The feldspar sample, on the other

hand, was ground from a feldspar rock and might thus be more angular than natural dust particles, but

its size distribution resembles that of atmospheric dust inbackground conditions. The clay samples

are commercial.

The measured scattering matrices,F, are related to the phase matrix in Eq. (1) by an unknown160

normalisation coefficient:P = γ ·F . BothF andP are so-called Mueller matrices. The element

ratiosPij/P11 can thus be directly compared to the measuredFij/F11, but the phase functionP11

first needs to be properly normalised according to Eq. (2). However, to compute the normalisation

integral we need to have the phase function for the entire angular range from 0◦ to 180◦. As we have

no direct measurements of the forward-scattering directions, the phase function between angles from165

0◦ to 5◦ are obtained directly from the corresponding computations. The simulated results are then

matched with the observed phase function at the scattering angleθ=5◦. The backscattering angles,

which do not contribute much to the normalisation integral,are extrapolated simply by using the

measured value at 173◦ for all angles from 174◦ to 180◦. Other methods for extrapolation have been

suggested, e.g., by Liu et al. (2003), Kahnert and Nousiainen (2006), and Kahnert and Nousiainen170

(2007).

4 Results

To compare simulations and measurements, we apply the measured size distribution, select a refrac-

tive index, and average the simulations over sizes and shapes as described in Section 2. The quality

of fit is then evaluated by computing a cost function that quantifies the (dis)agreement between the175

simulations and measurements. As the preferred cost function, we use the area between the mea-

sured and modeled matrix elements (i.e., the well-knownl1-norm; see, e.g., Kreyszig, 1993, page

994). The area is calculated only for scattering angles at which measurements are available, and it

is normalised by dividing it with the angular span of the measurements (∆θ=168◦ for all samples

considered here), and then expressed in percentages. We name this error-quantityψ:180

ψ=
100%

∆θ

∫ 173◦

5◦
|Pobs−Psim|dθ. (10)

Here,P =Pij/P11, except that for the phase functionP =P11. The advantage here is that the errors

of different scattering-matrix elements are readily comparable with each other. On the downside,

the measurement uncertainty is not taken into account. If wewant to give more emphasis for side

scattering, we can use the log(P11) instead ofP11 when calculating theψ for the phase function.185

Indeed, we have mainly used the logarithmic form, as it givesmore even weight for all measurement

angles.
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We also experimented with many other cost functions, includingχ2 errors, Eq. (A7), summed over

measurement points, and the so-calledδ80 value, which is defined such that at80% of all observation

points the discrepancy between measurements and simulations is smaller thanδ80. In the case ofχ2190

andδ80 statistics, the cost function for assessing the agreement between measurements and model is

calculated at the measurement points excluding 171◦, 172◦, and 173◦ to preserve angular equality

in the analyses.

We note that we have restricted ourselves to using homogeneous, highly symmetrical model par-

ticles with smooth surfaces; real mineral particles are irregularly shaped, expected to be inhomo-195

geneous and are likely to be composed of birefringent and thus anisotropic mineral species (e.g.,

Nousiainen, 2009). Moreover, we have assumed that the particle properties are not size or shape

dependent while, for real atmospheric dust particles, thisis not necessarily the case. For exam-

ple, Claquin et al. (1999) propose different mineralogies for clay and silt fraction particles. More

recently, physical and optical properties have been measured for different size classes of airborne Sa-200

haran dust in the SAMUM campaign (Heintzenberg, 2009). Measured refractive indices were found

to be varying in-between different size classes (Otto et al., 2009), which is not surprising considering

that also the chemical composition was found to vary (Kandler et al., 2009).

4.1 Assessing the overall performance of spheroids

We first want to establish how well the model of spheroids works for our samples. One way to do205

it would be to treat the shape distribution and the refractive index as free parameters and apply a

fitting algorithm to find optimal values for these and then compute the cost function. However, since

only positive weights are possible in the shape distribution, a non-linear fitting algorithm must be

used, and such methods are not guaranteed to locate the global minimum even when multiple initial

states are used. We thus adopt a simpler method where we investigate how well the measurement210

points are bracketed by simulations of individual spheroidal shapes. If a measurement point lies

outside the range of those matrices covered by different aspect ratios, then it is impossible to fit that

measurement point with any shape distribution. This leads us to consider how well this necessary

condition for successful fitting is met for different samples. The non-linear fits are only performed

for selected cases and are considered in more detail in Section 4.2.215

Investigations on how well the measured scattering-matrixelements can be covered by spheroids’

of different shapes and refractive indices are thus performed. The term coverage refers to the per-

centage of measurement points that are within the range obtained by considering the spheroids size-

integrated values for all aspect ratios separately. This gives an indication of how well the measure-

ments can be modeled by using spheroids.220

In Fig. 2 three scattering-matrix elements atλ= 632.8 nm have been plotted for each sample

studied. Shown are both the measurement error bars and the coverages by different spheroids. The

length of the error bar covered is accounted when calculating coverages, so that one single outlier
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point with a huge error bar might lower the coverage percentage significantly, which is exactly

what happens with the feldsparP22/P11 element in the upper right corner of Fig. 2. The coverages225

averaged over all matrix elements and for theP11 element separately are shown in Table 2 for both

wavelengths. None of the measured samples are fully coveredby the spheroid simulations. Feldspar

stands out as the one sample that can most readily be modeled with spheroids for both wavelengths.

