
 We thank the reviewer for the insightful review that raises significant issues on 

the new method that we propose to use to calculate the susceptibility. The discussion 

section is expanded, and an appendix section is added to address the issues raised by the 

reviewer. The Appendix, where most of the revisions based on the reviewer’s comments 

were made, is attached at the end of this document.  

The reviewer’s concerns are summarized in the two questions:  

 
Is the susceptibility and the procedure to calculate it described in the paper an unbiased 

estimator of the exponent β? 

 

Can the concept of susceptibility be applied to non-precipitating clouds? 

 

 Our short response to the first question is that we agree with the reviewer that the 

new method for calculating the susceptibility does not provide an unbiased estimate in all 

cases. We show below that it is dependent on the distribution of the data by following the 

example of the reviewer and calculating the susceptibility on a random dataset of aerosol 

concentration N and associated precipitation rate R. We then argue that the aerosol 

concentrations in the aircraft data from VOCALS closely follow a lognormal distribution, 

a distribution and that data distributed this way show little bias in derived exponents.

 We then argue why the R=a[(N/N0)
-β

 -1] model is inappropriate to study the effect 

of including non-precipitating clouds in the calculations. We attempt to explain the 

behavior of the susceptibility in Fig. 3 of the reviewer’s comments. Using the initial 

R=aN
-β

 model, we then explore how our method performs when noise is added to the data 

and how it compares to other methods of calculating β. Finally, we address the second 

question and discuss the implications of including non-precipitating clouds in calculating 

susceptibility. We find that no method consistently provides an unbiased estimate of β.  

We arrive at the conclusion that including non-precipitating clouds doesn’t 

necessarily give you a more accurate value of β, but more of a richer picture. The 

susceptibility estimate that incorporates non-precipitating clouds also doesn’t run as great 

a risk of being strongly scale dependent. At the smallest scales f is either 1 or 0. A 

susceptibility calculated based on just precipitating clouds disregards those cloud 

segments where f=0. However, as we increase the length of the segments over which we 

average the precipitation rate, those 0’s are increasingly incorporated into calculating the 

segment mean precipitation rate. Therefore, with coarser resolutions an increasing 

amount of non-precipitating clouds will be incorporated into an analysis that includes 

only ‘precipitating’ segments.  

 

 

Comment 1: 

1. Is the susceptibility and the procedure to calculate it described in the paper an 

unbiased estimator of the exponent β? 

 

No, but as the analysis below will show, none of the existing methods are 

unbiased estimators in all cases.  

 As the reviewer correctly points out in Section 2.a, even if the R-N relationship 

indeed followed the form R=aN
-β

, the new method that we propose does not generally 

estimate the underlying relationship without bias. When we recreate a set of points 



following the relationship R=aN
-β

, like the reviewer, we find that the bias is highly 

dependent on the distribution of N, i.e. whether N is distributed uniformly, normally, or 

log-normally.  

 As can be seen in Fig. 1, when N is distributed uniformly or even normally, the 

number of points in the low N/high R region is small. As a result, when we take the 

arithmetic mean of the top tercile (red circle) the point does not lie on top of the 

distribution. Note that the estimated slope is higher, because of the shift of the point that 

corresponds to low-N and high-R.  

 
 



Figure 1: Distribution of R and N, where N is distributed uniformly, normally, and log-

normally. Red circles represent the mean of R and N in the upper and lower tercile of N. 

 

 If we set the parameters such that β=1.25 and a=50
1.25

, calculate the susceptibility 

using the method that we propose, and repeat this 100 times, much like the test that the 

reviewer conducted, we get a distribution of susceptibility estimates for the three types of 

N distributions, as shown in Fig. 2. As expected from Fig. 1, the new method 

significantly overestimates the β value when N is distributed uniformly or normally. On 

the other hand, when N is distributed lognormally, the new method estimates β with little 

or no bias. While we have only shown the case where β=1.25, a similar behavior is 

observed for β values up to 3. The only difference is that the width of the distribution of 

susceptibility estimates increases with increasing β.  

