1		<u>REVISED</u>	
2	Title Page		
3 4	Date of submission	April 2, 2011	
5 6	Type of contribution	Regular paper	
7 8	Number of text pages	21	
9 10 11 12	Number of Figures	05	
12 13 14 15 16 17	Title: Trace gas fluxes o exposed to elevate	f CO ₂ , CH ₄ and N ₂ O in a permanent grassland soil ed CO ₂ in the Giessen FACE study	
18 19 20	Names of Authors:	M. Kaleem Abbasi ^{1,2} * and Christoph Müller ^{2,3}	
21 22 23 24 25	Postal addresses of authors:	¹ Department of Soil and Environmental Sciences University of Azad Jammu and Kashmir, Faculty of Agriculture, Rawalakot Azad Jammu and Kashmir Pakistan	
26 27 28 29 30 31		² Department of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany ³ School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4	
32 33 34 35	Short title:	Gaseous emissions under elevated CO ₂	
36 37 38 39 40 41 42	Correspondence address	M. Kaleem Abbasi Department of Soil and Environmental Sciences, University of Azad Jammu and Kashmir, Faculty of Agriculture, Rawalakot Azad Jammu and Kashmir-Pakistan Tel.: +92 (0) 5824 960046 Fax: +92 (0) 5824 960004 E-mail: kaleemabbasi@yahoo.com	

43 Abstract

44 Long-term field observations showed that N₂O fluxes observed shortly after N application were not 45 significantly affected by elevated CO₂ in the Giessen Free Air Carbon dioxide Enrichment (FACE) study. To further investigate this unexpected result a ¹⁵N tracer study was carried out under controlled 46 conditions where in parallel treatments either the NH_4^+ pool (${}^{15}NH_4NO_3$) or the NO_3^- pool ($NH_4^{15}NO_3$) 47 was enriched with ¹⁵N. Fluxes of CO₂, CH₄, and N₂O as well as the ¹⁵N enrichment of the N₂O were 48 49 measured. Denitrifying Enzyme Activity (DEA), total denitrification (N₂+N₂O) and N₂-to-N₂O ratios 50 were quantified in separate experiments. Over the 57 day incubation, N₂O fluxes averaged 0.090 ng $N_2O-N g^{-1} h^{-1}$ under ambient and 0.083 ng $N_2O-N g^{-1} h^{-1}$ under elevated CO_2 (not significantly 51 52 different). The N₂O production processes were identified by a two-source model. Results showed that 53 N₂O must have also been produced by a third source – possibly related to organic N transformation – 54 which was stimulated by elevated CO₂. Soil CO₂ fluxes were approximately 20% higher under elevated 55 CO₂ than soil from ambient but the differences were not significant. CH₄ oxidation rates were on average -1.75 ng CH₄-C g⁻¹ h⁻¹ in the elevated and -1.17 ng CH₄-C g⁻¹ h⁻¹ in the ambient indicating 56 that elevated CO₂ increased the CH₄ oxidation by 49% compared to ambient CO₂ under controlled 57 58 conditions. N fertilization increased CH_4 oxidation by 3-fold in both CO_2 treatments. CO_2 did not have 59 any significant effect on DEA while total denitrification and N_2 -to- N_2O ratios increased by 36 and 33%, 60 respectively. The results indicate that shortly after N application elevated CO₂ must have stimulated 61 both the N₂O production and reduction to N₂ to explain the increased N₂-to-N₂O ratio and at the 62 same time explain the non-responsiveness of the N₂O emissions. Thus, the observed variation of the 63 CO₂ effect on N₂O emissions throughout the year is possibly governed by the dynamics of the N₂O 64 reductase activity.

66 **1** Introduction

The level of earth's atmospheric carbon dioxide (CO₂) concentration has risen from ~280 μ L L⁻¹ at the 67 start of the industrial revolution to greater than 385μ L L⁻¹ today, and is expected to exceed 700μ L L⁻¹ 68 69 by the end of this century (IPCC, 2007). Elevated atmospheric CO_2 increases the plant productivity 70 and aboveground biomass resulting in a substantial allocation of carbon (C) to belowground that may 71 lead to a general increase in C inputs in soil. This additional C is likely to fuel belowground microbial 72 processes and may alter both C and N cycling in soil. Any change in C and N flow and transformation 73 will affect the soil-atmosphere exchange of biogenic trace gases. The accumulation of greenhouse 74 gases (GHG) in the atmosphere does alter the earth's radiative balance and is likely responsible for 75 climate change (Watson et al., 1992; IPCC, 2007; Smith et al., 2010). Although CO₂ is by far the most 76 abundant greenhouse gas, N₂O and CH₄ are important atmospheric trace gases because of their 77 unique radiative properties and their long residence time in the atmosphere resulting in global 78 warming potential of 296 and 21 times that of CO_2 , respectively (IPCC, 2007). In addition, N_2O and 79 CH₄ participate in other atmospheric reactions (e.g. stratospheric ozone depletion) of global 80 environmental significance. Their concentration in the atmosphere is continuously rising and since 81 the pre-industrial era it has increased by 15 and 145%, respectively (Watson et al., 1992; Houghton et 82 al., 1996; IPCC, 2007).

Soil plays a major role in the global accounting of C not only due to large amount of C stored in soil, but also since soil contribution to the annual flux of CO₂ to the atmosphere is 10 times that contributed by fossil fuel burning (Post et al., 1990). Respiration fluxes of CO₂ in grassland ecosystems under elevated CO₂ varied from a 10% decline to a 162% increase with a mean response of 51% increase (Zak et al., 2000). Reich et al. (2001) found a 13% greater CO₂ fluxes per unit mass under elevated atmospheric CO₂. Similarly, Smith et al. (2010) reported that soil CO₂ flux in an arable

soil was significantly greater under elevated CO_2 being in the range of 15% to 50% compared to ambient CO_2 .

