
We thank the reviewer for the constructive comments and suggestions. Individual 

responses to each of the reviewer’s comments can be found below. Since some of the 

comments of the reviewer are addressed in the newly added Appendix, it is attached at 

the bottom of this document.  

 

(i) The work presents highly valuable susceptibility numbers, which currently are scarce 

in the literature, especially when derived from aircraft measurements. At least one other 

stratocumulus dataset has been used to quantify precipitation susceptibility values (Lu et 

al., 2009). It would be helpful to compare the values in the VOCALS region to those in 

the Lu study, which also used airborne measurements. When doing this comparison, it 

should also be noted that different data analysis methodologies may have been applied in 

the two studies. Another recent study examining precipitation susceptibility that should 

be mentioned is that of Bangert et al. (2011) (i.e. see their Figure 11). 

 

Lu et al. (2009), Marine stratocumulus aerosol-cloud relationships in the MASE-II 

experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus, J. 

Geophys. Res., 114, D24203, doi:10.1029/2009JD012774. 

Bangert et al. (2011), Regional scale effects of the aerosol cloud interaction simulated 

with an online coupled comprehensive chemistry model. Atmos. Chem. Phys., 11(9): 

4411-4423. 

 

At the end of the second paragraph under Discussion and conclusions we have 

inserted: The precipitation susceptibility estimates in this study are generally higher than 

previous airborne studies of marine stratocumulus clouds, such as those of Lu et al. 

(2009). In their study, they found susceptibility estimates of 0.46 from MASE I and 0.63 

from MASE II, based on their separately measured sensitivities of precipitation to cloud 

droplet number concentration and of cloud droplet number concentration to aerosol 

concentration.  

Bangert et al. (2011) provides precipitation susceptibility estimates that include 

precipitation from both warm and mixed-phase clouds. Therefore, the susceptibility 

estimates that they report include effects from both warm and mixed-phase microphysics. 

Since the discussion in the paper is focused on warm cloud precipitation, we have not 

included their results in the discussion.  

 

(ii) Do the authors believe that the “SI” metric (rather than “SR”) is more similar to the 

precipitation susceptibility quantified in previous studies that were cited by the authors 

(e.g. Sorooshian et al., 2009; Jiang et al., 2010), albeit probably with different minimum 

rain rate thresholds? If so, it may be worth mentioning this and considering this at least 

in the comparison with data from previous studies such as the Lu et al. study in the 

comment above. 

 

Yes, SI is similar to the precipitation susceptibility studied previously. The 

analysis carried out for the Appendix (see Fig. A6 and A4 below) appears to show that SI 

and the linear regression in log-space have similar values and respond similarly to 

changes in threshold.  



We have inserted the following sentence in the Appendix: SI, which is more akin 

to the susceptibilities reported in previous studies, quantifies the effect of aerosols on 

how intense a cloud precipitates.  

 

In this regard, it is interesting that the authors noted (Pg 33397 Line 3-20) that SI 

exhibited a maximum at an intermediate LWP value in Figure 7 for the 5 km analysis. 

Figure 8 also shows a susceptibility maximum at an intermediate LWP value. Was this 

behavior in SI evident in the 10 km and 20 km analyses?  

 

Our explanation in this section was unclear. Although not statistically robust, we 

find that SI actually gradually increases with increasing LWP across the three bins. This 

is a feature that is evident in the 10 km and 20 km analyses. We have attached a figure 

that shows SI with increasing cloud LWP. Since the increase in SI is larger than the 

decrease in Sf between the second and third LWP bin, a maximum in the SR appears.  To 

clarify this point, we have added the following sentence after “… third LWP bin (not 

shown).”: SI also increases from the third to fourth LWP bin, but the decrease in Sf is 

larger, which leads to the decrease in SR. 

 

 
Figure: SI as a function of LWP. Note: SI from the first bin is not shown.  

 

 

This also raises the question as to whether direct comparisons should be made for the 

LWP-dependent (or H-dependent) behavior of susceptibility for different warm cloud 

regimes that also may have different ranges in LWP or thickness. I suggest that if the 

authors have more thoughts about this, it would be worthwhile to add some discussion in 

the last paragraph of the manuscript where they start to get into these issues. This could 

be helpful to inform future studies examining precipitation susceptibility.  

 

The LWP-dependent behavior of susceptibility may be different depending on the 

cloud regime (cumulus clouds vs. stratocumulus clouds), especially given the different 

types of entrainment the two cloud regimes undergo, the condensate loadings and 

timescales available for precipitation formation in each case. Therefore, we have 

expounded the second to last sentence of the paragraph such that it now reads: While the 



results here support the theoretical arguments of Wood et al. (2009) … and that other 

factors, such as thermodynamic environment and cloud type, may play a role.  

