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We are grateful for the extensive comments and suggestions given by the reviewer.
Below we give answers to all comments. We indicated if we changed the text in the
manuscript. As indicated in more detail below, major changes have been made to
Section 4, where we added a paragraph to elaborate on the observation error. In short,
we found that that the main reason for the rejection of the large amount of observational
data is the coarse model resolution, in which both high and low observations are poorly
reproduced. A detailed study of the model representativeness error showed that it
remains extremely challenging to define a model error representation that works well
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for all stations.

Furthermore we changed the discussion paragraph on separation of the sources
(§4.1). The main conclusion is that the available observations constrain total CO emis-
sions and therefore, the uncertainty reduction in the total emissions is larger than in the
individual emission categories. Hence, in the posterior solution, the source categories
are negatively correlated. We now more clearly emphasize that this implies a solution
space in which the different source categories can hardly be separated.

Since the topic of the current paper is a thorough testing of the 4D-VAR system, we
acknowledge current shortcomings and apply improvements in future work.

Answers to specific comments

1) Page 344, lines 10-12: The statement that "the main sink of CO is the reaction with
OH, the co-called cleansing agent of the atmosphere" is somewhat redundant with the
first sentence, where it is stated that “by reaction with OH, CO influences the oxidizing
capacity of the atmosphere.”

Changed the statement to: "the main sink of CO is the reaction with OH."

2) Page 347, line 3: The reference for Fisher (1998) here is to an ECMWF seminar. Is
this really a valid reference? Also, there is a typo in the date of the reference on page
370. The conjugate gradient approach was introduced decades ago, I would think that
there are much more appropriate references for this than Fisher (1998).

We changed the reference "Fisher (1998)" to "Hestenes & Stiefel (1952)" as the first
reference to describe the conjugate gradient method.

3) Page 347, lines 11-15: I don’t have access to the ECMWF technical report for Fisher
and Courtier (1995). How is the Hessian approximated? What is the accuracy of the
approximation –i.e. how well does it converge to the true a posteriori covariance? More
information would be helpful here since the source uncertainty discussion requires
confidence in the Hessian calculation.
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The approximation of the Hessian is described in Meirink (2008b). To help the reader in
this respect, we added some lines about the convergence (see also the answer to com-
ment 13 below): “In our study, we consider the minimum of the cost function reached
when the norm of the gradient of the cost function is reduced by 99%. Typically, less
than 30 iterations are needed to achieve this reduction. Although the eigenvalues are
not yet converged to 1 by this time, the errors on the scale of a continent seem reason-
ably converged after a limited number of iterations as shown in Fig. 3.”

4) Page 348, lines 12-15: What is the global, annual mean OH concentration? What is
the estimated methyl chloroform lifetime?

The tropospheric, annual mean OH concentration is 1.1 x 106 molecules/cm3. The
corresponding methyl chloroform lifetime (total burden/tropospheric loss) is estimated
at 4.8 years. These number have been added to the text.

5) Page 350, lines 20-23: The authors claim that their error estimates of 20-48% and
58-72% are realistic for the Western developed world and the developing world, re-
spectively. Do they have a reference for this claim?

The prior grid-scale errors (50% and 250% for the Western developed world and the
rest of the world, respectively) are chosen such that the aggregated prior errors for
continental-scale regions range from 20 to 100%. We trust the EDGARv3.2 inventory
more for the Western developed world and hence these errors are smaller compared to
the prior errors for the rest of the world. A similar approach was followed by Stavrakou
& Muller (2006), see §3.3 of their paper: “The errors range from 0.35 for sources sup-
posed to be better quantified (i.e., anthropogenic emissions in western Europe, North
America, and Oceania) to 0.7 for highly uncertain emission categories (e.g., natural
emissions).” In the revised manuscript, we changed the text to: “Therefore, we apply
grid-scale errors of 250% of the corresponding grid-scale emission for the developing
world (Asia, Africa and South America) and 50% for the Western developed world. With
these settings, realistic continental-scale errors are computed for the developing world
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(65-75%) and the Western developed world (20-48%) in the range previously used by
Stavrakou and Muller (2006)."