Less than half of the measurement points for Saharan dust, onthe other hand, are bracketed by the

simulations, making this sample very challenging for the model of spheroids. Overall, the average230

coverage is better for samples with smallreff . Likewise, the standard deviation is smaller for samples

with small reff , indicating that coverages are also more consistent between different phase matrix

elements for samples with smallreff . Thus, the model of spheroids clearly seems more promising

for samples with smallreff . On the other hand, there does not seem to be systematic differences

between the wavelengths, although the effective size parameter is over 40% larger at 441.6 nm than235

at 632.8 nm wavelength.

In Fig. 3, the minimumψ values, Eq. (10), of all scattering-matrix elements for each sample are

plotted as a function of the effective size parameter. A rising slope can be fitted to the data and

its existence clearly indicates that the spheroid model works better for smaller sizes, especially in

the case of the phase function. The slopes become slightly smaller if only the best-fit refractive240

indices for each element are considered. It is interesting to note that all the otherψ values show

strong dependence on size except forP12/P11 andP34/P11, which are reproduced quite well with

spheroids regardless of the size range. Moreover, the minimumψ values of these elements do not

seem to depend much on the refractive index assumed. This is probably mostly due to the extensive

coverage provided to these elements by the model spheroids,allowing us to obtain good fits with245

different refractive indices.

4.2 Optimal shape distributions

Another, independent approach to assess the model of spheroids is to derive a shape distribution that

provides the optimal fit to the measurements. This fit can be optimized separately for each sample,

matrix element, and the refractive index. These optimized shape distributions can be found by using250

a nonlinear fitting algorithm based on the Levenberg-Marquardt method (for detailed description,

see Appendix).

Optimizing the aspect-ratio weights separately for each matrix element is a time-consuming pro-

cess and was, therefore, performed for a selected set only, including all the samples and matrix

elements atλ=632.8 nm with one refractive index (m=1.55+0.001i) used for the scattering com-255

putations. In addition, fittings for the other wavelength (λ=441.6 nm) and use of other refractive

indices (Re(m) = 1.55 and1.7, Im(m) = 0.001i and0.01i) were tested for feldspar and loess sam-

ples. These represent samples with small and largereff ; loess was chosen instead of Sahara due to

its better coverage.
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The fitting results (shown later in Fig. 7) reveal that in somecases, the optimal shape distribution260

of spheroids reproduces the measured scattering matrices quite well. As in the previous section, we

once again see that the spheroids seem to work best for smaller size parameters: for feldspar, red clay,

and green clay, the fits are relatively good; whereas, for loess and Saharan samples, the spheroids

cannot produce scattering patterns similar to the measurements. Especially, the matrix elements

P22/P11 andP44/P11 prove to be impossible to reproduce using spheroids. Fig. 3 reproduced with265

the optimal shape distributions (not shown) leads to aψ – reff slope of 0.2 for the average of all

elements as well as for that ofP11 alone.

One main goal of this study is to investigate the validity of spheroidal model particles from a

broader perspective. For this reason, we are particularly interested in general trends in the optimal

shape distributions. The optimal aspect-ratio weights formatrix elements of all samples are collected270

in Fig. 4. There the wavelength is taken to be632.8 nm and refractive indexm=1.55+0.001i. An

immediate conclusion on the distribution is that extreme aspect ratios are clearly most common in

the best-fit shape distributions. The form of the total distribution of weights encourages us to use

a power-law shape distribution as an a priori assumption in more detailed studies of the search for

the optimal value forn. Hence, a power-law functionC · |ξ|n is fitted in Fig. 4 (solid black line),275

resulting inn=18. Alson=3 line (red) is plotted in the figure for reference. It is of interest to note

that in a study by Nousiainen et al. (2006), the results favoured the extreme shapes, which in that

study had|ξ|=1.6. Here as well, the extreme shapes are found to be strongly favoured, but as now

we have included|ξ|=1.8, the|ξ| ≤ 1.6 had far less weight on the results.