 

Also, can the authors clarify what is meant by sampling artifacts (Line 18, pg 33397)? 

 
 

Since the wording was confusing, we have replaced “to be an artifact of the 

sampling” with: to not be due to a change in microphysical processes.  

 

(iii) Page 33397, line 7: Do the authors intend to say “from the first to the second LWP 

bin”? This is what Figure 7 indicates to this reviewer.  

 

The susceptibility estimates from the first LWP bin are not shown because of the 

lack of precipitating data points. Therefore, the first point seen in Fig. 7 corresponds to 

the second LWP bin. We have clarified this part by adding the following sentence such 

that it now reads: “… third LWP bin (not shown). Note that SR from the first bin is not 

shown for lack of precipitating clouds. To investigate …” 

 

(iv) Page 33399, line 22-23: Can another issue be that different LWP-dependent (or H-

dependent) behavior of precipitation susceptibility exists for different cloud types 

evolving in different meteorological/thermodynamic conditions? 

 

We cannot disregard the possibility that the susceptibility responds with LWP 

differently in different cloud types. Since entrainment of dry air can play a large role in 

determining cloud droplet sizes, the thermodynamic conditions in which the clouds form 

are a big factor. We have expanded the sentence such that it now reads: We attribute the 

difference to whether or not non-precipitating clouds are included in calculating the 

susceptibility, though another explanation for the difference may be that the precipitation 

susceptibility behaves differently with cloud LWP in different thermodynamic 

environments and cloud regimes. 

 

  



Appendix 

 

 We use the tercile log-differencing (TLD) method to calculate the precipitation 

susceptibility in this study so that non-precipitating clouds can be included in an analysis 

that tries to quantify the effect of aerosols on precipitation suppression. Since none of the 

methods that calculate the susceptibility using regression in log-space incorporate non-

precipitating clouds, they neglect the cases where increased aerosols completely suppress 

precipitation. In this section, we take a critical look at the TLD method and explore how 

data distribution, noise, and thresholds can affect the susceptibilities obtained by TLD.  

To test how accurately the TLD method estimates a given underlying dependence 

of precipitation on aerosol concentration, we create multiple synthetic sample datasets 

with the relationship R = a N
-β

 and use each of these to estimate β. The synthetic model 

may not exactly capture the true physical dependence of precipitation on aerosol 

concentration. However, it is desirable that an analysis method can accurately estimate 

the value of β. In addition to using TLD, we estimate β using a standard least-squares 

regression in log-space and a linear regression fit in log-space based on minimizing the 

perpendicular distance between the fit and the data, as discussed by Reed (1992). Each 

data point is equally weighted in all cases.  

 

Distribution of the data 

 

Many variables in the atmosphere are distributed normally; many are not. 

Depending on the spatial and temporal extent of the dataset, N, our controlling 

(independent) variable, can in principle be distributed in a number of ways. We find that 

the nature of this distribution has an important impact upon how effective TLD is in 

estimating β.  

To study this we create a sample dataset of 100 random N values, where N is 

distributed uniformly, normally, or lognormally. A sample size of 100 is chosen, because 

the sample size in each of the cloud thickness bins in the VOCALS data is approximately 

100. Corresponding R values are calculated using the relationship R = a N
-β

, where β = 

1.25; this lies between the mean susceptibility that we estimate for the VOCALS data and 

the susceptibilities estimated in previous studies. We set a = 50
1.25

, but the results for this 

particular analysis are insensitive to the choice of a. To generate a distribution of 

susceptibility estimates from the three methods (TLD, linear regression, and minimum 

distance), we resample the set 100 times from the same underlying distribution and 

calculate the susceptibility in each case, giving us 100 susceptibility estimates. When N is 

distributed either uniformly or normally, the susceptibilities from TLD overestimate β, as 

can be seen in Fig. A1. In these cases, the concentration of points in log-scale is skewed 

towards higher N, resulting in the overestimate of β. When N is distributed lognormally, 

the concentration of points is not skewed in log-space, and the value of β is more 

accurately captured by the susceptibility. In this case, we note that the susceptibilities 

from the linear regression and minimum distance methods accurately capture β as one 

would expect for a dependence of R on N that is simply a power law unburdened with 

noise that is introduced by both measurement uncertainties and additional controlling 

variables.   



Importantly, the 10 km-averaged PCASP aerosol concentration N (the primary 

independent aerosol variable used in this study), for each of the four cloud thickness bins 

(h1, h2, h3, and h4), is distributed approximately lognormally (Fig. A2). Neither a uniform 

nor a normal distribution describes the data well. This gives us confidence that the 

susceptibility from the TLD method is not likely to be a strongly biased estimator of β for 

our observed data.  

