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Abstract. Chemistry transport models determine the evolving chemical state of the atmosphere by solving

fundamental equations that govern physical and chemical transformations subject to initial conditions of

the atmospheric state and surface boundary conditions, e.g., surface emissions. The development of

data assimilation techniques synthesize model predictions with measurements in a rigorous mathematical

framework that provides observational constraints on these conditions.5

Two families of data assimilation methods are currently widely used: variational and Kalman filter (KF).

The variational approach is based on control theory and formulates data assimilation as a minimization

problem of a cost functional that measures the model-observations mismatch. The Kalman filter approach

is rooted in statistical estimation theory and provides analysis covariance together with the best state

estimate. Suboptimal Kalman filters employ different approximations of the covariances in order to make10

computations feasible with large models. Each family of methods have both merits and drawbacks.

This paper compares several data assimilation methods used for global chemical data assimilation. Specif-

ically, we evaluate data assimilation approaches for improving estimates of the summertime global tro-

pospheric ozone distribution in August 2006 based on ozone observations from the NASA Tropospheric

Emission Spectrometer and the GEOS-Chem chemistry transport model. The resulting analyses are com-15

pared against independent ozonesonde measurements to assess the effectiveness of each assimilation

method. All assimilation methods provide notable improvements over the free model simulations, which

differ from ozonesonde measurements by about 20% (below 200 hPa). Four dimensional variational data

assimilation with window lengths between five days and two weeks is the most accurate method, with
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mean differences between analysis profiles and ozonesonde measurements of 1-5%. Two sequential as-20

similation approaches (three dimensional variational and suboptimal KF), although derived from different

theoretical considerations, provide similar ozone estimates, with relative differences of 5-10% between the

analyses and ozonesonde measurements.

Adjoint sensitivity analysis techniques are used to explore the role of uncertainties in ozone precursors and

their emissions on the distribution of tropospheric ozone. A novel technique is introduced that projects25

3D-Variational increments back to an equivalent initial condition, which facilitates comparison with 4D

variational techniques

1 Introduction

Understanding the distribution of tropospheric ozone is one of the principal scientific challenges in global

atmospheric chemistry, e.g., Jacob (1999). Ozone is an integral constituent of the troposphere that plays30

a significant role in determining chemical and radiative state of the atmosphere. Ozone in stratosphere

absorbs UV radiation, which is harmful to human health. In upper troposphere, ozone is a greenhouse

gas through absorption of upwelling long wave radiation. In the mid-troposphere, ozone is a precursor

to OH radicals which moderate pollution levels. At the surface, ozone is a pollutant causing respiratory

problems and affecting crop yields.35

Numerous studies have attempted to quantify the distribution of tropospheric ozone through chemical

transport models. Findings from these studies vary significantly due to the strong variability in ozone life-

times and uncertainties in determining the amount of ozone lost through dry deposition, entered through

upper troposphere-stratosphere exchanges, or evolved due to chemical reactions of trace gas and emission

precursors. Ozone lifetime varies from a few minutes at the surface, to a few days in the lower troposphere,40

to months in the upper troposphere. In such situations, it is important to validate the accuracy of model

predictions against observed state of the atmosphere. Studies of variations in tropospheric ozone have

been conducted through ozonesonde measurements, surface measurements (Logan, 1994, 1999; Tarasick

et al., 2005; Oltmans et al., 2006), and satellite observations (Munro et al., 1998; Tellmann et al., 2004).

Chemical data assimilation is a process of optimally combining imperfect observations with imperfect45

model simulations to produce a better estimate of the chemical state of the atmosphere and its boundary

conditions (Carmichael et al., 2008). Considerable experience with data assimilation has been accumulated

in the field of numerical weather prediction (Daley, 1991; Courtier et al., 1998; Rabier et al., 2000; Kalnay,

2002; Navon, 2009; Lahoz and Errera, 2010). In this work, we focus on atmospheric constituent data

assimilation. Chemical data assimilation poses specific challenges related to the multiphysics nature of50

the system, the stiffness of chemical kinetic equations, the sparseness of chemical observations, and the

uncertainty in the levels of anthropogenic and natural pollutants emitted into the atmosphere. Throughout
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this paper we will refer to model results as model predictions or model forecasts even when a past period

is simulated.

Previous studies have employed various approaches to assimilating observations of trace gases for im-55

proved tropospheric chemistry representations. Data assimilation has been used to improve initial con-

ditions, boundary values (emissions), and has resulted in improved air quality forecasts. Early work in

chemical data assimilation using variational techniques has been reported in Fisher and Lary (1995); El-

bern et al. (1997); Khattatov et al. (1999); Errera and Fonteyn (2001); Elbern and Schmidt (2001). Since then

there is a growing body of literature with applications of 3D-Var and 4D-Var chemical data assimilations.60

The base concepts of variational approach to chemical data assimilation, and the construction of adjoint

chemical transport models are discussed in detail in Sandu et al. (2005a); Hakami et al. (2007); Henze et

al. (2007); Carmichael et al. (2008). 3D-Var was first used by Derber et al. (1991); Parrish and Derber (1992)

and later applied by most of the meteorological centers (Courtier et al., 1998; Cohn et al., 1998; Gauthier

et al., 1999a). A study on ozone improvement using 3D-Var assimilation is presented in Bei et al. (2008).65

Adjustment of gas phase chemical tracer initial conditions has been studied in Chai et al. (2007); Sandu

et al. (2005b); Tang et al. (2004); Zhang et al. (2008). Adjustment of pollutant emissions through 4D-Var

chemical data assimilation has been discussed in Chai et al. (2009). Data assimilation studies involving

particle measurements to improve aerosol fields have been discussed in Hakami et al. (2005); Sandu et al.

(2005b); Henze et al. (2004, 2009). Suboptimal Kalman filters have been employed successfully for chem-70

ical data assimilation (Khattatov et al., 2000; Menard et al., 2000; Lamarque et al., 2002; Liao et al., 2006;

Segers et al., 2005; Clark et al., 2006; Pierce et al., 2007; Parrington et al., 2009). The use of the ensemble

Kalman filter (EnKF) (Evensen, 1994) in chemical data assimilation has been studied in Constantinescu et

al. (2007a,b,c).

Different approaches to data assimilation are rooted in different theories (control, statistical estimation),75

have different implementations and computational costs, and yield different performances on large scale

problems of practical interest. A discussion on relationship between optimality of variational data assim-

ilation and Kalman filter is presented in Li and Navon (2001). Houtekamer (2005) compared the quality

of background statistics in 3D-Var and EnKF using radiance observations from satellite, while, Laroche

et al. (2005) compared the characteristics of 3D-Var and 4D-Var introduced in the operational suite of the80

Canadian Meteorological Center (CMC). Constantinescu et al. (2007c) and Wu et al. (2008) compare the

performances of EnKF with 4D-Var for chemical transport models on a regional scale using ground-level

ozone measurements, while, Geer et al. (2006) provide an intercomparison of stratospheric ozone estimates

obtained through 3D-Var, 4D-Var, and Kalman filter assimilation systems for both chemical transport and

global circulation models as part of the Assimilation of ENVISAT Data (ASSET) project. The comparison85

between techniques in Wu et al. (2008) is done in the context of regional assimilation and using surface

network data.
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The Tropospheric Emission Spectrometer (TES) (Beer et al., 2001) is the first dedicated infrared instrument

from which information of the global and vertical distribution of tropospheric ozone can be retrieved.