6) Page 351, line 3: On what analysis is the 1000 km correlation length scale based?
Is there a reference for this?

The correlation length scale of 1000 km is based on the 4D-Var study for methane
described in Meirink et al. (2008b). They show that increasing the correlation length
increases the region of influence of a measurement; Hence, the aggregation error
increases also. However, a smaller correlation length will increase the effective number
of variables in the state vector to be optimized. We changed the text to: “For the three
emission categories we use a Gaussian spatial correlation length of 1000 km as in
Meirink et al. (2008b).”

7) Page 351, lines 3-6: The authors mentioned that they do not expect a pronounced
seasonal cycle for anthropogenic emissions. Although this is typically assumed, Petron
et al. (GRL, 2004) found that emissions of CO from fossil fuel and biofuel combustion
were 30% and 200% greater, respectively, in winter than in summer. Similarly, The a
posteriori results of Kopacz et al. (JGR, 2010) show a significant seasonality in CO
emissions from North America and Asia. They found that North American emissions
were 50% larger in winter than in summer, while Asian emissions were almost a factor
of 2 larger in winter than in summer. It would be valuable if the authors were to assess
the impact of their assumed temporal correlation on their results. Would a much shorter
e-folding timescale significantly change the regional estimates?

The prior inventory (EDGARv3.2) does not provide a seasonal cycle. Therefore, we
use a relatively long e-folding temporal correlation length. We present our emission
estimates only as yearly totals. The reason for this is that it is already hard to separate
the individual sources categories on the yearly time scales. As outlined in the (revised)
paper, this is due to the data sparse nature of the station-only inversion. Any seasonal
cycle in continental-scale anthropogenic emissions is aliased with seasonal cycles in
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the NMVOC-CO source and the biomass burning source. This behaviour is also clear
from the posterior errors on the yearly emissions. Errors on the monthly emissions are
even larger and we found large negative correlations among the subsequent monthly
emissions. This indicates that, comparable to the different source categories, also the
monthly emissions can not be accurately determined. With the larger data-stream from
satellites we hope that this situation will improve.

We changed the text to: “An e-folding temporal correlation length of 9.5 months (0.9
month-to-month correlation) is chosen for anthropogenic emissions. This high month-
to-month correlation is used because the prior inventory does not include a seasonal
cycle.

8) Page 352, line 1: On what is the assumed 1.5 ppb measurement error based? Is
there a reference for this?

This is a good point. Novelli et al. (1998) report a measurement error of about 1-2%
for CO mixing ratios < 300 ppb. We selected 1.5 ppb as an error since a typical CO
concentration is about 100 ppb. It turns out that using 1.5 ppb might be too conservative
as detailed in the discussion in §4.2. We added the reference in the text.

9) Page 352, lines 3-4: A brief explanation of the model error approach used in Berga-
maschi et al. (2010) would be helpful for the reader, especially since the Bergamaschi
et al. analysis was for CH4 and this paper is focused on CO. A Figure similar to Fig-
ure 2 (top panel) of Bergamaschi et al., showing the representativeness error and the
overall data uncertainty for a couple of selected stations would be helpful.

The approach used by Bergamaschi et al. (2010) estimates the uncertainty in an ob-
servation as follows: the horizontal representation error is approximated using a simple
boundary layer model to account for emissions in the box in which the station resides.
The vertical representation error is accounted for by the vertical model gradient of mod-
eled CO mixing ratios in the adjacent grid boxes. In the revised manuscript we added
Fig. 7 to show the model representativeness error for 3 stations. We also added a
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paragraph to the discussion (§4.2) to discuss the observation error in more detail. (see
also the answer to comment 10). We changed the text to: "We estimate the model
error using the same approach as described in Bergamaschi et al. (2010). First, the
impact of local emissions on the simulated CO mixing ratio is accounted for by a simple
emission model for observations in the boundary layer. Second, to account for sub-grid
variability that can not be resolved, the vertical component of the model error is cal-
culated from the modeled CO mixing ratios in adjacent grid cells. Third, the temporal
standard deviation of the modeled CO mixing ratios within a 3 hour window is added
to the representation error. With this advanced representation of the model error, we
do not account for possible other model uncertainties in vertical transport or the OH
field. This will be discussed further in Sections 4 and 5. The model error is usually
much larger than the measurement error for stations close to or downwind of emission
regions (e.g., Fig. 7). In remote areas in the SH, however, the measurement error is
the dominant term in the observational error."