 

 
Figure A1: Histogram of susceptibility estimates using TLD for three different 

distributions of data: uniform (top), normal (middle), and lognormal (bottom). The 

histograms are based on 100 estimates calculated from 100 different samples of the same 

underlying distribution. The gray line at 1.25 shows the value of β in the underlying 

relationship R = a N
-β

.  



 
Figure A2: Histogram of 10 km-averaged PCASP aerosol concentrations N that are used 

in the susceptibility analysis. Each panel shows the distribution of N in the four cloud 

thickness bins. The red line shows the probability density function of a theoretical 

lognormal distribution, based on the arithmetic mean and standard deviation of N in each 

of the bins.  

 

Noise level 

 

In reality, we rarely expect the data to perfectly fit a model relationship. Instead, 

we expect there to be noise in the data, representing measurement uncertainties and 

additional unknown controlling variables. To study the impact of noise on the different 

methods estimating β, we take 100 random samples of N, taken from a lognormal 

distribution with an arithmetic mean of 150 and standard deviation of 75 and calculate R 

as before. The standard deviation of R before adding the noise is typically 0.22. To the R 

value we then add noise taken from a normal distribution with a mean of zero and 

standard deviation σnoise. If R is negative after adding the noise, then R is set to zero, since 

R represents a precipitation rate. We then calculate the susceptibility using the three 

methods as above, and repeat the process 100 times to obtain a distribution of 

susceptibilities for each method and for four different noise levels (σnoise= 0.02, 0.1, 0.2, 

and 0.3).  

The sensitivity to noise (Fig. A3) shows that all three methods accurately estimate 

the underlying β value for low noise, but as σnoise increases, the minimum distance 

method increasingly overestimates the β value, while both TLD and the standard linear 

regression method capture the underlying β value with minimal bias. The standard linear 

regression most likely outperforms the minimum distance method, because noise is only 

added to R, and one of the main assumptions of the standard linear regression is that 



errors in N are zero or negligible. The minimum distance method assumes that errors 

exist in both R and N. We have not carried out a test where we add noise to N.   

 

 
Figure A3: Susceptibility estimates from TLD (blue), linear regression (red), and 

minimum distance (green) with increasing noise level. Dots represent mean 

susceptibilities based on 100 estimates, and the lines show middle 95 % interval. The 

abscissa shows the ratio between the standard deviation of the distribution from which 

the noise is taken, σnoise, and the standard deviation of R, σR, after the noise has been 

added. The dotted line represents the underlying β value.  

 

Threshold 

 

Previous studies of precipitation susceptibility have imposed different threshold 

precipitation rates to differentiate precipitating and non-precipitating clouds. Some of the 

differences are due to instrument sensitivities, others due to the authors’ choices. In this 

study, we choose the -15 dBZ threshold, because precipitation rates above 0.14 mm day
-1

 

(the corresponding precipitation rate) begin to have substantial effects (> 4 W m
-2

) on the 

energetics of the boundary layer.  

We test how accurately the three estimators are able to capture β when we apply a 

minimum threshold to R. We use the same underlying lognormal distribution as in the 

previous test to obtain 100 random samples of N, and the same relationship between 

R and N. We maintain the noise level at σnoise = 0.3 and vary the minimum threshold of R 

such that values of R less than the threshold are set to zero. We choose σnoise = 0.3, 

because this gives a σnoise-to-σR ratio that is similar to those found in the VOCALS 

observations. The mean value of R following the addition of noise, but before the 

threshold is applied, is typically 0.37. The four threshold R values we use are 0.01, 0.2, 

0.4, and 0.6.  

Susceptibility estimates from all three methods (Fig. A4) are sensitive to the 

threshold value. The linear regression method increasingly underestimates the underlying 

β value as the threshold increases. This result is consistent with that of Jiang et al. (2010) 

and Duong et al. (2011), who both found that increasing the minimum threshold for 



precipitation decreased the susceptibility estimate. Though the minimum distance method 

overestimates β when the threshold is near zero, it also follows the same trend of 

decreasing susceptibility estimates with increasing threshold value. The TLD, on the 

other hand, overestimates β with increasing threshold value. The susceptibility estimate 

positively correlates with the fraction of non-precipitating points in each set (Fig. A5). In 

general, higher susceptibility values are found with increasing fraction of non-

precipitating points. From this analysis alone, however, we cannot determine what non-

precipitating fraction would always give an unbiased estimate of β.  

If we split the susceptibility SR of the TLD method into Sf and SI, as done in the 

body of the manuscript, we find that Sf increases with increasing fraction of non-

precipitating points and provides the vast majority of the trend in SR (Fig. A6). On the 

other hand, SI decreases with increasing fraction of non-precipitating points, much like 

the standard linear regression in Fig. A4. No method consistently gives an unbiased 

estimate of the underlying β in cases where a significant number of data values are 

determined to be non-precipitating.  