Parrington et al. (2009) reported assimilation of vertical profiles of ozone from TES into the GEOS-Chem90

using suboptimal Kalman filter while Pierce et al. (2009) used TES and OMI in conjunction with a simple

univariate filtering approach to investigate the impact of distant sources on air quality in Dallas and

Houston. We have developed 3D-Var and 4D-Var data assimilation capabilities for GEOS-Chem v7. The

goal of this paper is to provide the first direct comparison of global tropospheric ozone distribution

estimated through 3D-Var, 4D-Var and suboptimal KF assimilation systems showcasing the potential of95

TES profile retrievals. The assessment of analyses generated through different assimilation systems is on

the similar lines of Geer et al. (2006); Parrington et al. (2009).

This paper is structured as follows: Section 2 provides the mathematical overview of how observations

are integrated into the model in different data assimilation systems. Section 5.2 discusses characteristics

of background error covariance matrices used in this study. Section 3 provides a brief overview of the100

global chemical transport model (GEOS-Chem) and its adjoint development. A description of the TES

instrument, its observation operator and profile retrieval formulation is provided in Section 4. Section

6 details the experimental settings, computational costs and assessment of tropospheric ozone estimates

through different assimilation systems. Summary and points of future work are discussed in Section 7.

2 Chemical data assimilation105

Variational methods solve the data assimilation problem in an optimal control framework (Sasaki, 1958;

Le Dimet and Talagrand, 1986; Courtier and Talagrand, 1987; Lions, 1971). Specifically, they attempt

to find the control variable values (e.g., initial conditions) that minimize the discrepancy between the

model forecast and observations subject to the governing dynamic equations, taking into account the error

covariances of the forecast and the observations. In contrast, statistical estimation methods (generically110

known as Kalman filters/smoothers) solve the data assimilation problem in a Bayesian framework by

combining probability densities of errors from different sources (Khattatov et al., 2000; Menard et al.,

2000; Lamarque et al., 2002; Segers et al., 2005; Clark et al., 2006; Pierce et al., 2007; Parrington et al., 2009;

Constantinescu et al., 2007b,c). In the following discussion, for simplicity of presentation, we focus on

discrete models (in time and space) where the initial conditions are the control variables.115

Data assimilation provides best estimates of the state of the atmosphere by combining the following three

sources of information.

1. The apriori, or background state xb represents the best estimate of the true state xt available before

any measurements are taken. This estimate is assumed unbiased, and the random background
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(estimation) errors εb are typically assumed to have a normal probability density with a background

error covariance matrix B

εb = xb−xt ∈N (0,B). (1)

2. The model encapsulates our knowledge about physical and chemical laws that govern the evolution

of the system. The model evolves an initial state x0 ∈Rn at the initial time t0 to future state values

xi ∈Rn at future times ti,

xi =Mt0→ti (x0) . (2)

The size of the state space in realistic chemical transport models is very large. For example, a

GEOS-Chem simulation at the 2◦×2.5◦ horizontal resolution has n∈O
(
108) variables.

3. Observations yi ∈Rm of the state are taken at times ti, 1= 1,··· ,N

yi =H(xi)+ εobs
i . (3)

The observation operator H maps the model state vector onto the observation space. In many120

practical situations H is a highly nonlinear mapping , e.g., satellite radiance operators.

The observations are characterized by measurement and representativeness errors εobs
i . The obser-

vation errors at each time are assumed to be independent of background errors, and independent of

the observation errors at other times. They are typically assumed to have a normal distribution with

mean zero and covariance Ri,

εobs
i ∈N (0,Ri). (4)

Based on these three sources of information data assimilation computes the posterior estimate xa of the

true state; xa is called the “analysis” state.

2.1 Three dimensional variational (3D-Var) data assimilation

In the 3D-Var data assimilation the observations (3) are considered successively at times t1,··· ,tN . The

background state (i.e., the best state estimate at time ti) is given by the model forecast, starting from the

previous analysis (i.e., best estimate at time ti−1):

xb
i =Mti−1→ti

(
xa

i−1
)

.

The discrepancy between the model state xi and observations at time ti, together with the departure of the

state from the model forecast xb
i , are measured by the 3D-Var cost function:

J (xi) =
1
2

(
xi−xb

i

)T
B−1

i

(
xi−xb

i

)
+

1
2
(H(xi)−yi)

T R−1
i (H(xi)−yi) (5)
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The 3D-Var analysis is computed as the state which minimizes (5)

xa
i = argmin J (xi). (6)

Typically a gradient-based numerical optimization procedure is employed to solve (6). The gradient ∇J
of the cost function (5) is

∇J (xi) =B−1
i

(
xi−xb

i

)
+HT

i R−1
i (H(xi)−yi) (7)

Note that the gradient requires to computation of the linearized observation operator Hi =H′(xi) about125

the current state xi.

Preconditioning is often used to improve convergence of the numerical optimization problem (6). A

change of variables is performed by shifting the state and scaling it with the square root of covariance:

x̂i =B1/2
i

(
xi−xb

i

)
, (8)

and carrying out the optimization with the new variables x̂i.

2.2 Four dimensional variational (4D-Var) data assimilation

In strongly-constrained 4D-Var data assimilation all observations (3) at all times t1,··· ,tN are simultane-

ously considered. The control parameters are the initial conditions x0; they uniquely determine the state130

of the system at all future times via the model equation (2).

The discrepancy between model predictions and observations at all future times t1,··· ,tN , together with

the departure of the initial state from the background state, are measured by the 4D-Var cost function:

J (x0) =
1
2

(
x0−xb

0

)T
B−1

0

(
x0−xb

0

)
+

1
2

N

∑
i=1

(H(xi)−yi)
T R−1

i (H(xi)−yi) (9)

Note that the departure of the initial conditions from the background is weighted by the inverse back-

ground covariance matrix, B−1, while the differences between the model predictions H(xi) and observa-

tions yi are weighted by the inverse observation error covariances, R−1
i .

The 4D-Var analysis is computed as the initial condition which minimizes (9) subject to the model equation

constraints (2)

xa
0 = argmin J (x0) subject to(2). (10)

The model (2) propagates the optimal initial condition (9) forward in time to provide the analysis at future135

times, xa
i =Mt0→ti

(
xa

0
)
.

The optimization problem (10) is solved numerically using a gradient-based technique. The gradient of

(9) reads

∇J(x0) =B−1
0

(
x0−xb

0

)
+

N

∑
i=1

(
∂xi
∂x0

)T
HT

i R−1
i (H(xi)−yi) (11)
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The 4D-Var gradient requires not only the linearized observation operator Hi, but also the transposed

derivative of future states with respect to the initial conditions. The 4D-Var gradient can be obtained

effectively by forcing the adjoint model with observation increments, and running it backwards in time.