10) Page 352, lines 15-21: I do not understand the justification for throwing out 15-20%
of the data as outliers. If those observations represent particular pollution events that
the model cannot capture because of the coarse resolution, as the authors claim, then
the representativeness errors should account for this. This seems quite arbitrary to me
and represents a significant weakness in the analysis. Omitting this much data needs
better justification.

We agree with the reviewer that this point indeed requires more explanation. Most
of the surface stations used in our inversions represent background sites for which
the coarse model simulation is not a severe restriction. But a detailed inspection of
the coarse resolution model output shows that it is difficult to simulate pollution peaks
that are interspersed with very clean air. Our advanced representation of the model
error does work very well for most stations, but underestimates the error on some spe-
cific stations. Instead of artificially enhancing the model error for some stations, as is
done in e.g. the Carbontracker system (Peters et al. 2010 (Seven years of recent Euro-
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pean net terrestrial carbon dioxide exchange constrained by atmospheric observations,
Global Change Biology, 16(4), 1317-1337)) we chose to additionally reject outliers from
the observational dataset. Another reason for the large amount of rejected points might
be too small prior errors on the emissions, resulting in a system that has insufficient
freedom to adjust the prior emissions. However, as discussed before, the prior grid-
scale errors are chosen to obtain realistic continental-scale emission error estimates.
We therefore chose a compromise in which we remove a rather large portion of the
data on some stations. We have changed the text in the revised manuscript in the
following way:

- in §2.5 (Inversion specifics), we shortly explain the reason for doing the inversions in
two cycles.

- in the Discussion (§4.2) we elaborate on the cause of rejection of the data as well as
the effect it has on the inferred emission estimates.

11) Table 1: Although removing the outliers results in a better goodness of fit for the
a posteriori CO field, removal of the outliers increases the mean a priori bias. For all
the stations shown in Table 1, the bias goes from -0.58 ppb to 1.53 ppb. For individual
stations such as Alert (ALT), the bias increases from 0.94 ppb to 2.78 ppb. Again,
what is the justification for removing the outliers given that doing so means that you are
starting the inversion from a more biased a priori state? It would be helpful to see what
is the impact of removing the outliers on the inferred sources – i.e. how do the regional
source estimates compare in inversion cycles 1 and 2?

We agree with the reviewer that in the second inversion cycle it seems that we start
from a more biased prior state. However, by rejecting those observations, the system
is capable to fit more observations on other stations: of course for some stations (e.g.,
ASC, AZR, BMW, CGO etc.) the posterior bias is slightly larger in cycle 2 compared
to cycle 1, but much larger reductions in the posterior bias are found for other stations
(e.g., BRW, EIC, GMI). To show the effect of removing the outliers on the estimated
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emissions, we added the regional emission estimates for the cycle 1 inversion for 2004
in Table 2. The differences between the cycle 1 and cycle 2 emission estimates are
discussed in §4.2.

12) Page 353, lines 22-26: Large amounts of satellite data would not necessarily create
a situation in which the inversion is not strongly dependent on the a priori. Ultimately, it
will depend on the precision of the satellite data. Large amounts of imprecise data are
not necessarily better than sparse but precise data.

We agree with the reviewer that “Large amounts of imprecise data are not necessarily
better than sparse but precise data.” However, in the future we intend to assimilate
both surface network observations and satellite data (with bias correction to account
for possible biases in the satellite observations) to further constrain the emissions.
First results using MOPITT V4 observations only, indicate that the emissions are better
constrained in regions where surface network observations are sparse, compared to
the stations-only inversion.