4.3 ξn parametrisation280

Nousiainen et al. (2006) suggested a simple one-parameter (n) shape distribution for modelling

mineral dust based on their simulations for the feldspar sample. Here, we investigate how well such

a parametrisation works in general, and to what extent the best-fit n varies between the samples. To

find the optimaln, we vary its value from 0 to 18 and identify the value that gives the smallest cost

functions. Atn=18, the very extreme shapes (ξ=−1.8 and1.8) include 88% of the scatterers and285

four most extreme shapes (ξ=−1.8,−1.6,1.6 and1.8) contain 99% of the population. The upper

limit of n=18 was chosen to include the best-fit value of18 obtained in the previous section. We

also tested other shape distributions, which are discussedin the end of this chapter.

Table 3 summarizes the results for the optimal parametrizedshape distributions under different

criteria. As the cost functions, we consider eight different variations, namely:290

– χ2 for phase functionP11;

– averageχ2 for the independent non-zero phase matrix elements, excluding P11;

– δ80 for P11;

– averageδ80 for all independent non-zero phase matrix elements;
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– the asymmetry parameterg;295

– ψ value for log(P11);

– averageψ for all matrix elements, each withm that produces the best fit;

– averageψ for all matrix elements withm that produces the best-fitg.

Obviously, best fits are obtained at differentn for different samples; this is natural and expected.

Interestingly, with theχ2 criteria they are often obtained either with the least (n= 0) or the most300

(n=18) extreme shape distributions considered. This is at least partly due toχ2 approach giving

huge emphasis to few points with very small measurement errors. TheP11 element, often the most

important for practical considerations, however, is uniformly best modeled with the equiprobable

distribution (n=0) or, when considering area differences (ψ), on average withn=0.4. UnlikeP11,

the best-fitn for the asymmetry parameterg is slightly larger.305

There seems to be a common trend that the phase function fits best whenn is very small, whilst

the fitting errors for polarisation components are minimized with values aroundn= 10 (which is

when 70% of scatterers have|ξ|=1.8 and 90% have|ξ| ≥ 1.6) or even higher. This inconsistency

indicates that the model of spheroids is not entirely accurate for real mineral dust particles.

The spheroids perform, however, much better than the homogeneous sphere approximation (HSA).310

This improvement in modelling accuracy is particularly clear for other samples except Sahara. The

matrix elements that improve most areP12/P11, P22/P11 andP33/P11; ψ improvements are always

at least30% for the Sahara and50% for the other samples. When the whole scattering matrix is con-

sidered, it is possible to reach50% improvements on the average of all scattering matrix elements,

excluding Saharan sample. In some special cases, individual scattering-matrix elements obtained315

from HSA may produce better fits, but the averageψ over all matrix elements is always at least20%

better for spheroids regardless of then value or the refractive index (of those used here).

We experimented also with other kinds of shape distributions besides theξn. The simplest cor-

rection, which slightly improved the results especially for small values ofn, was to leave three or

five of the most spherical shapes out altogether. Also a cosine shaped distribution was investigated,320

where the distribution peaked at the spherical shapes and decreased towards the more extreme axis

ratios. This kind of distribution rarely matched the performance of the equiprobable distribution and

was thus abandoned.

Modeled matrix elements produced by oblate particles vary from each other more than do models

by prolates, which might be why shape distributions of solely oblate particles seem to produce325

slightly better fits to the measurements than those composedpurely of prolates. A distribution that

consists of both oblates and prolates usually performs bestoverall. It seems that both prolates and

oblates are needed when good fits are sought throughout the scattering matrix for the whole angle

span. Occasionally, a shape distribution tweaked into either prolate or oblate side yielded slight

improvements when compared to the simpleξn distribution. However, introducing an asymmetry330
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between oblates and prolates would introduce an additionalfree parameter without consistent or

even notable improvement to the results.

While the spheroid scheme is superior to spheres, its performance is far from perfect especially for

samples with larger particles. The optimal shape distributions seem to vary from sample to sample

but also, to some degree, between wavelengths. The latter implies that the optimal shape distribution335

for spheroids is not unambiguously connected to the actual shapes of the particles.

4.4 Robustness of model with respect to refractive index

The refractive indexm of the samples is one of the sources of uncertainty in our analyses. Indeed, we

do not even know to what degree the samples can be characterized with a single refractive index. To

account for the uncertainty inm, simulations have been conducted with a variety of values, chosen340

to bracket the expectedm range. Still, none of the values used is likely to be exactly right for any of

the samples.

One of the key questions related to this is whether them dependence of scattering is sufficiently

linear over the considered interval that, when we bracket them values, we also bracket the single-

scattering properties. In Nousiainen (2007), the dependence of the asymmetry parameter on the345

refractive index was studied for shape- and size distributions of spheroids. It was found thatg de-

pends onmmonotonically and fairly linearly over a wide range of refractive indices. For individual,

scattering-angle dependent phase matrix elements the situation is bound to be more complicated, but

luckily the angular forms of the matrix elements do not seem to be overly sensitive to fairly modest

variations inm (e.g., Nousiainen and Vermeulen, 2003; Muñoz et al., 2007). We are thus confident350

that, to a large extent, we also cover the single-scatteringproperties in our treatment.