2.3 Suboptimal Kalman filter140

The suboptimal Kalman filter is a sequential data assimilation approach (Khattatov et al., 2000) in which

corrections in the concentration state vector are performed as soon as observations become available.

Similar to 3D-Var, for every observation time ti, this technique starts with the model forecast state (x f
i ) and

provides an expected analysis state (xa
i ) that reduces the discrepancy between the model forecast and the

observations yi. The analysis state vector is obtained as

xa
i = x f

i +Ki

(
yi−H

(
x f

i

))
(12)

where H is the observation operator defined in equation (3) and y the vector of observations at a given

time. The Kalman gain matrix (K) is defined as

Ki = P f
i HT

(
Hi P

f
i HT

i +Ri

)−1
(13)

where P f
i is the forecast error covariance matrix, Ri is the observation error covariance matrix (4), and

Hi =H′(x
f
i ) is the linearized observation operator about the forecast state. If a diagonal or block-diagonal

approximation of the error covariance matrix P f is used in equation (13), the analysis state generated

through equation (12) is suboptimal. A description of the structure of P f is provided in Section 5.2.

At each observation time, along with the analysis state, the analysis error covariance matrix Pa
i is also

calculated as

Pa
i = (I−Ki Hi)P f

i (14)

where I is the identity matrix. There are multiple ways in which this analysis covariance matrix is made145

available to the next observation window. A simple approach is to keep the analysis covariance equal

to the background covariance for the entire assimilation period (Parrington et al., 2009). Here we build

diagonal approximations to P f
i+1 by transporting variances (diagonal entries in Pa

i ) as passive tracers

following Menard et al. (2000).

3 GEOS-Chem150

In this paper we specifically consider GEOS-Chem (http://geos-chem.org), a global three-dimensional

chemical transport model (CTM) driven by assimilated meteorological fields from Goddard Earth Ob-

serving System(GEOS-4) at the NASA Global Modeling and Assimilation Office (GMAO). It is being
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widely used by research groups world-wide for performing global atmospheric chemistry studies. The

model along with comparison of model predictions with observations was first described in Bey et al.155

(2001). GEOS-Chem accounts in detail for emissions from both natural and anthropogenic sources, for

tropospheric chemistry, aerosol processes, long range transport of pollutants, troposphere-stratosphere ex-

changes, etc. Anthropogenic emissions are obtained from the Global Emissions Inventory Activity (GEIA)

(Benkovitz et al., 1996) while lightning NOx source emissions are estimated using Price and Rind (1992),

based on deep convective cloud top heights provided with the GMAO meteorological fields. Biomass160

burning emissions are based on Duncan et al. (2003) while biofuel emissions are from Yevich and Lo-

gan (2003). The meteorological fields have a horizontal resolution of 1◦ along latitude and 1.25◦ along

longitude with 55 vertical levels, and a temporal resolution of 6 hrs (3 hrs for surface fields). We use

GEOS-Chem v7-04-10. Subsequent model releases and references can be found at http://geos-chem.org.

The GEOS-Chem Adjoint system (http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint)165

has been developed through a joint effort of groups at Virginia Tech, University of Colorado, Caltech, Jet

Propulsion Laboratory, and Harvard (Henze et al., 2007; Singh et al., 2009a,b; Eller et al., 2009). The system

can perform adjoint sensitivity analysis and 4D-Var chemical data assimilation. Inverse modeling studies

with GEOS-Chem-Adjoint are exemplified in Henze et al. (2009); Kopacz et al. (2007); Zhang et al. (2009).

4 Tropospheric Emission Spectrometer (TES)170

TES (Beer et al., 2001), one of four science instruments aboard NASA’s Aura satellite, measures top-of-

the-atmosphere high resolution spectrally-resolved longwave radiation (http://tes.jpl.nasa.gov). Vertical

profiles of chemical concentrations are inferred from these radiance measurements using an off-line inver-

sion process (Bowman et al., 2006). In this work we assimilate the retrieved ozone vertical profiles. Figure

1 shows the location of TES profiles for two days. Only TES profiles between 60◦S- 60◦N are considered175

because lower poleward thermal contrast pose difficulty in measurements leading to higher inaccuracies

in the retrieved profiles.

A-priori information about the vertical concentration profile of the species of interest is needed to solve

the retrieval inverse problem (the prior information does not come from the measurement). Let xprior be

the prior vertical ozone concentration profile (in volume mixing ratio units), and let zprior = logxprior. Let180

ztrue (=logxtrue) be the "true" atmospheric profile.

The vertical ozone profile retrieval can be expressed according to the formula

ẑ= zprior+A
(

ztrue−zprior
)
+Gη, x̂= exp(ẑ). (15)

Here A is the averaging kernel matrix, G is the gain matrix, and η is the spectral measurement error

(assumed to have mean zero and covariance Sη). More details can be found in Bowman et al. (2002); Jones
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et al. (2003); Worden et al. (2004).

The corresponding TES observation operator (3) is linear with respect to the logarithm of the concentra-

tions, but nonlinear with respect to the concentration profile:

H(x) = zprior+A
(

log(Lx)−zprior
)

(16)

where L is an interpolation operator that transforms x from the GEOS-Chem N-level vertical grid to the185

TES profile retrieval P-level grid.

For this reason several chemical data assimilation studies based on TES retrieved profiles (Jones et al.,

2003; Bowman et al., 2006; Parrington et al., 2009) have opted to perform the suboptimal Kalman filtering

step (12) in the logarithm of the concentrations:

logxa = logx f +K
(

ẑ−H
(

x f
))

Here K is the Kalman gain matrix, H is the observation operator defined in equation (16), and ẑ is the

ozone profile retrievals from TES as described in equation (15). The analysis state is calculated in natural

logarithm of volume mixing ratio (log VMR) at each observation location since the TES profile retrievals

are in log VMR. An exponential operator and a linear interpolation operator based on pressure is then190

applied to this logarithm of analysis state in succession, to regain the actual analysis state in GEOS-Chem

grid domain. The model grid points which do not lie on the observation locations in observation space

remain unaffected by the assimilation.

The observation operator H that transforms higher resolution model state to the TES profile vertical grid

(observation grid) domain is expressed by equation (16). The Kalman gain matrix K is defined by equation195

(13), particularized to the case where the state is the logarithm of volume mixing ratio.

For variational data assimilation the forcing calculation is carried out in concentrations. For this reason, an

adjoint of the observation operator needs to be derived to update the gradients as described in equations

(7) and (11)

HT ·v=

(
∂

∂x
(
A log(Lx)

))T
·v= LT ·


(Lx)−1

0 0 ··· 0

0 (Lx)−1
1 ··· 0

...
...

. . .
...