13) Figure 3 and Table 2: With the exception of Asia and Europe, there is little reduction
in the uncertainty of the anthropogenic emissions. However, Kasibhatla et al. (GRL,
2002) showed much greater uncertainty reduction for fossil fuel emissions from North
America, Europe, and Asia in their inversion analysis of the surface CO data. The
authors should comment on why their inversion results are so different from those of
Kasibhatla et al. (2002).

The inversion approach used by Kasibhatla et al. (2002) was different from ours as
it used the ‘big region approach.’ In this approach it is feasible to compute all matrix
inverses (see Eq. 3 and 4) and the posterior error covariance matrix will be exact. In
4D-Var analysis as is pointed out in Section 2, the posterior error covariance matrix is
still an approximation and hence, the estimated errors will be an overestimate of the
true errors. For the base inversion, we iterated on to a gradient norm reduction factor
of 1010. Then the posterior error covariance matrix is converged and error reductions
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of the same amplitude as given by Kasibhatla et al. (2002) are derived. However,
those inversions are very computationally intensive (up to 5 times compared to the cur-
rent). Therefore, we use a more practical reduction factor of 100. We added text in
the manuscript: "It is acknowledged here, that the presented posterior error reductions
are much smaller compared to the big region synthesis inversion studies (e.g. Kasib-
hatla et al. (2002)). However, the differences are mainly explained by the inversion
approach used. A synthesis inversion approach optimizes the emissions for a set of
big regions. In such a framework, the posterior emission estimates and their errors can
be computed by a direct matrix inversion and hence the posterior errors are exact. In
the 4D-VAR framework presented here, the cost function is minimized iteratively and
considered converged when the norm of the gradient is reduced by a factor 100 (or
99%.) As a special case we continued the iterative process up to a gradient norm
reduction factor of 10ˆ10. For this case the approximation of the Hessian of the cost
function was converged to the true Hessian. The resulting posterior errors are indeed
close to the numbers in Kasibhatla et al. (2002) (not shown). However, a gradient norm
reduction factor of 10ˆ10 is not very practical as the computational burden increases up
to a factor 5. It should be kept in mind that the error estimates calculated by a 4D-VAR
approach always represent an upper limit."

14) Page 358, lines 13-17: The authors claim that the overestimate in May and June
is due to an overestimate of the NMVOC source in the a priori, since the inversion par-
ticularly reduced the NMVOC in these months. However, as the authors acknowledge
on page 355, lines 23-46, the data do not constrain the NMVOC source well. Further-
more, a tight a priori constraint was imposed on the NMVOC source in the inversion.
As a result, the NMVOC source should have remained close to the a priori. Also I
find it suspicious the bias is confined to just May and June, given that the summertime
maximum in the NMVOC source is broad and does not peak as early as May. It seems
likely that the large reduction in the NMVOC source reflects the impact of other biases
being projected onto the NMVOC source. Indeed, the authors noted on page 361, lines
15-18, that the decrease in the inferred NMVOC source from 2003 to 2004, could be
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an artifact of the inversion.

The prior NMVOC-CO is very high in April/May, compared to the other months and the
error settings are quite strict. However, the observational part of the cost function can
be largely reduced by reducing the NMVOC-CO parameters in May and June, with only
small costs in the background part of the cost function (because it is only 1 parameter).
We agree with the reviewer that this can result in a projection of other biases on the
NMVOC source: the 4D-Var system is clearly not capable to differentiate between the
sources, and the decrease in the inferred NMVOC source from 2003 to 2004, is likely
an artifact of the inversion. To bring this important message more clearly to the reader,
we changed the text of the discussion about this issue in paragraph §4.1.