 

 
Figure 2: Histogram of susceptibility estimates using TLD for three different distributions 

of data: uniform (top), normal (middle), and lognormal (bottom). The histograms are 

based on 100 estimates calculated from 100 different samples of the same underlying 

distribution. The gray line at 1.25 shows the value of β in the underlying relationship 

R=aN
-β

.  

 

 From this short exercise we’ve found that our method is indeed not always an 

accurate predictor of the underlying β dependence, except for when the data is distributed 

log-normally. We also have found that the bias is a result of the inability of the arithmetic 

mean to be coincident with the geometric mean in the low-N, high-R range. The high bias 



of the new method that the reviewer finds in Fig. 1 of the review is a result of the N 

distribution of the data.  

 We find that the distribution of the N data in our dataset is closer to a log-normal 

distribution than to either a normal or a uniform distribution, as shown in Fig. 3. The red 

line indicates the theoretical log-normal distribution, based on the arithmetic mean and 

standard deviation of the data in each of the four cloud thickness bins. The lognormal 

distribution of the aircraft N data indicates that we should expect relatively little bias in 

the β that we estimate. To address this issue, we have inserted a section on data 

distribution in the Appendix, attached below.  

 

 
Figure 3: Histogram of the distribution of N in the data in the four h bins. The red line is 

the theoretical lognormal distribution, based on the arithmetic mean and standard 

deviation of the N data in each bin.  

 

 

The problem, in my opinion, is the averaging performed on the data, which does not 

preserve non-linear relationships, i.e., the procedure cannot provide an unbiased 

estimate of β and the result should maybe not be called precipitation susceptibility. If 

anything, the authors introduce a new metric which might or might not be a useful one. 

 

 Since the β values estimated by the new method overestimate the β dependence 

when the data is not distributed lognormally, there is valid concern that perhaps this new 



metric should not be called precipitation susceptibility. However, the newly proposed 

method is an estimator of the precipitation susceptibility, albeit a potentially biased one in 

some circumstances. The concern with our method would be that we are incorporating 

clouds with R=0 in calculating a metric that takes the logarithm of R; the logarithm of 

zero is negative infinity. However, as long as there are precipitating clouds in the high N 

range, the susceptibility introduced in this study captures the effect of aerosols in 

changing the mean precipitation rate of clouds of a given thickness in the framework of 

the precipitation susceptibility.  

The true precipitation susceptibility, defined as S = -  is a continuous 

function of N, and as such there is no one method that can ever determine this function 

from discrete observational data without some risk of that estimator being biased.  The 

previous estimators, e.g., Sorooshian et al. (2009), do not provide enough information to 

ascertain what estimator of S was used and whether that too may be biased. If indeed 

Sorooshian et al. (2009) used a linear regression of log R on log N for fixed LWP bins 

(where N in this case is the CCN proxy), then we show below that such a regression is 

not necessarily an unbiased estimator of S if R and N have uncertainty (measurement and 

system noise) and minimum thresholds associated with them.   

 

 

For this model with a precipitation threshold N0 neither the standard approach for 

susceptibility nor the new method provide an unbiased estimate of β = 1.25. Both 

methods result in a susceptibility estimate which is much larger. 

 

The proposed model follows the form  

 

                              for N < N0, and 

                                                     for N ≥ N0. 

 

 We find that the model above is inappropriate to test the performance of the 

method in calculating the underlying β value. From the dataset alone, we cannot deduce 

the exact nature of a, and we do not know whether such a threshold value N0 exists. For 

example, Fig. 3 of the satellite study of L’Ecuyer et al. (2009) suggests that in observed 

warm maritime clouds there is no such threshold behavior, where precipitation is 0% 

below some threshold value and 100% above another threshold value.  

Furthermore, if we plot values of R and N that follow this relationship in a log-log 

plot, as in Fig. 4, we can see that the slope of the relationship in log-space steepens at 

higher N values. The slope starts off relatively close to the –β value, but steepens 

considerably when a(N/N0)
-β

 becomes comparable to a. Any kind of linear fitting method 

in log space will calculate a slope that is larger than β.  

 

L’Ecuyer, T. S., Berg, W., Haynes, J., Lebsock, M., & Takemura, T. (2009). Global 

observations of aerosol impacts on precipitation occurrence in warm maritime clouds. 