91 In addition to soil CO₂ flux, elevated atmospheric CO₂ can affect other greenhouse and 92 reactive trace gases i.e. CH₄ and N₂O and studies so far provide contradictory results. Ineson et al. 93 (1998) measured fluxes of N₂O, CH₄ and CO₂ from soils under ambient and elevated CO₂ at the Swiss 94 FACE experiment in plots of Lolium perenne and reported increased N₂O emissions by 27% under 95 elevated CO₂ while ambient plots oxidized consistently more CH₄ than the elevated plots indicating 96 that elevated CO₂ may result in the inhibition of CH₄ oxidation. Cheng et al. (2006) reported a 58% 97 increase in CH₄ flux from rice paddies under elevated CO₂. This increase was attributed to greater 98 root exudates and numbers of tillers, resulting in more surface area for the release of CH₄ to the 99 atmosphere (Ziska et al., 1998; Inubushi et al., 2003). In another study, Arnon and Bohlen (1998) and 100 Baggs et al. (2003a) reported that both N_2O and CO_2 fluxes under elevated CO_2 were 2–3 times higher 101 than those observed under ambient CO₂. This increase was attributed to increased belowground C 102 allocation in elevated CO₂ providing energy for denitifiers or that there is increased O₂ consumption 103 under elevated CO₂. However, Mosier et al. (2002) conducted an open-top-chamber CO₂ enrichment 104 study in the Colorado shortgrass steppe and reported that even though both C_3 and C_4 plant biomass 105 increased and soil moisture content was typically higher under elevated CO₂, none of the trace gas 106 fluxes were significantly altered by CO₂ enrichment over the 43 months period of observation. 107 Similarly, N₂O fluxes were not affected by elevated CO_2 in a paddy, arable and grassland fields (Cheng 108 et al., 2006; Smith et al., 2010; Dijkstra et al., 2010). However, Kettunen et at. (2006) showed that 109 elevated CO₂ increased both N₂O flux from soil and soil water content.

110 A significant increase of N₂O emissions under elevated atmospheric CO₂ has been observed in 111 the Giessen FACE study (Kammann et al., 2008). The more than 9-year data set allowed for the first 112 time the investigation of different time periods throughout the year. Unexpectedly, N₂O stimulation 113 by elevated CO₂ in this N limited grassland ecosystem occurred throughout the vegetation period 114 when mineral N supply was limited, while in the period following N application no significant difference in N₂O emissions was detected. Differences in N cycling and/or stimulation of different 115 microbial groups under elevated CO₂ were made responsible for the observed results. A ¹⁵N tracing 116 117 study with soil taken from the Giessen FACE study showed that under elevated CO₂ the turnover of N 118 changed towards a higher N cycling speed (Müller et al., 2009). To explain the N_2O response to CO_2 it 119 is particularly important to study in detail the periods following N fertilizer application because these 120 are times when high N₂O emissions occur and when most of the annual N₂O is produced. Thus the 121 objective of this study was to determine the extent to which elevated CO_2 concentration may change 122 soil-atmosphere exchange of GHG (CO₂, CH₄ and N₂O) from grassland soil that had been under the 123 influence of elevated CO_2 for more than 6 years.

124

2 Material and Methods

125 **2.1** Site description

The grassland site (Environmental Monitoring Climate Impact Research Station) is located 50°32'N 126 and 8°41.3/E at an elevation of 172 m above sea level near Giessen, Germany. The semi-natural non-127 128 grazed grassland has been managed extensively as a meadow for at least 50 years, fertilized with 40 kg N ha⁻¹ annum⁻¹ as calcium ammonium nitrate and mown twice per year. The annual mean 129 130 precipitation and temperature (last 35 years) are 644 mm and 9.9°C. The vegetation, an 131 Arrhenatheretum elatioris Br.Bl. Filipendula ulmaria sub-community, is dominated by 12 grass 132 species, 2 legumes and 15 non-leguminous herbs. The soil is classified as a Fluvic Gleysol and has a 133 sandy clay loam texture over a clay layer, with a mean C and N content of 4.5% and 0.45%, 134 respectively and a pH of 6.2 (Müller et al., 2009, note the organic C content was not significantly different between the two CO_2 treatments, see Lenhart (2008). In May 1998, the long-term Giessen FACE system was established (Jäger et al., 2003).

137 **2.2** Soil sampling and experimental set-up

138 Soil for the experiments reported here was sampled from the top 12 cm of the old grassland soil. The 139 soil was taken from the ambient and elevated FACE rings where also soil had been sampled for the ¹⁵N tracing study described by Müller et al. (2009) (see this publication for more details). Fresh soil 140 141 was sieved (5 mm) and sub-samples were taken for determining initial gravimetric moisture content 142 at 105°C for 24 h. The soil was stored for a week at 4°C before the start of the incubation experiment. 143 A set of twelve jars (Weck[®]) was arranged according to the treatments: i) two soils i.e. elevated CO₂ soil and ambient soil; ii) two N sources i.e. ¹⁵NH₄NO₃ or NH₄¹⁵NO₃ (60 atom%) with three repetitions 144 145 per treatment. Soil portions of 200 g (fresh wt. equivalent) were weighed out and filled into each jar. The soil was adjusted to a water content of 0.40 g H_2O g⁻¹ dry soil with distilled water and incubated 146 147 for a week at 20 °C prior to fertilizer application. Both the soils (either from plots under elevated or ambient CO₂) were labelled with ¹⁵N at a rate of 100 µg N g⁻¹ fresh soil in 10.5 mL per jar using a 148 149 seven-needle applicator to assure an even distribution of the applied N in soil. The resulting water content was on average 0.45 g H_2O g⁻¹ dry soil. The jars were covered with parafilm that was 150 perforated with a needle to ensure natural gas exchange and incubated at 20 ⁰C. Samples were 151 152 weighed at regular intervals during the incubation; water loss under present experimental set-up was 153 almost negligible (~0.2 mL).

154 **2.3** Gas samplings and measurements

In total, 13 gas samplings were carried out at day 0 (shortly after N application) and 1, 2, 4, 9, 14, 18,
24, 29, 35, 39, 48 and 57 days after N application. Four samplings were carried out (3, 4, 5, 7 days)
before fertilizer application (control). At each sampling time the jars were closed for 0.5 to 2 hours

158 with a glass lid. Gas samples were taken through a septum in the lid with 60 ml disposable syringes at 159 time zero and at the end of the incubation period. A 12 ml sub sample at the end of the incubation samples were transferred to evacuated exetainer (Labco, England) for ¹⁵N analysis. Gas samples were 160 161 analyzed on a gas chromatograph equipped with ECD (N₂O, CO₂) and FID (O₂, CH₄) detector by 162 standard gas chromatographic method (Mosier and Mack, 1980). The gas chromatograph (Shimadzu 14a) was equipped with a 63 Ni-electron capture detector ECD for N₂O and CO₂ (oven, valve and 163 164 detector temperatures were operated at 65, 100 and 280°C) and flame ionization detector (FID) for O_2 and CH_4 estimation. The ¹⁵N excess in N₂O was determined in separate samples by isotope-ratio 165 166 mass-spectrometry (Stevens et al., 1993). The determination of the relative contribution of denitrification to the overall N₂O flux was calculated based on the Method by Stevens et al (1997). 167 Briefly, the procedure assumes that N₂O is produced either by nitrification (NH₄⁺ oxidation) and/or 168 169 denitrification (NO₃⁻ reduction) using the following equation: $d = (a_m - a_n)/(a_d - a_n)$ with d, the fraction derived from the denitrification pool; (1-d) = fraction derived from nitrification, a_d , ¹⁵N fraction of the 170 NO₃⁻ pool; a_n , ¹⁵N fraction of the NH₄⁺ pool, a_m , ¹⁵N fraction of the N₂O (mixture). 171

172 If the calculation results in a negative value then the ¹⁵N abundance of the N₂O must have 173 been lower than the ¹⁵N abundance from either the NO_3^- or the NH_4^+ pool. Thus providing an 174 indication that N₂O was produced by a third process that is not associated with the turnover of NH_4^+ 175 and/or NO_3^- (see also, Rütting et al., 2010).

