Atmos. Chem. Phys. Discuss., 11, C2539–C2540, 2011 www.atmos-chem-phys-discuss.net/11/C2539/2011/ © Author(s) 2011. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005" by C. H. Jackman et al.

Anonymous Referee #2

Received and published: 30 April 2011

This paper provides an interesting comparison of WACCM simulations of the January 2005 SPEs with three observational datasets. Only a few points should be addressed before the paper can be accepted for publication:

1) p. 7723-5: The horizontal distribution of SPEs ionization is assumed to be uniform over a disc between 60N and 90N in geomagnetic coordinates. Surely this is an approximation and the true distribution is more complex as suggested by Figure 3 compared to Figure 4. Aside from chemistry issues (Canty et al., 2006) the overestimation of HOx may be due to overestimation of total ionization.

2) p. 7727, l. 13: At stratospheric altitudes formation of HOx from ionization is more

C2539

involved than the simple H and OH production parametrized in the model. According to Verronen et al. (2006), the ionization production should be H + OH + HNO3. The HNO3 production via ion-ion recombination reactions is more important at stratospheric altitudes. It is difficult to tell from Figures 5 and 6 how well the model does in generating OH and HO2 in the stratosphere due to the contour interval. Figure 8 suggests that there is significant overestimation of HOx production. The authors discuss ion chemistry in section 5.2.2, but it is also relevant for this section.

3) p. 7729, l. 11-12: It appears that the version of the model used for this study does not have medium energy electron precipitation (section 4 refers to 2007 papers). There were significant medium energy electron fluxes measured by the MEPED instruments during January 1-8, 10-13 and 16-23 of 2005. Given the peak ionization rates around 75 km from these fluxes were between 500 and 4000 ion pairs per cc per second, this is a substantial missing source of NOx in the upper mesosphere. Some clarification in section 4 or here should be included about this missing NOx source.

Interactive comment on Atmos. Chem. Phys. Discuss., 11, 7715, 2011.