0 0 ··· (Lx)−1
P

 ·AT ·v

Here, H =H′(x) is a matrix and v = R−1 (H(x)−y). The TES averaging kernel A is usually a non-

symmetric matrix, and the result of AT ·v is fed to the interpolation operator to construct the diagonal

matrix with the i-th element being 1/(Lx)i. The term LT is the adjoint of the interpolation operator and

brings entities from the TES profile retrieval domain back to the GEOS-Chem model domain.200

Note that the TES data can be biased by as much as 10% (Nassar et al., 2008). We have estimated the bias

using the technique proposed in Nassar et al. (2008) and have removed it before assimilating the data.
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5 Experimental setting for data assimilation

For numerical experiments, we employ GEOS-Chem v7-04-10 adjoint code package (Singh et al., 2009b),

capable of performing both 3D-Var and 4D-Var data assimilations with real data. It also incorporates sub-205

optimal Kalman filter approach of data assimilation developed in Parrington et al. (2009). We assimilate

Tropospheric Emission Spectrometer (TES) satellite ozone profile retrievals into the GEOS-Chem model

and validate the generated analyses against an independent observation dataset provided by direct ozone

profile measurements from ozonesondes. The numerical optimization method used in all variational ex-

periments is the limited memory bound-constrained BFGS (Zhu et al., 1997). This quasi-Newton approach210

has become the “gold standard” in solving large scale chemical data assimilation problems (Sandu et al.,

2005a).

The 3D-Var and suboptimal KF frameworks use Sparse Matrix Vectorized GEAR (SMVGEAR) solver for

chemistry. However, to construct the adjoint of chemistry required by the 4D-Var, we implemented the

Kinetic PreProcessor (KPP) solver (Damian et al., 2002) into GEOS-Chem which not only provides a suite215

of high performance chemical solvers to choose from but also generates automatically the continuous and

discrete adjoint codes (Daescu, 2000, 2003; Sandu et al., 2003a,b). A detailed discussion on interfacing

KPP with GEOS-Chem and comparison with native SMVGEAR solver for accuracy and computational

performance is presented in Eller et al. (2009). Thus, 4D-Var has KPP, and 3D-Var and suboptimal KF have

SMVGEAR as their underlying chemistry solvers.220

The GEOS-Chem model over which the three assimilation methods are built upon, has been modified

further to use the linearized ozone (linoz) scheme (McLinden et al., 2000) for a better estimate of ozone

exchanges at troposphere-stratosphere boundary. This scheme is available in GEOS-Chem v8 and higher

(see http://geos-chem.org).

Simulations with GEOS-Chem v7-04-10 adjoint can be carried out at 4◦×5◦ and 2◦×2.5◦ resolutions. We225

have used 4◦× 5◦ resolution in all our experiments. There are 46 x 72 latitude-longitude grid boxes at

this resolution, and 55 vertical levels. Near the equator and at ground level each grid box covers an area

of about 400 km × 500 km. We performed data assimilation for only the first 23 model levels (for up to

about 50 hPa), which encompasses where TES observations are most sensitive.

5.1 Assimilation window lengths230

The TES data in all our data assimilation experiments were read once every four simulation hours; the

observation operator called at model time t (hours) reads in all the measurements collected within the

interval t− 2 (hours) to t+ 2 (hours). This collective reading increases computational efficiency since

reading through observation data files is an expensive process. However, this assumes that the model
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state does not vary significantly in a four hour time interval which is true in our case as we are using235

global GEOS-Chem model with 4◦×5◦ resolution.

3D-Var data assimilation experiments were performed for a period of two weeks in the month of August

2006, starting at 00:00(GMT) on August 1st. The assimilation treats all observations in the four hour inter-

val as instantaneous, and assimilates them in the same optimization run. In all our 3D-Var experiments,

we performed 8 iterations per analysis since the cost function decreased significantly within the first few240

iterations. It is important to note that 3D-Var does not involve any model adjoint calculations; gradients

require only the adjoint of the observation operator. The optimization adjusts the ozone concentrations.

Generated analysis profile at the end of each observation window is evolved through the forward model

that becomes the initial condition for the next observation window. It is also worth mentioning that

these new initial conditions are used to construct a new background error covariance matrix (17) every245

observation window.

The setup for data assimilation using the suboptimal Kalman filter is quite similar to 3D-Var where we

assimilated TES profile retrievals into GEOS-Chem over a two week period from 00:00 GMT on August 1,

2006 to 00:00 GMT on August 15, 2006. Observations were read every 4 hours and analysis states were

generated for each observation window through the sequential update formula (12).250

The 4D-Var data assimilation experiments were performed for two different assimilation window lengths

to adjudge if model errors hamper the quality of assimilations in GEOS-Chem involving longer assimila-

tion windows; 4D-Var is strongly constrained by the forward model equation (10). Starting at 00:00 GMT

on August 1, 2006, the first assimilation window is considered to be of five days while the second window

is of two weeks. All the three assimilation systems had the same initial conditions to start with and were255

generated through a free GEOS-Chem model run. There were 12 optimization iterations performed in

order to improve the ozone initial condition. Each iteration during 4D-Var assimilation includes a forward

model and a backward model adjoint run. TES profile retrievals were read every 4 hours during the

model adjoint run, and the cost function and adjoint gradients accumulated the impact of all 4 hour data

sets throughout the assimilation window. Unlike 3D-Var and suboptimal KF, where analysis states are260

generated sequentially every observation window, 4D-Var produces new initial conditions that could be

used by the model to generate analysis at any time during the assimilation window.

To assess the quality of analysis generated by the above mentioned assimilation techniques, we provide in

section 6.2, various plots including comparison of analyses against ozonesonde observations and global

ozone distribution for 5 days and 2 weeks assimilation windows. It is important to note that, since 3D-Var265

and suboptimal KF are sequential in nature, we did not have to run 5 days assimilation for these two

methods separately. Rather, we used the saved analyses generated during the 2 weeks assimilation.
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5.2 Specification of background error variances

We consider a diagonal background error covariance matrix (B) in all our variational data assimilation

experiments for simplicity. The initial variances (the diagonal entries of the B matrix) are constructed

from the average background concentrations xB
0 on each of the Nlev model vertical layers

B=


B(0) 0... 0

0 B(1) . . . 0
...

. . .
...

0 0... B(Nlev)

 (17)

where

B(`) =


σ2
` 0... 0

0 σ2
` . . . 0

...
. . .

...

0 0... σ2
`


dim×dim

, dim=Nlon ·Nlat , (18)

with

σ` =
αrel
dim

Nlon

∑
i=1

Nlat

∑
j=1

xB
0 (i, j,`,sO3) , `= 1,··· ,Nlev , sO3 = index of ozone. (19)

The relative uncertainty level in the background initial conditions (i.e., at the beginning of the assimilation

window) is taken to be 50%, i.e., αrel = 0.5.270

The forecast error covariance matrix P f used in our suboptimal Kalman filter approach is diagonal. The

initial forecast error is assumed to be 50% of the initial forecast field that is supposed to capture the

representativeness error as well. In matrix form, P f
0 is represented as

P f
0 =


P f (0)

0 0... 0

0 P f (1)
0 . . . 0

...
. . .

...