Journal of Geophysical Research, 114(D9), 1-15. doi:10.1029/2008JD011273 

 



 
Figure 4: Plot of N vs. R in log axes for the relationship that includes a threshold (i.e. 

R=a[(N/N0)
-β

 -1]   ). 

 

 

This Fig. 3 shows in fact a certain similarity to Fig. 3 of the paper, and I would ask the 

authors to provide further evidence that their results are not an artifact of the analysis 

method. 

 

The result from Fig. 3 of the reviewer’s comments, where β is calculated in the 

four bins, is a result of the change in slope of the underlying relationship, as seen in Fig. 

4. Whether we add noise to this relationship or not, the underlying slope will still steepen 

with increasing N, and hence result in a behavior similar to Fig. 3 of the reviewer’s 

comments.  

 We have tried to recreate the ‘dataset’ with a threshold behavior (R=a[(N/N0)
-β

 -

1]) and added noise (normal distribution) with a mean of 0 and standard deviation of 0.01. 

N0 = 450, a is calculated such that R (N=50) = 1. We created four bins with the bin edges 

of [50 150 250 350 450], as in the reviewer’s comments. We then created a set of 100 

points with N in each of those bins following a random uniform distribution. The 

corresponding R was calculated (R=a[(N/N0)
-β

 -1]), and then noise was added to the R 

value. Then we calculated the susceptibility, as described in our paper. This was repeated 

100 times to obtain 100 susceptibility estimates in each of the four bins.  

The total susceptibility (blue in Fig. 5) looks like Fig. 3 of the reviewer’s 

comments and indeed follows a similar behavior as the susceptibility in Fig. 3 of the 

paper. If, however, we look at the behavior of SI (red in Fig. 5), the β calculated when 

non-precipitating points are excluded, we see that SI decreases with increasing N, a 

feature absent in Fig. 3 of the paper. Therefore, we do not believe that the behavior of the 

susceptibility in Fig. 3 of the reviewer’s comments is a direct comparison of the 

susceptibility in Fig. 3 of the paper.  

 



 
Figure 5: Susceptibility estimates from four N bins, where noise is added to R, given the 

underlying relationship R=a[(N/N0)
-β

 -1. The ranges of N for each of the bins from left to 

right are 350 to 450 for bin 1, 250 to 350 for bin 2, 150 to 250 for bin 3, and 50 to 150 for 

bin 4. Total susceptibility, SR, is in blue, susceptibility of drizzle fraction Sf is in red, and 

susceptibility of drizzle intensity SI is in green.  

 

 

 It remains important to investigate how linear regression in log space and our new 

estimator are able to estimate an underlying β value (if it exists) if noise also exists in the 

data. We propose using the initial model R=aN
-β

, and adding noise to this distribution so 

that some non-precipitating points (R=0) are introduced. In creating this model, we can 

also examine how N changes with the changes in precipitation threshold. When creating 

this ‘noisy dataset,’ we use a lognormal distribution of N because (a) we have determined 

there is little if any bias when calculating β using the method in a lognormal distribution, 

and (b) because observed N is distributed approximately lognormally (Fig. 3 above). Any 

biases in the new method, would therefore be caused by the addition of noise in the data.  

To study the impact of noise on the different methods estimating β, we take 100 

random samples of N, taken from a lognormal distribution with an arithmetic mean of 

150 and standard deviation of 75 and calculate R as before (R=aN
-β

, a=50
1.25

, β=1.25). 

The standard deviation of R before adding the noise is typically 0.22. To the R value we 

then add noise taken from a normal distribution with a mean of zero and standard 

deviation σnoise. If R is negative after adding the noise, then R is set to zero, since R 

represents a precipitation rate. We then calculate the susceptibility using three methods, 

and repeat the process 100 times to obtain a distribution of susceptibilities for each 

method and for four different noise levels (σnoise= 0.02, 0.1, 0.2, and 0.3). The three 

methods are 1) the method used in the paper, which we call TLD or tercile log-

differencing, 2) standard linear regression in log-space, and 3) a linear regression fit in 

log-space based on minimizing the perpendicular distance between the fit and the data, as 

discussed by Reed (1992). Each data point is equally weighted in all cases. 