176 **2.4 Denitrification Enzyme activity (DEA)**

177 A set of twelve flasks (Brand) per sampling date (total of 8 sets) was arranged according to the 178 treatments: i) two soils i.e. elevated CO_2 soil and ambient soil; ii) two C_2H_2 levels ($-C_2H_2$; $+C_2H_2$) with 179 three repetitions per treatment. Acetylene was used to inhibit the reduction of N_2O to N_2 during 180 denitrification and thus allowing estimation of total denitrification by measurement of the

181 accumulated N₂O (Abbasi and Adams, 2000a). Prior to DEA analysis, twenty grams of soil at a moisture content of 0.41 g H₂O g⁻¹ dry soil was pre-incubated at 20°C for 7 days after adding 100 μ g N 182 g^{-1} fresh soil (as NH₄NO₃) following experiment 1. DEA analysis was carried out in 250 mL flasks 183 184 (Brand) with a septum fitted in the lid for gas sampling, using an anaerobic slurry technique as 185 described by Müller et al. (2002). At the start of the assay 50 mL of a nitrate-glucose solution were applied to each flask resulting in concentrations of 50 μ g NO₃⁻ –N g⁻¹ (as KNO₃) and 300 μ g C g⁻¹ soil (as 186 187 glucose). The bottles were immediately closed, evacuated and the headspace flushed (to atmosphere pressure) with pure N₂ with a double needle. Each evacuation and/or flushing lasted for 2 min and 188 189 the internal atmosphere did not contain detectable oxygen, as confirmed by gas chromatography. In 190 C₂H₂ treated flasks, 10% of headspace gas was removed and replace by adding 10 mL of C₂H₂ with a 191 syringe and internal pressure was equilibrated to atmospheric pressure. The samples were placed at 192 20 °C on a rotary shaker at 120 rmp for a total of 40 min. The headspace atmosphere was removed 193 (first sample) with 60 mL gas-tight syringes at 20 min. The extracted gas after the first sample was 194 replaced by the same amount of N₂. Following continuous shaking, a second sample was taken after 195 40 min. Gas samples were analyzed for O₂, CH₄, CO₂, and N₂O on a gas chromatograph (GC) equipped 196 with an FID and ECD detector (Mosier and Mack, 1980). DEA was calculated as the difference in N_2O 197 concentration increase during a 20 min incubation (40-20 min), accounting for bottles, soil, media 198 and water volume. The concentrations of the sampling were adjusted for dissolved gas in soil solution 199 using the Bunsen coefficient (Moraghan and Buresh, 1977).

200 **2.5** Statistical analysis

Statistical analysis was carried out with Sigmaplot in combination with Sigmastat (version 3.1, SPSS,
Inc.). During the analysis test for normality and equal variance are carried out before running the
ANOVA and tests to determine significant differences via the Holm-Sidak test.

3. Results

205 **3.1** Effect of elevated atmospheric CO₂ on CO₂ emissions

Soil carbon dioxide fluxes before N application were 1.00–1.47 μ g CO₂–C g⁻¹ under ambient and 1.13– 206 207 1.42 under elevated CO₂ (Fig. 1). During 7 days samplings (average), the fluxes were 1.22 and 1.27 μg CO_2 -C g⁻¹ in ambient and elevated CO_2 soils, respectively showing a non-significant response of 208 elevated CO2. Application of N fertilizer did not alter the CO2 fluxes in both the soils: The maximum 209 210 fluxes occurred during the first 14 days and thereafter CO2 fluxes continuously decreased with incubation time. Over 57 days' sampling, CO₂ fluxes were on average 0.77 μ g CO₂–C g⁻¹ and 0.93 μ g 211 CO_2 -C g⁻¹ in ambient and elevated CO_2 soil, respectively indicating approximately 20% higher soil CO_2 212 213 emissions under elevated CO₂ than soil from ambient CO₂ but the differences were not significant 214 (p>0.05).

215 **3.2** Effect of elevated atmospheric CO₂ on CH₄ fluxes

Net CH₄ oxidation was observed in all samplings before and after N application (Fig. 1). The CH₄ 216 oxidation rates before N application were -0.29 to -0.34 ng CH₄-C g⁻¹ h⁻¹ in ambient and -0.46 to -217 0.76 ng CH_4 -C g⁻¹ h⁻¹ in elevated CO_2 soil indicating about a 22% higher oxidation rate in soil that had 218 219 been under elevated CO₂. After N application, the rate of CH₄ oxidation increased from-0.21 to -3.1 ng CH₄–C g⁻¹ h⁻¹ in ambient and -0.45 to –4.26 ng CH₄–C g⁻¹ h⁻¹ in elevated CO₂. Maximum oxidation 220 221 rates were observed 1 day after fertilizer application and increased steadily till 18-24 days of 222 incubation. During this period the oxidation rates in the ambient control were -1.19 to -3.07 ng CH₄-C g⁻¹ h⁻¹ while under elevated CO₂ the rates were -1.79 to -4.18 ng CH₄-C g⁻¹ h⁻¹. After day 24, the 223 224 oxidation potential of soil decreased consistently to background level till the end of the incubation. 225 On average over the incubation time, CH₄ oxidation rates before N application were –0.40 ng CH₄–C g⁻ ¹ h⁻¹ and became –1.46 ng CH₄–C g⁻¹ h⁻¹ after N application indicating a substantial increase in CH₄ 226

oxidation with N fertilization. Average rates over sampling dates revealed that CH_4 oxidation in elevated CO_2 soil was -1.75 ng CH_4 -C g⁻¹ h⁻¹ while the CH_4 oxidation in the ambient soil was -1.17 ng CH_4 -C g⁻¹ h⁻¹ indicating a 49% higher CH_4 oxidation under elevated compared to ambient CO_2 .