 

 
Figure A4: Susceptibility estimates from TLD (blue), linear regression (red), and 

minimum distance (green) with increasing threshold level. Dots represent mean 

susceptibility from 100 estimates and the lines show middle 95 % interval. The abscissa 

shows the ratio between the threshold value and the mean, μR, of R after applying the 

threshold. The dotted line represents the underlying β value. 

 



 
Figure A5: Susceptibility estimates from TLD as a function of the number of non-

precipitating points that went into calculating the susceptibility. Colors indicate different 

levels of the thresholds: 0.01 (blue), 0.2 (green), 0.4 (red), and 0.6 (cyan). The dotted line 

represents the underlying β value. 

 

 
Figure A6: The precipitation susceptibility SR (blue), susceptibility of drizzle intensity SI 

(red), and susceptibility of drizzle fraction Sf (green) with increasing threshold value, 

calculated using the TLD method. Instead of the ratio between the threshold and mean 

precipitation rate, the average fraction of non-precipitating points at each threshold is 

used for the abscissa. The dotted line represents the underlying β value. 

 

Discussion 

 

 We now attempt to put the data from VOCALS REx in context of the above 

analyses. We can see from Fig. A5 and A6 that susceptibility estimates from TLD 

increase with the fraction of non-precipitating points. Examining the fraction of non-

precipitating clouds will give us an indication of the effect of the threshold on our 



susceptibility results. The fraction of non-precipitating segments is 0.85, 0.46, 0.14, and 

0.04 in the four cloud thickness bins of the 10 km-averaged VOCALS data (h1 to h4).  

Estimating the ‘noise’ in the data is more difficult. To obtain some estimate of the 

noise level in the data, we can take the mean susceptibility values that we obtain in each 

cloud thickness bin and estimate the noise as the difference between the actual R and the 

R explained by the susceptibility. This crude estimate of the noise gives us σnoise-to-σR 

ratios of 0.93, 0.91, 0.72, and 0.95 in the four cloud thickness bins (h1 to h4). This is not 

surprising, given that the magnitude of the correlations between N and R are relatively 

modest in each of the bins: -0.22, -0.28, -0.42, and -0.26 (h1 to h4).  

We conclude that both threshold and noise play an important role in our dataset. 

The precipitation variations within each cloud thickness bin are dominated by noise, 

unexplained by the concentration of aerosol concentrations alone. In such cases, linear 

regression underestimates the β value. Figure A5 and A6 show that whether TLD method 

accurately estimates the β value is dependent on the threshold. We also note that Fig. A6 

and Fig. 3 are mirror-images of each other, where the difference between the two is that 

the mean R increases along the abscissa in Fig. 3 and the threshold increases along the 

abscissa in Fig. A6. SR increases with the increasing fraction of non-precipitating points. 

Sf, in both cases, determines the trend of SR. SI, on the other hand, display different 

behaviors in the two figures. SI in Fig. A6 distinctly increases with decreasing fraction of 

non-precipitating points; SI in Fig. 3 does not display such a clear increase. This suggests 

that the mechanism causing the behavior of the susceptibility in Fig. 3 is not quite 

identical to that in Fig. A6, though a large part may be due to it.  

From the above analysis alone, we cannot disregard the possibility that in Fig. 3, 

the underlying dependence between aerosols and precipitation is constant and the 

decreasing trend of the susceptibility is solely because the fraction of non-precipitating 

clouds is decreasing. When none of the three methods above always give an unbiased 

estimate of β, the utility of SR, as calculated using TLD, is found when SR is taken as the 

sum of its parts Sf and SI. It informs us about how both the rate and the frequency of 

precipitation depends upon aerosol concentration. SI, which is more akin to the 

susceptibilities reported in previous studies, quantifies the effect of aerosols on how 

intense a cloud precipitates. Sf, on the other hand, is a metric that quantifies the effect of 

aerosols on the drizzle fraction, which is identical to the probability of precipitation when 

we include f = 0. L’Ecuyer et al. (2009) found that higher values of aerosol index, which 

serves as a proxy for columnar concentration of CCN-sized aerosols (Nakajima et al., 

2001), tended to decrease the probability of precipitation. They also found that there is no 

unique liquid water path threshold above which a cloud can be assumed to be 

precipitating. This interesting finding runs counter to the idea that there is a threshold 

cloud liquid water path above which all clouds precipitate. Sf in this study attempts to 

quantify that same effect of aerosol concentrations on the probability of precipitation 

from the aircraft data from VOCALS. SR in this study attempts to combine the effect of 

aerosol concentrations have in determining both the intensity and the probability of 

precipitation. 
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