The sensitivity to noise (Fig. A3) shows that all three methods accurately estimate 

the underlying β value for low noise, but as σnoise increases, the minimum distance 

method increasingly overestimates the β value, while both TLD and the standard linear 



regression method capture the true β value with minimal bias. The standard linear 

regression most likely outperforms the minimum distance method, because noise is only 

added to R, and one of the main assumptions of the standard linear regression is that 

errors in N are zero or negligible. The minimum distance method assumes that errors 

exist in both R and N. We have not carried out a test where we add noise to N.   

 

Reed, B. C.: Linear least-squares fits with errors in both coordinates. II: Comments on 

parameter variances. American Journal of Physics, 60(1), 59, doi:10.1119/1.17044, 1992. 

 

 

 
Figure A3: Susceptibility estimates from TLD (blue), linear regression (red), and 

minimum distance (green) with increasing noise level. Dots represent mean 

susceptibilities based on 100 estimates, and the lines show middle 95 % interval. The 

abscissa shows the ratio between the standard deviation of the distribution from which 

the noise is taken, σnoise, and the standard deviation of R, σR, after the noise has been 

added. The dotted line represents the underlying β value. 

 

 For one last experiment, we apply a minimum threshold for the ‘measurable’ 

precipitation. This test recreates a situation similar to real data, where a minimum 

threshold for precipitation usually exists. 

We test how accurately the three estimators are able to capture β when we apply a 

minimum threshold to R. We use the same underlying lognormal distribution as in the 

previous test to obtain 100 random samples of N, and the same relationship between 

R and N. We maintain the noise level at σnoise = 0.3 and vary the minimum threshold of R 

such that values of R less than the threshold are set to zero. We choose σnoise = 0.3, 

because this gives a σnoise-to-σR ratio that is similar to those found in the VOCALS 

observations. The mean value of R following the addition of noise, but before the 

threshold is applied, is typically 0.37. The four threshold R values we use are 0.01, 0.2, 

0.4, and 0.6.  

Susceptibility estimates from all three methods (Fig. A4) are sensitive to the 

threshold value. The linear regression method increasingly underestimates the underlying 



β value as the threshold increases. This result is consistent with that of Jiang et al. (2010) 

and Duong et al. (2011), who both found that increasing the minimum threshold for 

precipitation decreased the susceptibility estimate. Though the minimum distance method 

overestimates β when the threshold is near zero, it also follows the same trend of 

decreasing susceptibility estimates with increasing threshold value. The TLD, on the 

other hand, overestimates β with increasing threshold value. The susceptibility estimate 

positively correlates with the fraction of non-precipitating points in each set (Fig. A5). In 

general, higher susceptibility values are found with increasing fraction of non-

precipitating points. From this analysis alone, however, we cannot determine what non-

precipitating fraction would always give an unbiased estimate of β.  

If we split the susceptibility SR of the TLD method into Sf and SI, as done in the 

body of the manuscript, we find that Sf increases with increasing fraction of non-

precipitating points and provides the vast majority of the trend in SR (Fig. A6). On the 

other hand, SI decreases with increasing fraction of non-precipitating points, much like 

the standard linear regression in Fig. A4. No method consistently gives an unbiased 

estimate of the underlying β in cases where a significant number of data values are 

determined to be non-precipitating.  

 

 
Figure A4: Susceptibility estimates from TLD (blue), linear regression (red), and 

minimum distance (green) with increasing threshold level. Dots represent mean 

susceptibility from 100 estimates and the lines show middle 95 % interval. The abscissa 

shows the ratio between the threshold value and the mean, μR, of R after applying the 

threshold. The dotted line represents the underlying β value. 

 



 
Figure A5: Susceptibility estimates from TLD as a function of the number of non-

precipitating points that went into calculating the susceptibility. Colors indicate different 

levels of the thresholds: 0.01 (blue), 0.2 (green), 0.4 (red), and 0.6 (cyan). The dotted line 

represents the underlying β value. 