230 **3.3** Effect of elevated atmospheric CO₂ on N₂O emissions

In the week before fertilizer N application N₂O emissions were 0.019 ng N₂O–N g⁻¹ h⁻¹ in the ambient 231 and 0.023 ng N₂O–N g^{-1} h⁻¹ in the elevated CO₂ soils (Fig. 2). N₂O fluxes did not show any consistent 232 233 pattern with time. Likewise, N₂O fluxes did not differ between elevated CO₂ and ambient treatments 234 and both showed similar fluxes. After N application the flux rates increased substantially and reached 0.280 and 0.240 ng N₂O-N g⁻¹ h⁻¹ at day 0. Over the 57 days, N₂O fluxes averaged 0.090 ng N₂O-N g⁻¹ 235 h^{-1} in ambient and 0.083 ng N₂O–N g⁻¹ h^{-1} in elevated CO₂ (not significantly different) resulted in a 3-236 to 4-fold increase after N application. The highest fluxes of 0.281 and 0.240 ng N₂O-N g^{-1} h⁻¹ were 237 238 measured from ambient and elevated CO₂ treatments, respectively just after N application (day 0). 239 The increase in emissions was short-lived (3-4 days) with fluxes returning to 'background' levels 30 240 days after N application.

241 **3.4** ¹⁵N enrichment of the N_2O

The ¹⁵N enrichment of the N₂O in the soil increased one day after N fertilizer application together 242 243 with the increase in N₂O concentrations (Fig. 3). Ten days after fertilizer N application, the 244 enrichment of the N₂O was close to the enrichment in the applied N, indicating that the observed N₂O originated from the applied fertilizer. Comparing the ¹⁵N enrichments in the N₂O from the ambient 245 246 and elevated CO₂ soils, no significant difference was observed between the two soils labeled either with $NH_4^{15}NO_3$ or ${}^{15}NH_4NO_3$. The ${}^{15}N$ enrichment of the N₂O in the treatments where NO₃⁻ was 247 labelled, were relatively higher than the treatment where NH4⁺ was labeled. The contribution of 248 249 denitrification for N₂O production estimated by the 2-pool model of Stevens et al. (1997) indicated on

day 1 after ¹⁵N application a contribution of 16 and 32% under ambient and elevated CO_2 respectively. Negative values after 15 days showed that apart from N₂O contribution related to NH₄⁺ and NO₃⁻ turnover a third process must have been in operation which was responsible for a dilution of the ¹⁵N N₂O abundance below the ¹⁵N abundance of NH₄⁺ and NO₃⁻.

254 **3.5**

Denitrification enzyme Activity, total denitrification and ratio of N₂-to-N₂O

255 The measurement of denitrification enzyme activity (DEA) by measuring N₂O emissions during short 256 incubation periods (anaerobic), total denitrification (N_2O+N_2) and N_2/N_2O ratios was carried-out from 257 both CO₂ treatments (Fig. 4). Before N application, one measurement was taken and DEA rates were 0.137 in ambient and 0.172 μ g N₂O-N g⁻¹ h⁻¹ in elevated CO₂ soil while total denitrification (N₂O+N₂) 258 was 0.456 in ambient and 0.514 μ g N₂O-N g⁻¹ h⁻¹ in elevated CO₂ soil. The N₂/N₂O ratios were 3.33 for 259 260 ambient and 2.99 for elevated CO₂ treatment. After N application, DEA rates (both N₂O and N₂O+N₂) 261 increased in the first two samplings (day 0 and 1) but thereafter the rates continuously declined over 262 time. DEA rates (N₂O fluxes) in the elevated CO₂ treatment were on average (20 days incubation) 16 % higher (0.149 vs 0.128 μ g N₂O-N g⁻¹ h⁻¹) than N₂O fluxes in the ambient CO₂ treatment. But the 263 264 values of both treatments across different sampling days were not-significantly different. Total 265 denitrification rates (N₂O+N₂) indicated significantly higher fluxes (36%) in elevated CO₂ treatment 266 than in ambient CO₂ ($P \leq 0.05$). Similarly, the N₂ production was consistently higher under elevated 267 CO₂ treatment and on average 54% higher than the N₂ production in the ambient CO₂ treatment (Fig. 268 5). The N_2/N_2O ratio was 1.02 in the ambient and 1.36 in the elevated CO_2 treatment showing a 33% 269 higher ratio under elevated CO₂. Contribution of d (NO₃⁻reduction) to total N₂O production at 270 ambient and elevated CO₂ is shown in Fig. 5. Results indicated that shortly after N application N₂O 271 production and reduction to N_2 substantially increased both in ambient and elevated CO_2 and the

272 emissions decreased sharply with time. Elevated CO_2 stimulated both the N₂O production and 273 reduction to N₂ compared to ambient CO_2 .

274 **4** Discussion

275 **4.1. CO**₂ production and methane oxidation

276 Over the 57-day period of observation, CO₂ flux between the ambient and elevated CO₂ treatments 277 was not significant suggesting that CO₂ flux was not affected by elevated atmospheric CO₂. This was 278 unexpected because in the field 25% higher CO₂ fluxes were observed under CO₂ enrichment possibly 279 caused by the enhanced biomass and root biomass production and general higher activity under 280 elevated CO₂ (Kammann et al., 2008). In this laboratory study soil from both ambient and elevated 281 CO₂ treatments was incubated under similar conditions thus, any discrepancy between laboratory and field studies can be associated with plant effects which was also confirmed by ¹³C studies in the 282 283 FACE rings (Lenhart, 2008). Higher CO₂ fluxes under elevated CO₂ were also be observed in a number 284 of other studies (Hungate et al. 1997; Arnone and Bohlen, 1998; Ambus and Robertson, 1999; Reich 285 et al., 2001; Smith et al., 2010). However, there are also reports showing that ecosystem respiration 286 $(CO_2 \text{ flux})$ was not affected by elevated CO_2 (lneson et al., 1998; Mosier et al., 2003). Hu et al. (2001) 287 suggested that in the long term, soil microbial decomposition is slowed under elevated CO₂ because 288 of N limitation and CO₂ production is either not affected or limited. In our study it was not the N 289 limiting factor affecting CO₂ production in elevated CO₂ soils but some other unknown control factors 290 which affected soil respiration.

