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Table 1. Meteorological variables used for PM2.5 correlation analysis.a 7 

Variable Meteorological parameter  

x1 Surface air temperature (K) b 

x2 Surface air relative humidity (%) b 

x3 Surface precipitation (mm d-1) 

x4 Geopotential height at 850 hPa (km) 

x5 Sea level pressure tendency dSLP/dt (hPa d-1) 

x6 Surface wind speed (m s-1) b, c 

x7 East-west wind direction indicator cosθ (dimensionless) d 

x8 North-south wind direction indicator sinθ (dimensionless) d 

a. Assimilated meteorological data with 0.5°×0.667° horizontal resolution from the NASA 8 

Goddard Earth Observing System (GEOS-5). All data used are 24-h averages, and are 9 

deseasonalized and detrended as described in the text. 10 

b. At 6 m above the surface (0.994 sigma level). 11 

c. Calculated from the horizontal wind vectors (u, v). 12 

d. θ is the angle of the horizontal wind vector counterclockwise from the east. Positive values 13 

of x7 and x8 indicate westerly and southerly winds, respectively. 14 

15 
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Table 2. Dominant meteorological modes for regional PM2.5 variability. 1 

US Region PM2.5 variability explained a PC regression coefficient γj b Description c 

EPA-AQS GEOS-Chem EPA-AQS GEOS-Chem 

Northeast 17% 21% -0.31 -0.33 Cold front 

associated with 

mid-latitude 

cyclone 

Midwest 29% 25% -0.41 -0.38 

Southeast 31% 15% -0.42 -0.29 

Pacific NW 36% 45% -0.35 -0.39 Synoptic-scale 

maritime inflow California  26% 13% -0.28 -0.21 

a. From Eq. (5). 2 

b. From Eq. (4). 3 

c. For positive phases of the dominant PC. 4 
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Figure 1. US regions used to study the correlations of PM2.5 with meteorological modes of 2 

variability. Also shown are the EPA Air Quality System (AQS) PM2.5 monitoring sites in 3 

2006, including total PM2.5 monitors using the Federal Reference Method (FRM) and 4 

chemical speciation monitors from the SLAMS + STN networks. 5 
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Figure 2. Simulated (2005-2007) and observed (2004-2008) relationships of nitrate PM2.5 with 2 

surface air temperature, as measured by the multiple linear regression coefficient β1* in Eq. 3 

(2) with units of µg m-3 K-1. Simulated relationships are shown for three different GEOS-4 

Chem model resolutions: 0.5°×0.667°, 2°×2.5° and 4°×5°. Observations are averaged over the 5 

2°×2.5° grid. Values are for deseasonalized and detrended variables and are only shown when 6 

significant with 95% confidence (p-value < 0.05). 7 
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Figure 3. Relationships of sulfate, nitrate, and organic carbon (OC) PM2.5 concentrations with 2 

surface air temperature. The left and middle panels show the observed (2004-2008) and 3 

simulated (2005-2007) standardized regression coefficients β1 in Eq. (1). Values are for 4 

deseasonalized and detrended variables and are only shown when significant with 95% 5 

confidence (p-value < 0.05). The right panels show the direct effects of temperature on 6 

sulfate, nitrate and OC as determined by applying a global +1 K temperature perturbation in 7 

the GEOS-Chem simulation, and normalizing the results to the standard deviations of 8 

deseasonalized concentrations and temperatures to allow direct comparison to β1. 9 
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Figure 4. Same as Fig. 3 but for relative humidity (RH). The right panels show the direct 2 

effects of RH as determined by applying a global -1 % RH perturbation in the GEOS-Chem 3 

simulation. 4 
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Figure 5. Relationships of total PM2.5 concentrations with precipitation and wind speed, 2 

expressed as the standardized regression coefficients β3 and β6, respectively. The left panels 3 

show observations (2004-2008) and the right panels model values (2005-2007). Values are for 4 

deseasonalized and detrended variables and are only shown when significant with 95% 5 

confidence (p-value < 0.05). 6 
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Figure 6. Dominant meteorological mode for observed PM2.5 variability in the Midwest 2 

inferred from the principal component analysis. Top panel: time series of deseasonalized 3 

observed total PM2.5 concentrations and the dominant meteorological mode or principal 4 

component (PC) in January 2006. Bottom left: composition of this dominant mode as 5 

measured by the coefficients αki in Eq. (3). Meteorological variables (xk) are listed in Table 1. 6 

Bottom right: synoptic weather maps from the National Center for Environmental Prediction 7 

(NCEP) (http://www.hpc.ncep.noaa.gov/dailywxmap/) for 28 and 30 January, corresponding 8 

to maximum negative and positive influences from the principal component. The Midwest is 9 

delineated in orange. 10 
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Figure 7. Same as Fig. 6 but for California. 2 
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Figure 8. Frequency spectrum of the daily time series of the dominant meteorological mode 2 

(cyclone/frontal passages) in the US Midwest (Fig. 1) for 1999-2010 using NCEP/NCAR 3 

Reanalysis 1 data. The thin line shows the fast Fourier transform (FFT) spectrum and the 4 

thick line shows the smoothed spectrum from a second-order autoregressive (AR2) model. 5 

The vertical dashed line indicates the median AR2 spectral frequency used as a metric of 6 

cyclone frequency. 7 
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Figure 9. Anomalies of annual mean PM2.5 concentrations and median cyclone periods for the 2 

US Midwest (Fig. 1). 3 
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Figure 10. Probability distribution for the change in median cyclone frequency in the US 2 

Midwest between 1996-2010 and 2036-2050, and the corresponding change in annual mean 3 

PM2.5 concentrations. Results are from five realizations of the NASA Goddard Institute for 4 

Space Studies (GISS) GCM III applied to the IPCC A1B scenario of greenhouse gas and 5 

aerosol forcings. 6 