0 0... P f (Nobs)

0

 (20)

where Nobs is the number of observation locations (in our case, the number of grid points in the TES

retrieval domain). The initial forecast error covariance matrix block corresponding to each observation

location is given as

P f (i)
0 = α2

rel ·


(x f

0(i,1,sO3))
2 0 ... 0

0 (x f
0(i,2,sO3))

2 . . . 0
...

. . .
...

0 0 ... (x f
0(i,Nret,sO3))

2


Nret×Nret

, i = 1,2,.. .,Nobs, (21)
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where Nret is the number of vertical TES profile retrieval levels. Although the initial forecast error co-

variance matrix P f and all analysis Pas henceforth are diagonal and there are no spatial correlations being

accounted for; the averaging kernels in the observation operator of TES as defined in equation (16) pro-

vide vertical correlations when operated on P f through equation (13). A detailed discussion on how to

efficiently extend the background error covariance matrices to non-diagonal forms that capture spatial275

error correlations is provided in Singh et al. (2010a).

6 Data assimilation results

6.1 Computational costs

As pointed out in Henze et al. (2007), the computational cost of Rosenbrock solver increases significantly

with the tolerance levels; higher tolerances use smaller internal time steps requiring more computation.280

Therefore, in our experiments, we have set the KPP parameters RTOL=10−3 and ATOL=10−2 to achieve

moderate to high accuracy.

The suboptimal Kalman filter is less expensive than 3D-Var as it generates the analysis through single

update formula (12), whereas 3D-Var requires a few iterations before the optimization routine could

generate a stable optimal analysis field. This is true however as long as the forecast error covariance285

matrix is diagonal. Once we move to non-diagonal matrices, the cost of calculating Kalman gain matrix

(13) can be high, although this can be parameterized following, for example, Khattatov et al. (2000). In

the case of 3D-Var and 4D-Var, using even full B matrix adds a minimal cost to the overall simulation

since the complete matrix is never constructed; at each step only a matrix vector product is required and

efficient techniques are employed to derive the inverse and other powers of B matrix (Singh et al., 2010a).290

The 4D-Var assimilation is the most expensive of all the assimilation systems under consideration. The

reason is attributed to the fact that a single 4D-Var iteration performs both the forward and adjoint model

runs, where, several variables on which the adjoint equation depends on, are written in checkpoint files

during forward model run and read during adjoint model run. In our study, a full adjoint run for one

simulation day requires about 12 GB of hard drive storage. This consumption could be reduced by almost295

50% if rather than saving intermediate concentrations of chemical integration, they are recalculated by

calling forward chemistry in the adjoint run, which would eventually lead to higher computational time.

Table 1 provides a comparison of the computational costs of the different data assimilation systems and

the cost of free running model for a 24 hour simulation. All the simulations are performed on a Dell

Precision T5400 workstation with two quad-core Intel(R) Xeon(R) processors, with clock speed 2.33GHz,300

and 16GB of RAM shared between the two processors.
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Table 1. Timing results for GEOS-Chem free model runs using SMVGEAR and KPP chemistry, suboptimal Kalman

filter, 3D-Var and 4D-Var data assimilations with diagonal background error covariance matrix for a 24 hour simulation

starting 00:00 GMT August 1, 2006.

Experiment Description CPU Time

Free model run, SMVGEAR chemistry solver 2 min 50 sec

Free model run, KPP chemistry solver 3 min 18 sec

Suboptimal Kalman filter with diagonal P f 3 min 08 sec

3D-Var with diagonal B 3 min 57 sec

4D-Var with diagonal B (per model run) 16 min 51 sec

6.2 Comparison with ozonesonde measurements

In order to assess the quality of analysis fields generated through different assimilation systems, we use

ozonesonde profiles measured by the INTEX Ozonesonde Network Study 2006 (IONS-6) (http://croc.gsfc.

nasa.gov/intexb/ions06.html, (Thompson et al., 2007a, 2007b)) for the month of August, assuming that305

these measurements provide values close to the true state of the atmosphere. There are 418 ozonesondes

launched from 22 stations across North America as shown in the Figure 1. A detailed description of the

number of ozonesondes launched per station with longitude and latitude information can be found in Par-

rington et al. (2008). The ozonesonde observations are not used in data assimilation, and therefore provide

an independent data set against which the analysis results are validated. Forecast scoring techniques as310

described in Wu et al. (2008); Constantinescu et al. (2007c) that use assimilated data for validation, do not

provide a fair assessment of the quality of assimilation for sparse spatio-temporal sampling and longer

time scales used in this analysis.

We first consider the case where the assimilation window length is five days. As per the property of

sequential data assimilation algorithms, the model forecast is corrected as soon as an observation is avail-315

able. Ingesting observations every four simulation hours, we obtain an analysis field every four hours that

accounts for the mismatch between the model prediction and the observations within that observation

window. However, it is important to note that the model prediction at any observation window incor-

porates implicitly the corrections from all previous observations. Thus, as we move forward in time, the

analysis field agrees better with the true state of the atmosphere. 4D-Var on the other hand accumulates320

the forcing due to mismatch between model forecast and observations throughout the assimilation win-

dow to produce an initial condition that, when evolved forward in time through the model, will best fit

the observations. Therefore, in the case of sequential assimilation approaches, to obtain a stable analysis

state that resembles the true chemical state of the atmosphere at a particular instant, we need to start the

simulation days or months prior to that instant to benefit from earlier observations. 4D-Var is advanta-325

geous in situations where past observations are not available, as it provides the best estimate using only
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Fig. 1. Ozonesonde sounding stations (triangles) used during IONS06 campaign and AURA/TES satellite trajectory

snapshots (dots) plotted over the global ozone distribution on August 1st, 2006.

the observations available in the assimilation window under consideration.

We present in Figure 2, a comparison of analysis profiles obtained from different assimilation systems, and

free GEOS-Chem model run against ozonesonde measurement data. The left panel shows vertical ozone

profiles (concentrations against pressure levels); the model predictions are sampled at the locations and330

times of ozonesonde measurements available in the 5-day assimilation window. The differences between

model results and ozonesonde data reflect model prediction errors; one error vertical profile is obtained

for each ozonesonde launch. The center and right panels show the mean and the standard deviation of

these errors. The plots provide an assessment of the quality of tropospheric ozone estimates given by the

free model run, and by data assimilation systems based on suboptimal Kalman filter, 3D-Var and 4D-Var335

approaches. The errors also reflect the impact of TES profile retrievals on these assimilation systems.