Throughout the course of the experiment, the CH_4 oxidation potential was significantly greater in the elevated CO_2 (49%) than the ambient CO_2 . These results were in contrast to the earlier studies where CH_4 consumption i.e. oxidation was lowered by an average of $17\mu g CH_4-C m^{-2} h^{-1}$ under elevated CO_2 (Ineson et al., 1998), more oxidation in ambient than elevated CO_2 soil (Mosier et 295 al., 2003), or no effect of elevated CO₂ on CH₄ oxidation was observed (Mosier et al., 2002; Smith et 296 al., 2010). Most of these studies were conducted under field conditions where two possibilities may 297 tend to increase CH_4 production and decrease CH_4 oxidation i) increased soil moisture under elevated 298 CO_2 constrain and slow down the diffusive CH_4 (and O_2) transport from the atmosphere to the water-299 film covered microbial population and therefore inhibit CH₄ oxidation (Dorr et al., 1993), ii) increased 300 inhibition of CH₄ oxidation under elevated CO₂ or increased CH₄ production due to greater C 301 availability in the soil under elevated CO₂ (van Kessel et al., 2000). In our study similar atmospheric 302 conditions to both ambient and elevated CO₂ soils in the laboratory were maintained so that 303 conditions for gas diffusion in the two soils were similar. Thus, the results from the study showed that 304 the mechanism responsible for inhibiting CH₄ oxidation under elevated CO₂as observed under field 305 conditions, were not operative under laboratory conditions.

306 Average net CH₄ oxidation rates after N application were 3-fold compared to fluxes before N 307 application. These results are in contrast to earlier findings that the application of NH_4^+ reduced CH_4 308 oxidation rates almost immediately (forest soils, Steudler et al., 1989; short-grass steppe, Mosier et 309 al. 1991; laboratory incubations, Hütsch, 1998; Tlustos et al., 1998; Ullah et al., 2008). The reduced 310 CH₄ oxidation in the field was attributed to suppression in the population growth and lower 311 abundance of methane oxidizers and to an inhibition of de-novo enzyme synthesis (Kolb et al., 2005). 312 The higher oxidation rates by N addition in the present study are difficult to explain but they show 313 that either the activity of methanotrophic bacteria was enhanced under elevated CO₂ possibly 314 increased methanogenesis under conditions when mineral N was available (Kammann et al., 2001). 315 Therefore, the kinetics of CH₄ oxidation/production is complex and their dependence on soil N status 316 or moisture are crucial for an accurate prediction of net CH₄ oxidation.

318

4.2 N₂O emissions

319 The present investigation indicated a substantial increase in N_2O emissions after N application 320 in both CO₂ treatments. Furthermore, results indicated that N₂O emissions in both the treatments 321 (ambient and elevated) appeared to be limited by available N as fluxes in N fertilized soils increased 322 3-to 4-fold. Application of fertilizer N had a direct effect on N_2O production by supplying N for both 323 nitrification and denitrification (e.g. Mosier, 1994; Clayton et al., 1997; Abbasi and Adams, 2000b) 324 which may occur simultaneously (Abbasi and Adams, 2000a,b). Calculations of the contribution of 325 denitrification on the total N₂O was carried out according to the method of Stevens et al. (1997). 326 Results indicated that in the first 8 days of the experiment (when calculated contributions were still 327 positive) the average contribution of denitrification to N_2O production was 17% higher under 328 elevated compared to ambient CO₂ (i.e. ambient CO₂: 8% and under elevated CO₂: 25%) (Fig. 5). This 329 method is based on the assumption that only nitrification and dentirification contribute to the observed N₂O production. However, as shown by Rütting et al. (2010) via a ¹⁵N tracing study in the 330 331 New Zealand grassland FACE not only nitrification and denitrification but also heterotrophic 332 processes, metabolizing organic N, may contribute to N_2O production. This is also the reason for 333 negative values found in this study from day 15–20 onwards (Fig. 5), which occur in situation when the N₂O ¹⁵N abundance is below the ¹⁵N abundance of NH_4^+ and NO_3^- , thus indicating that a third 334 335 source at natural or low abundance contributed to the N₂O emissions. Rütting et al. (2010) showed 336 that denitrification increased from 4.7% to 8% under elevated CO₂, a similar trend was observed in 337 our study.

338 The N₂O emissions observed before and after N application showed that elevated CO_2 did not 339 show any significant effect on N₂O fluxes, rates of fluxes (average) were almost similar. The pre-340 existing organic fractions and resulting differences in microbial activity and dynamics under elevated 341 CO₂ treatment (Kammann et al., 2008) could have had an effect on N₂O production but did not 342 contribute to higher N₂O fluxes under elevated CO₂. This finding is in line with Rütting et al. (2010) 343 who found no statistical evidence that elevated CO₂ stimulated N₂O production in grassland soil 344 exposed to elevated CO_2 for 10 years. Similarly, Barnard et al. (2005) concluded from a review of 20 345 experiments that field N_2O fluxes were not altered by elevated CO_2 . However, in several studies it has 346 been shown that N_2O flux rates were increased by elevated CO_2 . Ineson et al. (1998) found 27% 347 higher N₂O emissions in grassland exposed to elevated CO₂. Similarly, in perennial grassland N₂O 348 fluxes under elevated CO₂ were double than those observed under ambient CO₂ (Arnone and Bohlen, 349 1998). In contrast, there are also reports that elevated CO_2 either did not alter N₂O fluxes, or even 350 reduced N₂O emissions (Hungate et al., 1997; Mosier et al., 2002, 2003; Welzmiller et al., 2008). 351 Baggs and Blum (2004) reported that the response of N₂O emissions to elevated CO₂ in grass swards 352 depend on the rate of N application. The response was non-significant at low rates while N_2O 353 emissions significantly increased under elevated CO₂ when high rates of N fertilizer were applied. 354 Observations in the Giessen FACE study were unexpected because enhanced N₂O emissions in the 355 elevated CO₂ treatment (vs ambient) were only observed during times of low N availability (Kammann 356 et al., 2008). After N fertilizer application N_2O emissions were not different between ambient and 357 elevated CO₂. As highlighted by Kammann et al. (2008) it is important to take the temporal dynamics 358 of N₂O emissions into account, which may identify time periods when N₂O emissions are significantly 359 higher and those which are not. Thus our results from the laboratory study and from other studies 360 are only representative for certain time periods and are not representative of general response 361 patterns.