 

 
Figure A6: The precipitation susceptibility SR (blue), susceptibility of drizzle intensity SI 

(red), and susceptibility of drizzle fraction Sf (green) with increasing threshold value, 

calculated using the TLD method. Instead of the ratio between the threshold and mean 

precipitation rate, the average fraction of non-precipitating points at each threshold is 

used for the abscissa. The dotted line represents the underlying β value. 

 

 What we find in the analysis above is that no method will always give an 

unbiased estimator of β. The method in the paper, TLD, does appear to overestimate β 

with increasing numbers of non-precipitating clouds. However, when SR is split into Sf 

and SI, we do see that Sf plays an important role in determining SR, giving us some insight 

into how non-precipitating clouds are affecting the overall susceptibility value. From a 

standard linear regression estimate, which does not incorporate non-precipitating clouds, 



one cannot deduce solely from the susceptibility estimate whether one may be 

underestimating β, as is the case in Fig. A4.  

 

 

As I have shown, the susceptibility S might lead to spurious results with unrealistic large 

values when R is close to zero or when non-precipitating clouds are included. Therefore I 

wonder whether the results for the bin h1 can be included in the statistics. If this data is 

excluded, then the dependency of S on cloud depth becomes much less convincing, as the 

susceptibility is close to 1 for the remaining bins. 

 

 The reviewer has indeed demonstrated that the new method may lead to spurious 

results with large values of S given certain distributions of N. Given the analysis above, 

however, we find that the no method consistently captures the underlying dependence of 

R on N. From Fig. A5, we can also see that having a sample of 100% precipitating clouds 

doesn’t assure an unbiased estimate of β. Furthermore, if we look at global observations 

of maritime warm clouds, as in Fig. 3 of the satellite-based study of L’Ecuyer et al. 

(2009), we can see that the probability of precipitation does not reach 100% even in the 

thickest of the observed clouds. This suggests that we cannot just disregard susceptibility 

estimates from cloud thickness bins where a significant fraction of the clouds are non-

precipitating.  

 

I would like to emphasize again that S does not need to be an unbiased estimator of β in 

Eqs. (2) or (4) to be useful, but it would be important to show what we can actually learn 

from S and, maybe even more important, it should be emphasized that the actual 

functional dependency of R on N might be very different from any simple dependency 

suggested by S. 

 

The reviewer raises the underlying question about the appropriateness of the 

susceptibility metric as a model to quantify the effect of aerosol or cloud drop 

concentration on the precipitation. There is no theoretical reason to assume that the 

precipitation depends on aerosol concentration, following the form R = aN
-β

. Given our 

current lack of understanding of the relationship, however, we find that our current 

formulation for estimating the susceptibility provides a useful tool to compare the 

dependence of aerosols to precipitation across different studies.  

 We have included the following paragraphs in the discussion section to address 

this issue: 

The method by which we calculate the susceptibility (Eq. 4) is different from 

previous studies that only incorporate precipitating clouds. One concern with our method 

would be that we are incorporating clouds with R = 0 in calculating a metric that takes the 

logarithm of R; the logarithm of zero is negative infinity. However, as long as there are 

precipitating clouds in the high N range, the susceptibility introduced in this study 

captures the effect of aerosols in changing the mean precipitation rate of clouds of a 

given thickness in the framework of the precipitation susceptibility. We provide a 

detailed analysis of the method that we use and its limitations in Appendix A. We find 

that susceptibility estimates from Eq. 4 are sensitive to the number of non-precipitating 

clouds that go into calculating the susceptibility. We also find that compared to other 



methods of calculating the susceptibility calculated using Eq. 4 best captures the 

uncertainty in the susceptibility estimates.  

For much of this study, we have worked under the simple framework for 

understanding the effect of aerosols on precipitation that follows the model of Eq. 2. The 

actual dependence of R on N may not be as simple. Regardless of the actual functional 

dependence of R on N, the utility of the SR, we find, is in how it distinguishes the effect 

that aerosol concentrations have on the intensity of precipitation and the effect that they 

have on the fraction of precipitation. 