To estimate the sensitivity to refractive index, we take a closer look at the results for the nine

different values ofm for the feldspar sample and the five different values ofm for the other samples.

The summary of the results is given in Table 3. The first obvious observation is that the best-fit

refractive index depends on the fitting criterion used. For example, for the feldspar sample for which355

the spheroid model works best, we obtain best-fitm from 1.55+0.001i to 1.7+0.01i atλ=441.6

nm, from one extreme to the other, depending on the criterionadapted. The Saharan sample, on

the other hand, favors the complementary extremes from1.55+0.01i to 1.7+0.001i. Behaviour is

similar for λ=632.8 nm. This result strongly implies that it is very challengingto reliably invert

both the optimal shape distribution and the refractive index of real dust particles from the angular360

dependence of the scattering-matrix elements using simplemodel shapes such as spheroids. The

best-fitm also depends on the wavelength and varies between samples, but these are expected and

reasonable results.

To get more insight into the relation of the refractive indexand shape distribution, we plotted cost

functions bracketed over refractive indices for three samples (feldspar, red clay, and Saharan dust) in365

Fig. 5. The averageψ error, Eq. (10), of all matrix elements and the asymmetry parameter difference
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are shown for the wavelength of441.6 nm for three different values ofn (in columns). The longer

wavelength behaves quite similarly and is not shown. Feldspar, whilst being clearly well mimicked

with our model distributions, changes its ’best refractiveindex’ behaviour with the changing shape

distribution. On average, a combination ofm=1.55+0.001i andn=3 works best for it, although370

P11 can be best modeled withm= 1.55+0.01i. ψ values forP11 (not shown) andg of red clay

(represented in fourth row of Fig. 5) are minimized withm= 1.55+0.01i for all n. Green clay

behaves similarly to the red clay and is not shown. The behaviour for total error is more varied.

Perhaps surprisingly, Saharan dust is the only particle type that shows a very consistent refractive

index behaviour for alln, averages andP11 (not shown) for both wavelengths. This might be partly375

due to poor performance of spheroids on the Saharan sample, as large errors may mask any subtleties

caused by differing refractive indices. For loess (not shown), them=1.7+0.001i provides the best

fit on the average of all the elements and also on theP11 element for the shorter wavelength. For

632.8 nm, the results of loess are not so conclusive as a lower real part and a higher imaginary part

of the refractive index are also producing good modelling results forg. Overall, it seems that out of380

our options, reasonably good choices for refractive indices would bem=1.55+0.001i for feldspar,

m=1.55+0.01i for both clays, andm=1.7+0.001i for both loess and Sahara.

Finally, we tested whether the matrices could be fitted better using a linear combination of dif-

ferent refractive indices rather than a single, fixed value.Thus, we assumed that the samples could

be composed of multiple dust modes with their unique refractive indices; however, for simplicity,385

each mode was assumed to have the same shape and size distribution. More detailed considerations

are outside the scope of this study. For comparison, we also calculated the refractive indices that

produce the worst fits.

Curiously, none of the best or worst fits include the middlemost of our refractive index values,

m=1.6+0.003i. The reason for this is that our modeled scattering-matrix elements in most of the390

cases fall on one or the other side of the measurements, so that the most extreme modelling results

will always be favoured with100% concentration. This might indicate a problem with the overall

suitability of the spheroid approach on real mineral dust. For example, if spheroids are incapable

of producing sufficiently strong depolarisation or tend to under- or overestimate linear polarisation,

it would be natural for the distribution to favour them value that produces scattering matrices with395

the smallest error. Them-value thus retrieved might have little to do with the actualm value of the

sample.

Alternatively, it could also be that the behaviour is connected to possible size distribution errors;

it is well known that accurate measurements of size distribution are notoriously difficult (Reid et al.,

2003). Then again, the size dependence of the phase matrix elements for shape-averaged spheroids400

is not strong. This can be seen very clearly from Fig. 9 of Nousiainen (2009), where the simulated

phase matrices for the same samples as considered here are shown. In each case, the refractive index

and the shape distribution has been the same, so the only differences between the samples are their
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different size distributions. As can be seen, the phase matrices are very similar. Therefore, errors in

the size distributions are not expected to be critical for the results obtained here.405