362 N₂O production and its concentration in atmosphere are linked to the soil N turnover 363 (mineralization, nitrification, denitrification) (Müller et al., 2009; Rütting et al., 2010). The net and 364 gross nitrification rates decreased while DEA (which is carried out under non-N limiting conditions) 365 did not show any significant increase under elevated CO₂ (Kammann et al., 2008). Thus the potential 366 for net N₂O production is not affected by elevated CO₂. Together with the increase in the contribution 367 of denitrification to the overall N₂O flux this result indicates that the N₂O reductase activity must have 368 been higher under elevated CO₂. Thus to confirm this, the N₂-to-N₂O ratio was determined under 369 optimum conditions for denitrification.

4.3 Total denitrification and N₂-to-N₂O ratio

371 Stimulation of denitrification and N_2 -to- N_2O ratios was also observed from the soil incubation 372 studies. However, apart from CO_2 the magnitude of emissions varies depending on type and timing of 373 inorganic fertilizer application, soil temperature, moisture content, soil type which will vary 374 throughout the year (Baggs et al., 2003a; Kammann et al., 2008).

375 Denitrification enzyme activity (DEA) was on average 16% higher in the elevated CO_2 than in 376 the ambient treatment but the difference between the two CO2 treatments was not significantly 377 different, suggesting that elevated CO_2 had only a limited effect on the quantity of active denitrifying 378 enzymes present in the soil. These results were in line with findings of Barnard et al. (2004) who also 379 reported very little response of DEA to CO_2 treatment in German grassland soils. However, the total 380 denitrification (N_2O+N_2) and the ratio of N_2 -to- N_2O were significantly higher (36% and 33%) under 381 elevated CO₂ compared to the ambient treatment. In general the ratio under elevated CO₂ (average 382 1.358) was similar to the ranges reported by Rolston et al. (1976) (0.1-40) but were lower than the 383 ratios (345 and 410) reported by Baggs et al. (2003b). Thus, under elevated CO₂ and under non-N 384 limiting conditions most likely a stimulation of the N₂O reductase occurred while under N limiting 385 conditions the higher N_2O emissions under elevated CO_2 may be related to a higher nirK/nosZ ratio 386 (nitrite/nitrous oxide reductase) as observed by Regan et al. (2011) for this soil. Thus our studies

387 provide indirect evidence that the kinetics of the reductase systems during denitrification in this 388 grassland soils are linked to the enhanced C input in connection to N-oxide availability (Dendooven et 389 al., 1994).

390 The maximum ratios in both the treatments were found shortly after N application at day 0 in 391 contrast to Baggs et al. (2003b) who found very low N₂-to-N₂O ratios till 8 days after fertilizer 392 application and proposed different times lag for N_2 and N_2O production. Our results are in line with 393 observations by Welzmiller et al. (2008) who also found constantly higher N_2 –to- N_2O ratios under 394 elevated CO₂. The higher N₂-to-N₂O ratios under elevated CO₂ emphasize the need for the 395 consideration of N₂ measurements in future denitrification studies and showed that despite a non 396 significant response to N₂O total denitrification may be altered. This might be due to a shift of the 397 denitrifier community under elevated CO₂ which exhibit different of the different reductase dynamics 398 during denitrification (Regan et al., 2011).

399 **5.** Conclusions

400 Most of the studies conducted so far have suggested higher N_2O emissions under elevated CO_2 while 401 very few reported no response. We observed no statistically significant CO_2 enrichment effect on 402 fluxes of CO_2 and N_2O in the laboratory study which was carried out under non-N limiting conditions. 403 However, the relative rate of N₂O from denitrification and the N₂-to-N₂O ratio changed under 404 elevated CO₂. Thus, elevated CO₂ appears to have an impact on the denitrification kinetics in this 405 grassland soil which was also confirmed by molecular studies of this soil (Regan et al., 2011) The 406 enhanced CH₄ oxidation under elevated CO₂ is surprising and shows that the potential for CH₄ 407 oxidation may increase in this soil. However, this effect was not observed in the field suggesting that 408 the combination of N application in combination with the environmental regulators (e.g. moisture, 409 temperature) which were held constant in the current study have an impact under field conditions.

410	The understanding of the stimulation of the microbial populations and activity of methanogenics and		
411	methanotrophic bacteria in response to changing substrate and abiotic factors are essential to predict		
412	the net CH_4 oxidation in terrestrial ecosystem under elevated CO_2 . A mechanistic understanding of		
413	changes in the N cycle and associated GHG production under elevated atmospheric CO_2		
414	concentrations is essential to predict GHG dynamics under climate change. Therefore, while this		
415	study does not directly contribute to a better understanding of atmospheric processes, it still can		
416	elucidate some of main drivers governing the exchange of GHGs between soil and the atmosphere		
417	which will aid the development of models that are aiming to simulate GHG dynamics.		
418	Acknowledgements		

- 419 This work was supported in part by a research fellowship (Georg Foster Fellowship) to Dr. M. Kaleem
- 420 Abbasi by the Alexander von Humboldt foundation, Germany.

421 **References**

- Abbasi, M. K., and Adams, W. A.: Estimation of simultaneous nitrification and denitrification in grassland soil associated with urea-N using ¹⁵N and nitrification inhibitor, Biol. Fertil. Soils, 31, 38–44, 2000_b.
- Abbasi, M. K., and Adams, W. A.: Gaseous N emission during simultaneous nitrification-denitrification
 associated with mineral N fertilization to a grassland soil under field conditions, Soil Biol.
 Biochem., 32, 1251–1259, 2000_a.
- 428 Ambus, P., and Robertson, G. P.: Fluxes of CH₄ and N₂O in aspen stands grown under ambient and 429 twice-ambient CO₂, Plant Soil, 209, 1–8, 1999.
- Arnone, J. A. III., and Bohlen, P. J.: Stimulated N₂O flux from intact grassland monoliths after two
 growing seasons under elevated atmospheric CO₂. Oecologia, 116, 331–335, 1998.
- Baggs, E. M., and Blum, H.: CH₄ oxidation and emissions of CH₄ and N₂O from *Lolium perenne* swards
 under elevated atmospheric CO₂., Soil Biol. Biochem., 36, 713–723, 2004.
- Baggs, E. M., Richter, M., Cadisch, G., and Hartwig, U. A.: Denitrification in grass swards is increased
 under elevated atmospheric CO₂, Soil Biol. Biochem., 35, 729–732, 2003b.