Appendix 

 

 We use the tercile log-differencing (TLD) method to calculate the precipitation 

susceptibility in this study so that non-precipitating clouds can be included in an analysis 

that tries to quantify the effect of aerosols on precipitation suppression. Since none of the 

methods that calculate the susceptibility using regression in log-space incorporate non-

precipitating clouds, they neglect the cases where increased aerosols completely suppress 

precipitation. In this section, we take a critical look at the TLD method and explore how 

data distribution, noise, and thresholds can affect the susceptibilities obtained by TLD.  

To test how accurately the TLD method estimates a given underlying dependence 

of precipitation on aerosol concentration, we create multiple synthetic sample datasets 

with the relationship R = a N
-β

 and use each of these to estimate β. The synthetic model 

may not exactly capture the true physical dependence of precipitation on aerosol 

concentration. However, it is desirable that an analysis method can accurately estimate 

the value of β. In addition to using TLD, we estimate β using a standard least-squares 

regression in log-space and a linear regression fit in log-space based on minimizing the 

perpendicular distance between the fit and the data, as discussed by Reed (1992). Each 

data point is equally weighted in all cases.  

 

Distribution of the data 

 

Many variables in the atmosphere are distributed normally; many are not. 

Depending on the spatial and temporal extent of the dataset, N, our controlling 

(independent) variable, can in principle be distributed in a number of ways. We find that 

the nature of this distribution has an important impact upon how effective TLD is in 

estimating β.  

To study this we create a sample dataset of 100 random N values, where N is 

distributed uniformly, normally, or lognormally. A sample size of 100 is chosen, because 

the sample size in each of the cloud thickness bins in the VOCALS data is approximately 

100. Corresponding R values are calculated using the relationship R = a N
-β

, where β = 

1.25; this lies between the mean susceptibility that we estimate for the VOCALS data and 

the susceptibilities estimated in previous studies. We set a = 50
1.25

, but the results for this 

particular analysis are insensitive to the choice of a. To generate a distribution of 

susceptibility estimates from the three methods (TLD, linear regression, and minimum 

distance), we resample the set 100 times from the same underlying distribution and 

calculate the susceptibility in each case, giving us 100 susceptibility estimates. When N is 

distributed either uniformly or normally, the susceptibilities from TLD overestimate β, as 

can be seen in Fig. A1. In these cases, the concentration of points in log-scale is skewed 

towards higher N, resulting in the overestimate of β. When N is distributed lognormally, 

the concentration of points is not skewed in log-space, and the value of β is more 

accurately captured by the susceptibility. In this case, we note that the susceptibilities 

from the linear regression and minimum distance methods accurately capture β as one 

would expect for a dependence of R on N that is simply a power law unburdened with 

noise that is introduced by both measurement uncertainties and additional controlling 

variables.   



Importantly, the 10 km-averaged PCASP aerosol concentration N (the primary 

independent aerosol variable used in this study), for each of the four cloud thickness bins 

(h1, h2, h3, and h4), is distributed approximately lognormally (Fig. A2). Neither a uniform 

nor a normal distribution describes the data well. This gives us confidence that the 

susceptibility from the TLD method is not likely to be a strongly biased estimator of β for 

our observed data.  

 

 
Figure A1: Histogram of susceptibility estimates using TLD for three different 

distributions of data: uniform (top), normal (middle), and lognormal (bottom). The 

histograms are based on 100 estimates calculated from 100 different samples of the same 

underlying distribution. The gray line at 1.25 shows the value of β in the underlying 

relationship R = a N
-β

.  



 
Figure A2: Histogram of 10 km-averaged PCASP aerosol concentrations N that are used 

in the susceptibility analysis. Each panel shows the distribution of N in the four cloud 

thickness bins. The red line shows the probability density function of a theoretical 

lognormal distribution, based on the arithmetic mean and standard deviation of N in each 

of the bins.  

 

Noise level 

 

In reality, we rarely expect the data to perfectly fit a model relationship. Instead, 

we expect there to be noise in the data, representing measurement uncertainties and 

additional unknown controlling variables. To study the impact of noise on the different 

methods estimating β, we take 100 random samples of N, taken from a lognormal 

distribution with an arithmetic mean of 150 and standard deviation of 75 and calculate R 

as before. The standard deviation of R before adding the noise is typically 0.22. To the R 

value we then add noise taken from a normal distribution with a mean of zero and 

standard deviation σnoise. If R is negative after adding the noise, then R is set to zero, since 

R represents a precipitation rate. We then calculate the susceptibility using the three 

methods as above, and repeat the process 100 times to obtain a distribution of 

susceptibilities for each method and for four different noise levels (σnoise= 0.02, 0.1, 0.2, 

and 0.3).  