5 Generic shape distribution

Spheroidal model particles are a promising alternative to homogeneous spheres for both climate forc-

ing and remote sensing applications. As a model geometry, spheroids are significantly more flexible

and provide, in most cases, more accurate results for the optical properties of mineral aerosols than

homogeneous spheres. In the preceeding sections we have investigated the versatility, but also the410

limitations, of the spheroidal particle model by performing a comprehensive validations study. In

this section we determine whether we can give specific recommendations for a generic shape dis-

tribution of spheroidal particles that would provide sufficiently accurate results for a wide range of

mineral dust samples, spectral bands, and for different optical parameters. One challenge in using

spheroidal model particles in operational applications, e.g. in a climate model, is that the shape dis-415

tribution introduces many free parameters (as many as we have discrete aspect ratios in our ensemble

of model particles). Also, possible shape distribution differences between available measured sam-

ples and real atmospheric dust lead us to seek for a generic shape distribution that would work for a

large range of dust particles thus also including those in the atmosphere. By specifying an a priori

shape distribution, and by averaging the optical properties over this shape distribution, we reduce420

the free parameters to the particle size and refractive index, just like in the homogeneous sphere

model. So replacing lookup tables based on spheres by those based on spheroids would be quite

straightforward.

In satellite remote sensing, it may be possible to optimize the shape distribution to get best agree-

ment with the measurements. However, it may be questioned how meaningful it is to perform fitting425

of optical observations with such a large set of free parameters. In climate models, on the other

hand, such a fitting procedure is not even possible in principle. In the future, there might be source-

dependent shape information available for climate modelling, but the authors are not aware of any

such data being available currently. Further, as shown here, the connection between the real shapes

and the best-fit shape distribution of spheroids may not be clear. Therefore, a generic shape distri-430

bution might be very usable for climate modelling purposes.For such a purpose, it is best to use

a criterion that optimizes the asymmetry parameter, asg is a key parameter in computing radiative

fluxes (e.g., Kahnert et al., 2005).

By taking the average of the shape distributionn values that minimize the error of the asymmetry

parameter for the best performing refractive index for eachparticle and wavelength, we getn=2.9.435

If only the clays and feldspar are taken into account, the distribution becomes slightly steeper:n=

3.2. The standard deviations between different samples, however, are notably large, namely3 in

both cases, meaning that quite likely the generic shape distribution is only able to portray different
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populations on average. Interestingly, the feldspar scattering matrix is, in average, best minimized

with n=3.0 for 441.6 nm andn=2.5 for 632.8 nm.440

In Fig. 6,ψ values obtained from the comparisons of simulations and measurements are illustrated.

For each of the samples, we have used only one well performingrefractive index, same for both

wavelengths. For feldspar we usedm=1.55+0.001i, for red clay and green claym=1.55+0.01i,

and for loess and Saharam=1.7+0.001i. Wider bars correspond to the wavelength of632.8 nm,

whilst the thinner black bars on top of them represent441.6 nm. Each row corresponds to one sample445

from smallest (feldspar) to the largest effective radius (Sahara). Three different representations of the

ξn distribution are shown for each scattering-matrix element, from lightest bars (n=0) darkening

towardsn=3 andn=10 as indicated in the legend. The darkest rightmost bar representsψ obtained

when using HSA. Logarithmic area difference was also investigated in the case ofP11 element, but

it produced consistent results with the linear approach, sowe left it out of the figure. It can be seen450

that, in almost all cases throughout the matrix elements, the ξn models work better than the Mie

solution (HSA) regardless of then used. Only exceptions are seen in theP34¶11 element of loess

and Sahara sample, for which the Mie spheres perform slightly better than the equiprobable (n=0)

andn=3 distributions, and in the Saharan samplesP11 element at441.6 nm, which is the only case

when the Mie solution is the best option. This confirms that using any reasonable distribution of455

spheroids tends to produce better results than the Mie scheme. When the asymmetry parameter is

the criterion, a reasonable first assumption for a spheroid shape distribution is to use the power law

function withn= 3. For the polarisation elements it might prove profitable to favour heavily the

most extreme shapes (n=18, which is the maximum used in our analyses).

When using a generic shape distribution (n=3 distribution) to describe the optical properties of460

any of our samples, the improvements compared to using HSA are generally huge. Only for the Sa-

haran sample do the spheroids fail to decrease the error on asymmetry parameter from that produced

by Mie particles. For the other particles, spheroids decrease the Mie error by60−100% (60% for

green clay at441.6 nm, 70% for red clay at441.6 nm and more than85% for both wavelengths of

loess. Feldspar for both wavelengths and clays at632.8 nm all have100% improvement, meaning465

that the model successfully reproduces the measured asymmetry parameter).