It is evident from the plots in Figure 2 that 4D-Var provided the best estimate for lower and mid tro-

posphere ozone concentrations. The relative difference between the mean ozone analysis field and the

ozonesonde measurements were decreased to less than 4% up to 180 hPa as compared to 5-20% in cases

of suboptimal KF and 3D-Var. The overestimate of ozone in the upper troposphere is likely due to the340

accumulated impact of the TES bias. The bias correction approach described in Nassar et al. (2008) may

not be sufficient for assimilation studies and suggests an on-line bias correction scheme may be needed

in the future.There was also a substantial improvement in the variance of the assimilation relative to the
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Fig. 2. The impact of ozone profile retrievals from TES on data assimilation systems for GEOS-Chem. Left panel:

mean ozone concentrations sampled at ozonesonde locations and times for 3D-Var, 4D-Var, suboptimal KF analyses

and free model trajectories. Center panel: relative mean errors of predicted ozone concentrations with respect to

ozonesonde measurements. Right panel: standard deviation of absolute values of errors with respect to ozonesonde

measurements. The data is averaged over all ozonesonde launches. These plots were generated from 5 days simulation

from 00:00 GMT August 1, 2006 to 00:00 GMT August 6, 2006 and compared against ozonesonde data available for

the month of August.

ozonesonde measurements, particularly for the 4D-Var case at 200 hPa. Consequently, the satellite obser-

vations have an impact not only on the mean value of tropospheric ozone but they also provide additional345

information on the ozone variability. A detailed analysis on the information brought in by TES profile

retrievals into 4D-Var assimilation system at different pressure levels is provided in Singh et al. (2010b).

Figure 3 provides the global tropospheric ozone distribution as estimated by GEOS-Chem free model run

and different assimilation systems at the end of the 5 days assimilation window. The ozone concentration

values are averaged over 10 GEOS-Chem levels (from the surface to about 370 hPa) for each longitude-350

latitude grid point on the horizontal domain.

As seen in Figure 3, all the assimilation systems seem to have caused an increase in the tropospheric

ozone as compared to the model forecast with 4D-Var bringing the highest amount. The gain seems to be

prominent in the 30◦ N to 60◦ N latitude region in case of suboptimal KF and 3D-Var, while it is extended

up to 90◦ N in case of 4D-Var. For a clear demonstration of these changes, we provide in Figure 4, the355
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(a) Ozone forecast through free model run (b) Ozone estimates through 3D-Var assimilation

(c) Ozone estimates through suboptimal Kalman filter (d) Ozone estimates through 4D-Var assimilation

Fig. 3. Global ozone distribution at 00:00 GMT on August 6, 2006 averaged over the first 10 GEOS-Chem vertical

levels. Panels (a)-(d): Global tropospheric ozone estimates provided by free model run and suboptimal KF, 3D-Var,

and 4D-Var data assimilation systems from a 5-day simulation.

plots of differences in the tropospheric ozone estimates through free model run and different assimilation

systems.

In Figure 4, panels (a) and (b) show that the structure of corrections in the ozone concentrations through

3D-Var and suboptimal KF data assimilation are quite similar. The reason behind such a structure is that

these sequential algorithms bring in instantaneous corrections based solely on the mismatch between the360

model predictions and the observations in an observation window (analysis cycle). The localized correc-

tions here are mostly along the Aura satellite orbit. Panel (c) on the other hand showcases the smoother

correction profile of 4D-Var. In each 4D-Var optimization iteration, the cost function and gradients are

accumulated for all the observation windows where the adjoint variable (gradient) is flown backwards in

time as governed by the model adjoint equation. The corrections brought in by the optimization routine365

therefore are no longer localized resulting in an ozone distribution consistent with the model dynamics

and chemistry. We also plot the difference in the analysis fields obtained by 3D-Var and suboptimal KF
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(a) Absolute difference between 3D-Var analysis and the free

model run

(b) Absolute difference between suboptimal Kalman filter

analysis and the free model run

(c) Absolute difference between 4D-Var analysis and the free

model run

(d) Absolute difference between suboptimal Kalman filter and

the 3D-Var analyses

Fig. 4. Differences in global ozone concentrations at 00:00 GMT on August 6, 2006, the end of 5-day simulation,

averaged over first 10 GEOS-Chem vertical levels. Panels (a)-(c): Differences between suboptimal KF, 3D-Var, and

4D-Var analysis fields and the model forecast (solution without data assimilation). Panel (d): Difference between

suboptimal KF and 3D-Var analysis fields.

showcasing their close resemblance (panel (d)). Interestingly, there seems to be a localized overcorrection

in the mid west Australian region by the suboptimal Kalman filter. This overcorrection is likely due to the

propagation of emissivity errors over Australian desert in the TES retrieval, which can have possess strong370

silicate spectral signatures into the TES ozone retrieval. While in case of 4D-Var, the underlying algorithm

can smooth out localized satellite artifacts through strong model constraints.

We next consider assimilation window length of 2 weeks. A longer assimilation window provides an

insight into how ozone estimates provided through assimilation evolve with time and if the corrections

maintain structures similar to 5-day case. In particular, the ozone lifetime will limit the utility of ozone375

initial condition adjustment as the assimilation window increases. It also helps adjudge if model errors
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in GEOS-Chem cause any degradation in the assimilation systems, especially the strongly constrained

4D-Var. Similar to Figure 2, we present in Figure 5, a comparison of analysis profiles obtained from

Fig. 5. The impact of ozone profile retrievals from TES on data assimilation systems for GEOS-Chem. Left panel: mean

ozone concentrations at ozonesonde locations for 3D-Var, 4D-Var, suboptimal KF analyses and free model trajectories.

Center panel: relative mean errors of predicted ozone concentrations with respect to ozonesonde measurements.

Right panel: standard deviation of absolute values of errors with respect to ozonesonde measurements. The data is

averaged over all ozonesonde launches. These plots were generated from 2 weeks simulation from 00:00 GMT August

1, 2006 to 00:00 GMT August 15, 2006 and compared against ozonesonde data available for the month of August.

different assimilation systems against ozonesonde measurement data. The plots reflect that the accuracy

of suboptimal Kalman filter and 3D-Var assimilations start to differ with longer assimilation window.380

While suboptimal KF underestimates ozone concentrations in the lower and mid troposphere, it performs

better than 3D-Var in the mid and upper tropospheric region. 4D-Var still provides the best ozone estimate

of all the assimilation systems, and, unlike the 5 days assimilation window length case, it performs well in

the upper tropospheric region except near the tropopause. Panel (c) suggests that the standard deviation of

4D-Var analysis from the ozonesonde measurements stayed the least among all the assimilation systems.385

The relative difference between the mean ozone analysis field and the ozonesonde measurements were

decreased to less than 4% up to 150 hPa as compared to 4-16% in cases of suboptimal KF and 3D-Var. With

longer assimilation window, all the assimilation systems seem to have benefited from more observations

being assimilated.

Figure 6 provides the global tropospheric ozone distribution as estimated by GEOS-Chem free model run390
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(a) Ozone forecast through free model run (b) Ozone estimates through 3D-Var assimilation

(c) Ozone estimates through suboptimal Kalman filter (d) Ozone estimates through 4D-Var assimilation

Fig. 6. Global ozone distribution at 00:00 GMT on August 15, 2006 averaged over the first 10 GEOS-Chem vertical

levels. Panels (a)-(d): Global tropospheric ozone estimates provided by free model run and suboptimal KF, 3D-Var,

and 4D-Var data assimilation systems from a 2-week simulation.

and different assimilation systems. Similar to the 5 days assimilation window case, 4D-Var leads to the

maximum increase in the tropospheric ozone.