- Baggs, E. M., Richter, M., Hartwig, U. A., and Cadisch, G.:. Nitrous oxide emissions from grass swards
 during the eight years of elevated atmospheric pCO₂ (Swiss FACE), Global Change Biol., 9, 1214–
 1222, 2003a.
- Barnard, R., Barthes, L., Le Roux, X. L., Harmens, H., Raschi, A., Soussana, J. F., Winkler, B., and
 Leadley, P. W.: Atmospheric CO₂ elevation has little effect on nitrifying and denitrifying enzyme
 activity in four European grasslands, Global Change Biol., 10, 488–497, 2004.
- 442 Barnard, R., Leadley, P. W., and Hungate, B. A.: Global change, nitrification, and denitrification: a 443 review. Global Biogeochem. Cycles, 19, GB1007, doi:1010.1029/2004GB002282, 2005.
- Cheng, W., Yagi, K., Sakai, H., and Kobayashi, K.: Effects of elevated atmospheric CO₂ concentrations
 on CH₄, and N₂O emission from rice soil: An experiment in controlled-environment chambers,
 Biogeochem., 77, 351–373, 2006.
- Clayton, H., McTaggart, I. P., Parker, J., Swan, L., and Smith, K. A.: Nitrous oxide emissions from
 fertilised grassland: a two year study of the effects of N-fertiliser form and environmental
 conditions, Biol. Fertil. Soils, 25, 252–260, 1997.
- Dendooven, L., Splatt, P., Anderson, J. M., and Scholefield, D.: Kinetics of the denitrification process in
 a soil under permanent pasture. Soil Biol. Biochem., 26, 361–370, 1994.
- Dijkstra, F. A., Morgan, J. A., LeCain, D. R., and Follett, R. F.: Microbially mediated CH₄ consumption
 and N₂O emission is affected by elevated CO₂, soil water content, and composition of semi-arid
 grassland species, Plant Soil, 329, 269–281, 2010.
- Dörr, H., Katruff, L., and Levin, I.: Soil texture parameterization of the methane uptake in aerated soils, Chemosphere, 26, 697–713, 1993.
- Houghton, J. T., Meira, F. L. G., Treanton, L. B., Mamaty, I., Bonduki, Y., Griggs, D. J., and Callander, B.
 A.: Climate change 1995 the science of climate change: contribution of Working Group 1 to the
 2nd assessment report of the Intergovernmental panel on climate change. Cambridge University
 Press, Cambridge, 1996.
- Hu, S., Chapin, III F. S., Firestone, M. K., Field, C. B., and Chiariello, N. R.: Nitrogen limitation of
 microbial decomposition in a grassland under elevated CO₂, Nature, 409, 188–191, 2001.
- Hungate, B. A., Lund, C. P., Pearson, H. L., and Chapin, F. S.: Elevated CO₂ and nutrient addition alter N
 cycling and N trace gas fluxes with early season wet-up in a California annual grassland.
 Biogeochem., 37, 89–109, 1997.
- 466 Hütsch, B. W.: Methane oxidation in arable soil as inhibited by ammonium, nitrite and organic
 467 manure with respect to soil pH, Biol. Fertil. Soils, 28, 27–35, 1998.
- Ineson, P., Coward, P. A., and Hartwig, U. A.: Soil gas fluxes of N₂O,CH₄ and CO₂ beneath *Lolium perenne* under elevated CO₂: the Swiss free air carbon dioxide enrichment experiment, Plant Soil,
 198, 89–95, 1998.

- Inubushi, K., Cheng, W., Aonuma, S., Hoque, M., Kobayashi, K., Miura, S., Kim, H. Y., and Okada, M.:
 Effects of free-air CO₂ enrichment (FACE) on CH₄, emission from a rice paddy field, Global
 Change Biol., 9, 1458–1464, 2003.
- 474 IPCC, ed.: 2007. "Climate change 2007: The physical science basis Summary for policymakers," pp. 1475 21. IPCC Secretariat, Geneva, Switzerland, 2007.
- Jäger, H. J., Schmidt, S. W., Kammann, C., Grünhage, L., Müller, C., and Hanewald, K.: The University
 of Giessen free-air carbon dioxide enrichment study: description of the experimental site and
 of a new enrichment system, J. Appl. Bot., 77, 117–127, 2003.
- Kammann, C., Grünhage L., Jager, H. J., and Wachinger, G.: Methane fluxes from differentially
 manged grassland study plots: the important role of CH₄ oxidation in grassland with a high
 potential for CH₄ production, Environ Pollut., 115, 261–273, 2001.
- Kammann, C., Müller, C., Grünhage, L., and Jäger, H. J.: Elevated CO₂ stimulates N₂O emissions in
 permanent grassland, Soil Biol. Biochem., 40, 2194–2205, 2008.
- van Kessel, C., Horwath, W. R., Hartwig, U. A., Harris, D., and Lu[°]scher, A.: Net soil carbon input under
 ambient and elevated CO₂ concentrations: isotopic evidence after 4 years. Global Change Biol.,
 6, 435–444, 2000.
- Kettunen, R., Saamio, S., Martikainen, P. J., and Silvola, J.: Increase of N₂O fluxes in agricultural peat
 and sandy soil under elevated CO₂ concentration: concomitant changes in soil moisture,
 groundwater table and biomass production of *Phleum pretense*, Nutr. Cycl. Agroecosyst. 74,
 175–189, 2006.
- Kolb, S., Carbrera, A., Kammann, C., Kämpfer, P., Conrad, R., and Jäckel, U.: Quantitative impact of
 CO₂ enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil. Biol.
 Fertil. Soils 41, 337–342, 2005.
- Lenhart, K.: The effects of long-term Free Air CO₂ Enrichment (FACE) on soil aggregation, soil carbon
 input, and ecosystem CO₂ dynamics in a temperate grassland ecosystem, Justus-Liebig
 University, Giessen, 2008.
- Moraghan, J. T., and Buresh, R. J.: Correction for dissolved nitrous oxide in nitrogen studies, Soil Sci.
 Soc. Am. J., 41, 1201–1202, 1977.
- Mosier, A. R., and Mack, L.: Gas chromatographic system for precise, rapid analysis of nitrous oxide,
 Soil Sci. Soc. Am. J., 44, 1121–1123, 1980.
- Mosier, A. R., Morgan, J. A., King, J. Y., LeCain, D., and Milchunas, D. G.: Soil–atmosphere exchange of
 CH₄, CO₂, NO_x, and N₂O in the Colorado shortgrass steppe under elevated CO₂, Plant Soil, 240,
 201–211, 2002.
- Mosier, A. R., Pendall, E., and Morgan, J. A.: Effect of water addition and nitrogen fertilization on the
 fluxes of CH₄, CO₂, NO_x, and N₂O following five years of elevated CO₂ in the Colorado shortgrass
 Steppe, Atmos. Chem. Phys., 3, 1703–1708, 2003.