Performance of spheroids is illustrated in Fig. 7, where three key scattering-matrix elements are

shown for all samples. Measurements, spheroids withn= 0,3 and10, the homogeneous sphere

approximation, and the optimal shape distribution results(Section 4.2) are plotted. It should be

noted that the optimal distribution is acquired independently for all matrix elements, making the470

comparisons to theξn model somewhat unfair. For all fitted shape distributions inthe figure (green

lines), the refractive indexm=1.55+0.001i has been used. For theξn models, on the other hand,

we have always used anm that has been deemed best for the sample overall (see Sect. 4.4). This has

led us to usem=1.55+0.001i for feldspar,m=1.55+0.01i for both clays andm=1.7+0.001i

for loess and Saharan samples. When comparing this figure withthe values in Table 3, it is noted that475
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the observed behaviour differs in some respects because of the used refractive indices. For example,

while in Table 3 it can be seen thatm=1.55+0.001i provides the smallest error for loessP11 with

n= 0, the behaviour seen in Fig. 7 demonstrates how the choice of ahigher real refractive index,

herem= 1.7+0.001i, also leads to a preference of different, in this case of a largern. Overall,

it can be seen that the optimally tuned elementwise shape distributions do not lead into universally480

better results although locally the improvements might be notable.

6 Summary and Conclusions

We started our investigation by identifying three open problems regarding the use of spheroidal

model particles in remote sensing and climate modelling. Wewanted to (i) perform a more com-

prehensive validation study to test the applicability of spheroids to modelling mineral dust optical485

properties; (ii) stake out the range of validity of the spheroidal particle model; and (iii) investigate if

we can find a generic shape distribution of spheroids that is applicable to a broad range of mineral

dust samples. To address these questions we have used shape distributions of spheroids to reproduce

the scattering matrix elements measured in a laboratory forfive different mineral dust samples at

two wavelengths. We have made use of a database of pre-computed single-scattering properties for490

spheroids by Dubovik et al. (2006). The measured scatteringmatrix elements, as well as the size

distributions and the estimated ranges for the complex refractive indices of the samples of inter-

est, have been obtained from the Amsterdam Light ScatteringDatabase (Volten et al., 2006). The

volume-equivalent size has been assumed.

Our results indicate that earlier validation studies that were limited to feldspar aerosols may have495

overestimated the versatility of spheroids for modelling mineral aerosol optical properties. This is

especially true for mineral dust samples with larger effective size parameters. Measurements of

the smallest particles can most readily be reproduced whilst the scattering characteristics of largest

particles are more difficult, often impossible, for spheroids to mimic. There are also differences

in how the model fares on different scattering matrix elements. For example, a generally poor500

reproduction ofP22 element with spheroids indicates strong limitations in predicting depolarisation

properties of real dust particles.

We have also analysed the best-fit shape distributions for the samples at both wavelengths. We

have used a non-linear fitting algorithm to find optimal shapedistributions. The merit of this ap-

proach is to (i) obtain an upper bound for how faithfully the spheroidal particle model can fit the505

measurements; and (ii) try to find a general pattern in the best-fit shape distributions, which can help

in the development of a generic shape distribution that could be used for atmospheric dust in cases

when optimisation is not possible and no additional information about dust particles is available.

The results indicate that shape distributions that put moreweight on the most extreme aspect ratios

often, but not always, provide the best fits of the measurements.510
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Based on this observation, we have investigated the performance of a simple one-parameter

power-law shape distribution, Eq. (6). Other types of shapedistributions, some with more free pa-

rameters, were also considered, but they did not result in any significant or consistent improvements.

Accordingly, the best-fit power-law shape distributions for different samples at different wavelengths

have been compared. The impact of using a different size equivalence would most likely not have515

extended beyond minor details in the results. In particular, it is noted that different size equiva-

lences weight different aspect ratios differently, which can be partially compensated by the shape

distribution weights, thus the retrieved values ofn might be somewhat affected.

Although relatively good results can be acquired by variousshape distributions, it turns out that it

is not possible to suggest a single shape distribution that would be the best choice in all cases. Not520

only does the best-fit distribution vary between the samples, but it also varies between the wave-

lengths, the metrics used for specifying the goodness of fit,the quantities fitted, and the refractive

index assumed. While it is rather reasonable that the best-fitdistributions would be different for

different samples that can consist of differently shaped dust particles, it is disconcerting that it also

depends on the wavelength. This implies that the best-fit shape distributions do not necessarily cor-525

relate with the actual dust particle shapes. Indeed, these findings suggest that, when inverting dust

physical properties from the single-scattering properties, the use of simplified model shapes, such as

spheroids, may lead to erroneous results even when the agreement is good — the smallness of the

residuals in the fitting may not guarantee the accuracy or correctness of the results.