Figure 7 showcases the structure of corrections in model predicted ozone through different assimila-

tion systems. The ozone corrections are up to 20 ppbv, and are consistent among the three assimilation

schemes. The localized correction structure in 3D-Var and suboptimal KF cases still persists with longer395

assimilation window. 4D-Var provides larger corrections with a significant increase in ozone concentra-

tions in the 30◦ N to 90◦ N latitude region. The reason for this difference can be explained in part by

the restriction of the TES to 60◦S-60◦N, which limits where the corrections can be made in the 3D-Var.

Changes poleward of 60◦N in the 3D-Var solution are due to forward advection. However, as discussed in

Section 6.3.2, the elevated ozone poleward of 60◦N in the 4D-Var solution is due to the positive correction400

of high latitude initial conditions at the beginning of the assimilation window at August 1, 2006.
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(a) Absolute difference between 3D-Var analysis and the free

model run

(b) Absolute difference between suboptimal Kalman filter

analysis and the free model run

(c) Absolute difference between 4D-Var analysis and the free

model run

(d) Absolute difference between suboptimal Kalman filter and

the 3D-Var analyses

Fig. 7. Differences in global ozone concentrations at 00:00 GMT on August 15, 2006, the end of 2-week simulation,

averaged over first 10 GEOS-Chem vertical levels. Panels (a)-(c): Differences between suboptimal KF, 3D-Var, and

4D-Var analysis fields and the model forecast (solution without data assimilation). Panel (d): Difference between

suboptimal KF and 3D-Var analysis fields.

The overcorrection in the mid west Australian region which was not visible in the 3D-Var case for 5 days

assimilation window, seems to be prominent in longer assimilation, while, for suboptimal KF, it has been

accentuated. The fact that this phenomenon is seen only in 3D-Var and suboptimal KF could be attributed

to the propagation of emissivity errors described earlier, combined with the localized correction property405

of these methods. Differences in the amount of overcorrection in the two methods could be attributed

to differences in their implementations. For example, as described in section 2.3, the forecast error vari-

ances at observation time i+ 1 in the suboptimal KF case, are constructed by transporting variances at

observation time i as passive tracers, while in case of 3D-Var, they are generated from the current model

state. Also, the KF implementation used in this study solves the underlying statistical problem generat-410

ing analysis in observation space, then maps the solution back to the model space. While in 3D-Var, the
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same statistical problem is solved in the model space itself, leading to different forecast error covariance

matrices.

Contrary to what was observed in Wu et al. (2008) for the 4D-Var assimilation in Polair3D case (where

accuracy of the ozone estimates decreased with increase in the assimilation window length), our findings415

show that the performance of 4D-Var system improves with increase of the assimilation window length.

However, this is likely due to the fact that ozone lifetime is reasonably close to two weeks. Assimilation

windows longer than two weeks would lead to a reduction in performance of the 4D-Var system as the

initial conditions become less important towards the end of the window. Consequently, the assimilation

window for ozone in a 4D-Var system should be bounded by the ozone lifetime. There is however one420

case where the accuracy of ozone estimates decrease with increase in assimilation window length for 4D-

Var and that is when the model adjoints are inaccurate. We have studied this case in detail in Singh et al.

(2010c) and have utilized inaccurate gradients to work toward our benefit in terms of reducing significantly

the memory and computational costs, still maintaining the quality of the analysis.

6.3 Comparison of 3D-Var and 4D-Var425

As discussed in Section 2, the 3D-Var approach processes observations sequentially, and generates a new

analysis every time new observations are available. The 3D-Var corrections perform successive adjust-

ments of the forward model trajectory, which decrease the error as more observations are being consid-

ered. The 4D-Var approach, on the other hand, processes all observations at once and adjusts the initial

conditions for the current assimilation window. It is also worth reiterating that the background error co-430

variance matrix in 4D-Var is static and flow independent, while in case of 3D-Var, it is constructed every

observation time through model evolution of the analysis generated at previous observation time.

We compare the 3D-Var and 4D-Var approaches in two different ways. Section 6.3.1 discusses the ability of

4D-Var to explicitly represent relationships between different chemical components. Section 6.3.2 proposes

a variational approach to directly compare the use of information by the two methods.435

6.3.1 Dependencies between multiple species

The data assimilation scenario discussed here corrects ozone distribution in response to new information

provided by ozone measurements. This correction is distributed implicitly to other state variables (e.g.,

other dependent chemical species) through model evolution.

In order to perform explicit corrections to other chemical species, 3D-Var requires an inter-species error440

correlation matrix. A correct specification of such matrix at each observation time is a difficult task. 4D-Var

approach on other hand captures the relationship between species through model adjoint dynamics. This
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holds true even when the background error covariance matrix does not specify inter-species correlations. It

is possible to directly extend the set of control variables to include initial conditions of all chemical species

present in the model, together with the emission and deposition rates, and any other model parameters.445

There is no additional computational cost since the adjoint model already computes derivatives with

respect to all the state variables. (Of course, extending the control vector may lead to separate issues

related to convergence, and to proper regularization of the problem).

The adjoint sensitivity analysis by itself is an important tool to investigate various dependencies between

model parameters. The gradient formula (11) provides derivatives of the cost function with respect to ini-450

tial conditions of other species besides ozone, and with respect to model parameters such as emissions and

boundary conditions. The derivatives with respect to model parameters are obtained by post-processing

the adjoint variables (Sandu et al., 2005a). The units of adjoint sensitivities with respect to a parameter are

one over the unit of that parameter since the cost function (9) is unitless. Scaled adjoint sensitivities (e.g.,

∇x0J � xa
0, where � is component-wise multiplication) are unitless, and measure the impact of relative455

changes in parameters on the cost function.

Figure 8 presents the scaled adjoint sensitivities of the 4D-Var cost function (9) with respect to several

model parameters. The linearization is performed around the 4D-Var solution (10), i.e., around a forward

trajectory that starts with optimized initial ozone concentrations. Consequently, the sensitivity of the 4D-

Var cost function with respect to the initial ozone concentration is very small (in theory is equal to zero,460

as it represents the gradient value at a minimum point). The sensitivities with respect to initial CO, NOX ,

and PAN concentrations are presented in Figures 8 (a),(b), and (c) respectively. These sensitivities are

far from zero; consequently, TES ozone profiles provide information that can potentially constrain ozone

precursor initial conditions as well. (This can be achieved by extending the vector of control variables to

include the initial conditions of additional species, and continuing the optimization. Large scaled gradient465

components corresponding to initial CO, NOX , and PAN indicate that changes in these initial conditions

lead to a considerable decrease in model-observation mismatch). Additional information can be obtained

from influence functions, which are ratios of scaled sensitivities Fisher and Lary (1995). More importantly,

Figure 8(d) displays the sensitivity of the 4D-Var cost function with respect to total NOx emissions. These

sensitivities indicate that ozone observations can be used to constrain ozone precursor emissions as well.470

This point is explored in the context of a 4D-Var chemical box model in Hamer et al. (2011). The

strong sensitivity of the atmospheric chemical state to boundary conditions differentiates the chemical

data assimilation problem from the traditional numerical weather prediction problem. Consequently, even

in condition where the 3D-Var solution may have similar performance to the 4D-Var solution, the ability

to assess the sensitivities of the innovations in the 3D-Var to boundary and initial conditions through475

adjoint calculations provides important tools for a more detailed investigation of processes controlling

that distribution.