The sensitivity to noise (Fig. A3) shows that all three methods accurately estimate 

the underlying β value for low noise, but as σnoise increases, the minimum distance 

method increasingly overestimates the β value, while both TLD and the standard linear 

regression method capture the underlying β value with minimal bias. The standard linear 

regression most likely outperforms the minimum distance method, because noise is only 

added to R, and one of the main assumptions of the standard linear regression is that 



errors in N are zero or negligible. The minimum distance method assumes that errors 

exist in both R and N. We have not carried out a test where we add noise to N.   

 

 
Figure A3: Susceptibility estimates from TLD (blue), linear regression (red), and 

minimum distance (green) with increasing noise level. Dots represent mean 

susceptibilities based on 100 estimates, and the lines show middle 95 % interval. The 

abscissa shows the ratio between the standard deviation of the distribution from which 

the noise is taken, σnoise, and the standard deviation of R, σR, after the noise has been 

added. The dotted line represents the underlying β value.  

 

Threshold 

 

Previous studies of precipitation susceptibility have imposed different threshold 

precipitation rates to differentiate precipitating and non-precipitating clouds. Some of the 

differences are due to instrument sensitivities, others due to the authors’ choices. In this 

study, we choose the -15 dBZ threshold, because precipitation rates above 0.14 mm day
-1

 

(the corresponding precipitation rate) begin to have substantial effects (> 4 W m
-2

) on the 

energetics of the boundary layer.  

We test how accurately the three estimators are able to capture β when we apply a 

minimum threshold to R. We use the same underlying lognormal distribution as in the 

previous test to obtain 100 random samples of N, and the same relationship between 

R and N. We maintain the noise level at σnoise = 0.3 and vary the minimum threshold of R 

such that values of R less than the threshold are set to zero. We choose σnoise = 0.3, 

because this gives a σnoise-to-σR ratio that is similar to those found in the VOCALS 

observations. The mean value of R following the addition of noise, but before the 

threshold is applied, is typically 0.37. The four threshold R values we use are 0.01, 0.2, 

0.4, and 0.6.  

Susceptibility estimates from all three methods (Fig. A4) are sensitive to the 

threshold value. The linear regression method increasingly underestimates the underlying 

β value as the threshold increases. This result is consistent with that of Jiang et al. (2010) 

and Duong et al. (2011), who both found that increasing the minimum threshold for 



precipitation decreased the susceptibility estimate. Though the minimum distance method 

overestimates β when the threshold is near zero, it also follows the same trend of 

decreasing susceptibility estimates with increasing threshold value. The TLD, on the 

other hand, overestimates β with increasing threshold value. The susceptibility estimate 

positively correlates with the fraction of non-precipitating points in each set (Fig. A5). In 

general, higher susceptibility values are found with increasing fraction of non-

precipitating points. From this analysis alone, however, we cannot determine what non-

precipitating fraction would always give an unbiased estimate of β.  

If we split the susceptibility SR of the TLD method into Sf and SI, as done in the 

body of the manuscript, we find that Sf increases with increasing fraction of non-

precipitating points and provides the vast majority of the trend in SR (Fig. A6). On the 

other hand, SI decreases with increasing fraction of non-precipitating points, much like 

the standard linear regression in Fig. A4. No method consistently gives an unbiased 

estimate of the underlying β in cases where a significant number of data values are 

determined to be non-precipitating.  

 

 
Figure A4: Susceptibility estimates from TLD (blue), linear regression (red), and 

minimum distance (green) with increasing threshold level. Dots represent mean 

susceptibility from 100 estimates and the lines show middle 95 % interval. The abscissa 

shows the ratio between the threshold value and the mean, μR, of R after applying the 

threshold. The dotted line represents the underlying β value. 