Despite all shortcomings of the spheroidal particle model that this study revealed, our results530

confirm that spheroids are superior to the homogeneous sphere approximation (HSA) in almost all

cases. Also, for climate modelling purposes, in which we mainly try to overcome the inaccuracy of

the HSA, a shape distribution withn=3 seems to be a reasonable choice. This distribution tends to

produce significantly more accurate asymmetry parameter values than the HSA approach. We thus

suggest an=3 distribution to be used in climate models. When one wishes to optimise the phase535

function, an equiprobable (n=0) or a very low value ofn (n< 1) seems to perform better. When,

on the other hand, one aims at the best all-around reproduction of the scattering-matrix, the optimal

value ofn often raises significantly; in half of our cases right up to our upper limit ofn=18. Also,

the best-fit shape distributions obtained using the non-linear fitting algorithm resemble high-n shape

distributions.540

Recently, a database of single-scattering properties for tri-axial ellipsoidal mineral dust aerosols

has emerged (Meng et al., 2010). Using tri-axial ellipsoidscould possibly be the next logical step

towards better operational aerosol modelling, although having all three principal axes differing from

each other increases the complexity of the model. However, although most likely further enhanc-

ing the fits, these new model shapes do not necessarily bring any more reliability into retrievals,545

as their shapes are almost as distant from the real dust particle shapes as spheroids are. It is thus

suggested that inversion algorithm developers used other criteria in addition to small residuals to
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validate the retrievals. There are also other promising shapes currently studied elsewhere, e.g.,

Poisson-Voronoi tessellation (Ishimoto et al., 2010) and nonsymmetric hexahedra (Bi et al., 2010),

but single-scattering properties appear not to be currently available for sufficient size- and wave-550

length range to consider climate model applications, for example.

Appendix A

Fitting of the Mueller matrix

Suppose we have a reference sample of particles with known optical properties. The Mueller matrix555

elementsPi,j(θk) have been measured at discrete anglesθ1,...,θK . The corresponding standard

deviations of these measurements are denoted byσi,j,k. The scattering cross sectionCsca can be

obtained by determining the size-distribution and refractive index of the sample, and by performing

Lorenz-Mie computations.

Suppose further that we have a set of model particles, such asspheroids of different shape param-560

etersξ1,...,ξL with corresponding Mueller matrix elementsP sim
i,j (θ;ξl), and with scattering cross

sectionsCsim
sca (ξl), l=1,...,L. Given a shape-mixture with distribution functionp(ξ), the averaged

optical properties of an ensemble of model particles are given by

〈P sim
i,j (θ)〉 =

1

〈Csim
sca 〉

∫

∞

0

p(ξ)Csca(ξ)P
sim
i,j (θ;ξ)dξ, (A1)

〈Csim
sca 〉 =

∫

∞

0

p(ξ)Csca(ξ)dξ. (A2)565

In discrete form this becomes

〈P sim
i,j (θ)〉 =

1

〈Csim
sca 〉

L
∑

l=1

plCsca(ξl)P
sim
i,j (θ;ξl)wl, (A3)

〈Csim
sca 〉 =

L
∑

l=1

plCsca(ξl)wl, (A4)

where the coefficientswl denote the integration weights of the numerical integration method em-

ployed.570

The objective is to optimise the shape distribution weightspl such that the differential scattering

behaviour of the ensemble of model particles mimics that of the reference sample as closely as

possible. More specifically, we want to fit the quantity

B′

i,j(θ;p1,...,pL)=

L
∑

l=1

plCsca(ξl)P
sim
i,j (θ;ξl)wl (A5)

to the quantity575

Ai,j(θ)=CscaPi,j(θ) (A6)
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by optimising the weightspl, l= 1,...,L. Note that this approach is an extension of earlier work

Kahnert et al. (2002b); Kahnert (2004); Nousiainen et al. (2006). The main difference is that we

previously fitted the Muller matrix elements themselves, whereas in the present work we fit the

Mueller matrix elements scaled by the scattering cross section. The former approach is equivalent580

to the latter only if the model particles and the reference system all have the same scattering cross

section. Ideally, the measure employed for defining size-equivalence of nonspherical particles would

ensure that nonspherical particles of equivalent sizes have the same scattering cross section. In

practice, this is not always the case. For this reason, the approach employed in this study is slightly

more accurate than that employed in our earlier work.585

The linear least-squares method solves the fitting problem by minimising the quantity

χ2 =
K
∑

k=1

(

Ai,j(θk)−B
′

i,j(θk;p1,...,pL)

σi,j,k

)2

. (A7)

A problem is that the weightsp1,...,pL should have the properties of probabilities, i.e., they have to

satisfy the constraints

L
∑

l=1

plwl =1 (A8)590

0≤ pl ≤ 1. (A9)

These constraints can be enforced by replacing the expression in Eq. (A5) by

Bi,j(θ;h12,...,hL2)=

∑L

l=1hl2Csca(ξl)P
sim
i,j (θ;ξl)wl

∑L

m=1h
2
mwm

. (A10)

The weightsh1,...,hL are determined by minimising the quantity

χ2 =
K
∑

k=1

(

Ai,j(θk)−Bi,j(θk;h12,...,hL2)

σi,j,k

)2

. (A11)595

Finally, one sets

pl =
hl2

∑L

m=1h
2
mwm

. (A12)

Equation (A12) ensures that the constraints given in Eqs. (A8) and (A9) are satisfied. Substitution

of Eq. (A12) into Eq. (A10) yields an expression on the right hand side that is formally identical to

that of Eq. (A5). However, in Eqs. (A10) and (A12) the coefficientspl are forced to be non-negative600

and normalised to unity.