15) Page 359, lines 14-16: I disagree with the claim that the “comparison with NOAA
aircraft profiles showed however that the vertical transport in TM5 is reasonable.” The
aircraft data were mainly in the northern hemisphere, whereas the bias with respect
to MOPITT is pronounced in the southern hemisphere (at middle and high latitudes).
In the absence of more independent aircraft data in the southern hemisphere, over a
range of longitudes, one cannot rule out a bias in vertical transport in the model.

We agree with the reviewer and will weaken our claim. New text: “The inversion is ca-
pable to improve the comparison with independent observations in the free troposphere
over North America.”

16) Page 359, lines 18-19: It is not clear to me how any putative issues with the MO-
PITT retrievals over deserts is relevant here? Indeed, the bias seems to be larger on
land over the deserts, where one would expect the retrievals to be challenging, but the
model-MOPITT bias is largest over the oceans in the southern hemisphere. Further-
more, the CO inversion of Jones et al. (ACP, 2009) showed that both TES and MO-
PITT data resulted in an overestimate of surface CO in the midlatitudes of the southern
hemisphere. It is unlikely that the TES and MOPITT data are similarly biased. Can the
authors comment on this? My guess is that the model used here as well as the model
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used in Jones et al. are biased in their vertical transport.

We agree with the reviewer that the largest discrepancies are found over the re-
mote SH. However, we also discovered an error in the computations. In the revised
manuscript we changed Fig. 5. The largest discrepancies are now found over the
Southern ocean, but the error also pertain over desert regions, e.g., the Sahara desert.
The latter was also observed by de Laat et al. 2010. We further agree with the reviewer
that the discrepancy on the SH may be caused by the vertical transport in the model
(as also observed by Jones et al. 2009), but the transition from ocean to land at the
west coast of Africa remains suspect and might indicate some retrieval issues in that
region. Our ongoing studies with inversions using MOPITT data seem to confirm this
finding.

17) Page 361, lines 23-26: Are the correlation coefficients of -0.29 and -0.23 statisti-
cally significant?

The point here is the following: The assimilated observations only constrain the to-
tal CO emissions (that is, the sum of all categories) and therefore the uncertainty in
the total CO source is smaller than the uncertainty in the individual components (the
source categories). So the inversion results in the ’uncertainty-ellipse’ for the relation
between the anthropogenic and natural source shown in Fig. 1. The form of the ellipse
confirms that the system is capable to constrain total CO emissions, but has difficulties
separating them. This is indicated by the negative correlation, shown in the figure by
the tilted axes of the ellipse. We emphasize that this correlation does not mean that
there is any reason to believe that in reality these emission categories are correlated
in any way, it is only the posterior outcome of the current inversion system. Basically,
the system is only capable to distinguish sources with different spatial and/or temporal
patterns that are specified in the prior emissions/uncertainties. We clarified this in the
discussion in §4.2.

18) Page 363, Section 5.1: It would be helpful to show how the regional estimates
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respond to the different sensitivity tests. Showing only the global totals in Table 5 is
less informative.

We agree with the reviewer and added a table in the revised manuscript (Table 4).

19) Tables 4 and 5: The error for the NMVOC-CO source in Table 5 is 10% for S3 (81
out of 812 Tg CO), whereas in Table 4 the error is listed as 16%. Which is correct?

The prior error on the monthly NMVOC-CO parameter is set to 16%. However, due to
temporal correlations, the error aggregated over the whole year is reduced to 10%.

20) Page 364, lines 1-4: I do not understand the discussion here. What do the au-
thors mean when they say that the “in sensitivity study S1 the NMVOC-CO prior error
dominates, resulting in less reduction in this source”?

We removed the section on sensitivity studies S1 to S4 since the whole discussion
about compensation between the sources is now treated in §4.1.

21) Page 366, line 3: Please change “increase with 75 Tg CO” to “increase by 75 Tg
CO

Changed

Interactive comment on Atmos. Chem. Phys. Discuss., 11, 341, 2011.
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Fig. 1. 95% confidence ellipse for the global total annual emissions for the anthropogenic and
NMVOC-CO source for 2004. The center of the ellipse is the posterior emission estimate.
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