- 507 Mosier, A. R., Schimel, D. S., Valentine, D. W., Bronson, K., and Parton, W.: Methane and nitrous oxide 508 fluxes in native, fertilized, and cultivated grasslands, Nature, 350, 330–332, 1991.
- 509 Mosier, A. R.: Nitrous oxide emissions from agricultural soils, Fert. Res., 37, 191–200, 1994.
- Müller, C., Martin, M., Stevens, R. J., Laughlin, R. J., Kammann, C., Ottow, J. C. G., and Jäger, H. J.:
 Processes leading to N₂O emissions in grassland soil during freezing and thawing, Soil Biol.
 Biochem., 34, 1325–1331, 2002.
- Müller, C., Rütting, T., Abbasi, M. K., Laughlin, R. J., Kammann, C., Clough, T. J., Sherlock, R. R., Kattge,
 J., Jäger, H.-J., Watson, C. J., and Stevens, R. J.: Effect of elevated CO₂ on soil N dynamics in a
 temperate grassland soil. Soil Biol. Biochem. 41, 1996–2001, 2009.
- 516 Post, W. M., Peng, T. H., Emanuel, W. R., King, A. W., Dale, V. H., and DeAngelis, D. L.: The global 517 carbon cycle. Am. Sci., 78, 310–326, 1990.
- Regan, K., Kammann, C., Hartung, K., Lenhart, K., Müller, C., Philippot, L., Kandeler, E., and Marhan,
 S.: Can differences in microbial abundances help explain enhanced N₂O emissions in a
 permanent grassland under elevated atmospheric CO₂? Global Change Biol., 2011 submitted.
- Reich, P. B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., Lee, T., Wedin, D., Naeem, S.,
 Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J., and Bengston, W.: Plant diversity
 enhances ecosystem responses to elevated CO₂ and nitrogen deposition, Nature, 410, 809–
 812, 2001.
- Rolston, D. E., Fried, M., and Goldhame, D. A.: Denitrification measured directly from nitrogen and
 nitrous oxide gas fluxes, Soil Sci. Soc. Am. J., 40, 259–266, 1976.
- Rütting, T., Clough, T. J., Müller, C., Lieffering, M., and Newton, P. C. D.: Ten years of elevated
 atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture.
 Global Change Biol. 16, 2530–2542, 2010.
- Smith, K. E., Runion, G. B., Prior, S. A., Rogers, H. H., and Torbert, H. A.: 2010. Effects of elevated CO₂
 and agricultural management on flux of greenhouse gases from soil, Soil Sci., 175, 349–356,
 2010.
- 533 Steudler, P. A., Bowden, R. D., Melillo, J. M., and Aber, J. D.: Influence of nitrogen fertilisation on 534 methane uptake in temperate forest soils, Nature, 341, 314–316, 1989.
- 535 Stevens, R. J., Laughlin, R. J., Atkins, G. J., and Prosser, S. J.: Automated determination of 15N-labelled 536 dinitrogen and nitrous oxide by mass spectrometry, Soil Sci. Soc. Am. J. 7, 981–988, 1993.
- Stevens, R. J., Laughlin, R. J., Burns, L. C., Arah, J. R. M., and Hood, R. C.: Measuring the contributions
 of nitrification and denitrification to the flux of nitrous oxide from soil, Soil Biol. Biochem., 29,
 139-151, 1997.
- Tlustos, P., Willison, T. W., Baker, J. C., Murphy, D. V., Pavlikova, D., Goulding, K. W. T., and Powlson,
 D. S.: Short-term effects of nitrogen on methane oxidation in soils, Biol. Fertil. Soils, 28, 64–70,
 1998.

- 543 Ullah, S., Frasier, R., King, L., Picotte-Anderson, N., and Moore, T. R.: Potential fluxes of N₂O and CH₄
 544 from soils of three forest types in Eastern Canada, Soil Biol. Biochem., 40, 986–994, 2008.
- Watson, R. T., Meira Filho, L. G., and Sanhueza, E.: Greenhouse gases: sources and sinks. In: Climate
 Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Houghton, J.T.,
 Callander, B.A., Varney, S.K. (Eds.), Cambridge University Press, Cambridge, pp. 24–46, 1992.
- Welzmiller, J. T., Matthias, A. D., White, S., and Thompson, T. L.: Elevated carbon dioxide and irrigation
 effects on soil nitrogen gas exchange in irrigated sorghum. Soil Sci. Soc. Am. J. 72, 393-401,
 2008.
- 551Zak, D. R., Pregitzer, K. S., King, J S., and Holmes, W. E.: Elevated atmospheric CO2, fine roots and the552response of soil microorganisms: a review and hypothesis, New Phytol., 147, 201–222, 2000.
- Ziska, L. H., Moya, T. B., Wassmann, R., Namuco, O. S., Lantin, R. S., Aduna, I. B., Abao Jr., E., Bronson,
 K. F., Neue, H. U., and Olszyk, D.: Long-term growth at elevated carbon dioxide stimulates
 methane emission in tropical paddy rice, Global Change Biol., 4, 657–665, 1998.

grassland soil exposed to elevated CO2 and soil without elevated CO2 treatment i.e. ambient incubated under controlled laboratory conditions following the application of NH₄¹⁵NO₃ and ¹⁵NH₄NO₃

565 **Fig. 2.** Daily fluxes of N₂O (ng N₂O–N g⁻¹ h⁻¹) (Avg. \pm SD) from temperate grassland soil exposed to elevated CO₂ and soil without elevated CO₂ treatment i.e. ambient incubated under controlled laboratory conditions following the application of $NH_4^{15}NO_3$ and $^{15}NH_4NO_3$

570 Days after N application 571 **Fig. 3.** Nitrous oxide (N₂O) enrichments (Avg. \pm SD) in a temperate grassland soil exposed to elevated 572 CO₂ and soil without elevated CO₂ treatment i.e. ambient following N fertilizer application where the 573 nitrate pool (NH₄¹⁵NO₃) and the ammonium pool (¹⁵NH₄NO₃) were labelled with ¹⁵N at 60 atom% 574 excess

Fig. 4. Emission of N₂O, total denitrification (N₂O+N₂) (μ g N g⁻¹h⁻¹) and N₂/N₂O ratio (AVG ±SD) from temperate grassland soil exposed to elevated CO₂ and soil without elevated CO₂ treatment i.e. ambient incubated under controlled laboratory conditions following the application of NH₄¹⁵NO₃ and ¹⁵NH₄NO₃

Fig 5. Contribution of d (NO₃⁻reduction) to total N₂O production in grassland soil at ambient and elevated CO₂.