Finally the optimised weightspl are substituted into Eqs. (A3) and (A4) to obtain the best-fit

Mueller matrix and scattering cross section of the ensembleof model particles. Note that Eq. (A7)

defines a linear least-squares problem. By contrast, Eq. (A11) needs to be solved with non-linear

least-squares minimisation techniques. We employed a standard approach for such problems known605

as the Levenberg-Marquardt method (Press et al., 1992). Note further that the least-squares technique

requires that the number of known quantities should be at least twice as large as the number of
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unknowns. Thus, the number of scattering angles, at which observations are available, should be

at least twice as large as the number of model particles in theensemble, i.e.,K ≥ 2L. In our case,

K=37, andL=17, so the condition is satisfied.610
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Fig. 1. Measured and simulated scattering-matrix elements for the loess sample atwavelengthλ=632.8 nm.
The measurements are shown with small black dots and their error bars.Different solid lines depict scattering
by different spheroids with refractive index ofm=1.55+0.001i, ranging from prolate (red) to oblate (blue)
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Fig. 2. Coverage of the measured scattering-matrix elements by model spheroids at632.8 nm wavelength for the
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Fig. 7. Measurements with error bars (black), spheroid models (blue and green), and HSA (red) shown for the
three key scattering-matrix elements of every sample. Threeξn model runs,n=0 (dotted blue line), 3 (solid
blue line), and 10 (dashed blue line) are shown as well as the optimal shape distribution (solid green line). Here
we have usedλ=632.8 nm

29



Table 1. Summary of the sample properties. Thereff andσeff values have been computed from the measured
size distribution; the Re(m) is an estimate; Im(m) is estimated to be between10−2 and10−5 for all samples.

reff [µm] σeff Re(m) main constituents production origin colour

feldspar 1.0 1.0 1.5-1.6 K-feldspar, plagioclase, quartz crushed Finland light pink
red clay 1.5 1.3 1.5-1.7 biotite, illite, quartz commercial France red brown
green clay 1.55 1.2 1.5-1.7 illite, kaolinite, montmorillonite, commercial France green

quartz
loess 3.9 1.6 1.5-1.7 K-feldspar, illite, quartz, calcite, collected Hungary yellow brown

chlorite, albite
Saharan dust 8.2 2.0 1.5-1.7 quartz, clay minerals, collected Saharan desert yellow brown

calcium carbonate

30



Table 2. Percentages of spheroid coverages for different samples.

% 441.6 nm 632.8 nm

F11 avg. σ F11 avg. σ

feldspar 100 92 5 99 89 19
red clay 72 62 24 71 58 24
green clay 84 61 29 81 63 19
loess 76 55 35 74 59 27
Sahara 23 43 34 75 48 29
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Table 3. The best-fitn values ofξn shape distributions, Eq. (6), using different criteria. The refractiveindex
with which the best-fit value was obtained is indicated by:a=1.55+0.001i; b=1.55+0.01i; c=1.7+0.001i
; d= 1.7+0.01i. ande= 1.6+0.003i. The last row shows the column averages when excluding the cases
with n=18.

F11 avg. δ80 P11 δ80(avg.) g ψ log(P11) ψ avg. best ψ all Best-g

441.6 nm
feldspar 0.0 b 3.0 a 0 ab 0 ab 2.7 c 1.1 d 2.0 a 6.2
red clay 0.0 b 18 c 0 a 0 d 1.3 b 0.1 b 18 c 8.8
green clay 0.0 b 18 d 0 c 0 c 1.0 b 0.4 b 18 c 6.5
loess 0.0 d 18 c 0 a 0 d 4.4 c 0.4 c 18 c 11.0
Sahara 0.0 c 0.0 c 0 b 0 b 0.0 c 0.0 c 1.5 c 9.7

632.8 nm
feldspar 6.0 b 1.5 b 0 c 0 c 9.4 a 0.7 b 5.0 a 8.2
red clay 0.0 b 18 d 0 a 0 d 3.1 b 0.2 b 18 c 9.3
green clay 0.0 b 18 d 0 c 1 c 3.4 b 0.7 b 18 d 9.9
loess 0.0 a 0.0 a 0 b 0 b 5.7 e 0.1 a 18 c 7.0
Sahara 0.0 c 0.0 c 0 b 0 d 0.0 c 0.0 c 0.9 c 9.5

MEAN 0.6 9.45 0 0.2 3.1 0.4 11.7 8.8
w/o. 18 0.9 2.4 3.6
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