 



 
Figure A5: Susceptibility estimates from TLD as a function of the number of non-

precipitating points that went into calculating the susceptibility. Colors indicate different 

levels of the thresholds: 0.01 (blue), 0.2 (green), 0.4 (red), and 0.6 (cyan). The dotted line 

represents the underlying β value. 

 

 
Figure A6: The precipitation susceptibility SR (blue), susceptibility of drizzle intensity SI 

(red), and susceptibility of drizzle fraction Sf (green) with increasing threshold value, 

calculated using the TLD method. Instead of the ratio between the threshold and mean 

precipitation rate, the average fraction of non-precipitating points at each threshold is 

used for the abscissa. The dotted line represents the underlying β value. 

 

Discussion 

 

 We now attempt to put the data from VOCALS REx in context of the above 

analyses. We can see from Fig. A5 and A6 that susceptibility estimates from TLD 

increase with the fraction of non-precipitating points. Examining the fraction of non-

precipitating clouds will give us an indication of the effect of the threshold on our 



susceptibility results. The fraction of non-precipitating segments is 0.85, 0.46, 0.14, and 

0.04 in the four cloud thickness bins of the 10 km-averaged VOCALS data (h1 to h4).  

Estimating the ‘noise’ in the data is more difficult. To obtain some estimate of the 

noise level in the data, we can take the mean susceptibility values that we obtain in each 

cloud thickness bin and estimate the noise as the difference between the actual R and the 

R explained by the susceptibility. This crude estimate of the noise gives us σnoise-to-σR 

ratios of 0.93, 0.91, 0.72, and 0.95 in the four cloud thickness bins (h1 to h4). This is not 

surprising, given that the magnitude of the correlations between N and R are relatively 

modest in each of the bins: -0.22, -0.28, -0.42, and -0.26 (h1 to h4).  

We conclude that both threshold and noise play an important role in our dataset. 

The precipitation variations within each cloud thickness bin are dominated by noise, 

unexplained by the concentration of aerosol concentrations alone. In such cases, linear 

regression underestimates the β value. Figure A5 and A6 show that whether TLD method 

accurately estimates the β value is dependent on the threshold. We also note that Fig. A6 

and Fig. 3 are mirror-images of each other, where the difference between the two is that 

the mean R increases along the abscissa in Fig. 3 and the threshold increases along the 

abscissa in Fig. A6. SR increases with the increasing fraction of non-precipitating points. 

Sf, in both cases, determines the trend of SR. SI, on the other hand, display different 

behaviors in the two figures. SI in Fig. A6 distinctly increases with decreasing fraction of 

non-precipitating points; SI in Fig. 3 does not display such a clear increase. This suggests 

that the mechanism causing the behavior of the susceptibility in Fig. 3 is not quite 

identical to that in Fig. A6, though a large part may be due to it.  

From the above analysis alone, we cannot disregard the possibility that in Fig. 3, 

the underlying dependence between aerosols and precipitation is constant and the 

decreasing trend of the susceptibility is solely because the fraction of non-precipitating 

clouds is decreasing. When none of the three methods above always give an unbiased 

estimate of β, the utility of SR, as calculated using TLD, is found when SR is taken as the 

sum of its parts Sf and SI. It informs us about how both the rate and the frequency of 

precipitation depends upon aerosol concentration. SI, which is more akin to the 

susceptibilities reported in previous studies, quantifies the effect of aerosols on how 

intense a cloud precipitates. Sf, on the other hand, is a metric that quantifies the effect of 

aerosols on the drizzle fraction, which is identical to the probability of precipitation when 

we include f = 0. L’Ecuyer et al. (2009) found that higher values of aerosol index, which 

serves as a proxy for columnar concentration of CCN-sized aerosols (Nakajima et al., 

2001), tended to decrease the probability of precipitation. They also found that there is no 

unique liquid water path threshold above which a cloud can be assumed to be 

precipitating. This interesting finding runs counter to the idea that there is a threshold 

cloud liquid water path above which all clouds precipitate. Sf in this study attempts to 

quantify that same effect of aerosol concentrations on the probability of precipitation 

from the aircraft data from VOCALS. SR in this study attempts to combine the effect of 

aerosol concentrations have in determining both the intensity and the probability of 

precipitation. 
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