23



(a) Scaled gradient with respect to CO initial conditions (b) Scaled gradient with respect to NOX initial conditions

(c) Scaled gradient with respect to PAN initial conditions (d) Scaled gradient with respect to NOX emissions

Fig. 8. Scaled adjoint sensitivities of the 4D-Var cost function (9) with respect to different model parameters. The

calculations correspond to the optimal initial ozone concentration. The 4D-Var cost function involves differences

between simulated and observed OX . Panels (a),(b),(c) show sensitivities with respect to initial conditions of other

chemical species (at 00:00 GMT on August 1, 2006). The sensitivities with respect to NOX emissions in panel (d)

correspond to emissions over the entire two-week assimilation window. All scaled sensitivity fields are averaged over

the first 10 GEOS-Chem vertical levels.

6.3.2 Direct comparison of 3D-Var and 4D-Var corrections

Due to the different times when they incorporate observations, it is difficult to perform a direct comparison

of the ways 3D-Var and 4D-Var use this information. An assessment of the two analyses can be done at480

the end of the assimilation interval. Comparison against ozonesonde data, presented in Figures 2 and 5,

use analysis data at different times throughout the assimilation window.

We propose a variational approach to compare the net effect of all corrections performed by the 3D-Var,

with the 4D-Var correction of the state. This comparison provides insight into how each method injects

information from observations into the state (at a specific time). We discuss three approaches, based on485
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“pulling back” to the initial time and adding all corrections performed by 3D-Var, pulling back and adding

all the differences between the 3D-Var and the 4D-Var analyses, and finding an equivalent initial condition

for 3D-Var.

To be specific, we first quantify the cumulative effect of all 3D-Var corrections, in order to study how

3D-Var builds the analysis. Since the 3D-Var corrections take place at different times, they need to first be

brought to the same time. For example, this can be done done by “propagating backwards” the 3D-Var

correction at ti to the initial time t0, through the adjoint MT
i of the tangent linear model Mi = ∂xi/∂x0. The

cumulative effect of all 3D-Var corrections at the initial time is

N

∑
i=0

MT
k ·P

f (3)
i HT

i

(
Hi P

f (3)
i HT

i +Ri

)−1(
yi−H(x f (3)

i )
)

. (22)

Here x f (3)
i and P f (3)

i are the 3D-Var forecast state and the forecast covariance at ti, respectively. This

approach allows for the assessment of the cumulative effect of all 3D-Var corrections at the initial time,490

and to directly compare the 3D-Var and 4D-Var via the corresponding changes in initial conditions.

Next, we seek to estimate the discrepancy between the analyses generated by the 3D-Var and by the 4D-

Var methods. Let the free model run (background), the 4D-Var, and the 3D-Var analyses at ti be xb
i , xa(4)

i ,

xa(3)
i , respectively. Define the following “discrepancy” cost function that measures the difference between

the 4D-Var and the 3D-Var analyses at all times

D
(

xa(4)
0

)
=

1
2

N

∑
i=0

∥∥∥xa(4)
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∥∥∥2

Q−1
i

. (23)

The gradient of the discrepancy function with respect to the initial conditions is given by the adjoint

model, using a linearization of the forward model about the 4D-Var analysis trajectory

∇xa
0
D
(

xa(4)
0

)
=

N

∑
i=0

MT
i Q−1

i

(
xa(4)

i −xa(3)
i

)
, where Mi =

∂xa(4)
i

∂xa(4)
0

. (24)

Here Mi is the linearized model solution operator about the 4D-Var analysis trajectory. Each term in the

discrepancy sum is weighed by the (covariance-like) matrix Qi, which is assumed to be invertible. This

adjoint considers the differences between the 4D-Var and the 3D-Var analyses at different times, and pulls

all these differences back to time t0. The cumulative discrepancy between the two analyses, as given by

this metric, reads

diff
(

xa(4),xa(3)
)
=∇xa

0
D
(

xa(4)
0

)
. (25)

Finally, we want to determine the “3D-Var equivalent initial condition” xe(3)
0 , such that the resulting tra-

jectory xe(3)
i , i≥ 1, fits best the 3D-Var analysis at the final time xa(3)

N , in a least squares sense:

xe(3)
0 = argmin

x0
B
(

xe(3)
0

)
=

1
2

∥∥∥xa(4)
N −xa(3)

N

∥∥∥2

Q−1
N

.
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To our knowledge, no attempt has been made to date to estimate the equivalent effect of all 3D-Var

corrections at the initial time. (Note that the 3D-Var analysis is not a trajectory of the model). The

methodology is explained in Appendix A. The least squares solution to finding the 3D-Var equivalent

initial condition is (A3)

xe(3)
0 = xa(4)

0 −
(

MT
N Q−1

N MN

)−1
·MT

N Q−1
N

(
xa(4)

0 −xa(3)
0

)
,

The 3D-Var solution incorporates all the observation information when it reaches tN , the end of the

assimilation window. For a direct comparison with the 4D-Var initial condition, the 3D-Var equivalent

initial condition match the 3D-Var analysis only at the final time.

Similar to (23), a cost function that measures the discrepancy between the 3D-Var and the free model495

forecast at all times can be defined. This gradient involves an adjoint run, with a linearization performed

about the free model run (background) trajectory.

Figure 9 displays results for the metric (25), i.e., the sum of all analysis discrepancies between the 3D-

Var and the 4D-Var ozone analyses, projected to time t0 along with differences between the free running

model and the initial conditions inferred from the 4D-Variational solution. All scaling covariances are500

taken to be identity matrix, Qi = I, i = 0,.. .,N. It is interesting to note that, significant corrections to the

initial conditions in the 4D-Var solution are made poleward of 60◦N even though there is no TES data

used that directly covers that region. These positive corrections can be explained by strong transport

from higher latitudes into the mid-latitudes characterized by the transport adjoint sensitivities of the mid-

latitude innovations with the TES data. Similar features are seen though in the opposite sign in Figure505

9(d) through the cumulative back projection in the 3D-Var solution.

7 Conclusions

This paper compares the performance of 3D-Var, 4D-Var, and suboptimal Kalman filter data assimilation

systems, applied to the estimation of global tropospheric ozone distribution. The data is provided by TES

ozone profile retrievals. The study uses the 3D-Var and 4D-Var data assimilation frameworks we have510

implemented into GEOS-Chem v7. Two different assimilation window lengths (five days and two weeks)

are considered. The quality of the ozone analyses provided by different assimilation schemes is verified

against ozonesonde measurements, an independent data set.

The three approaches have different computational costs. The suboptimal Kalman filter is the least expen-

sive, followed closely by 3D-Var. 4D-Var has the highest memory and computational costs as it requires515

checkpointing dependent variables, and performs both a forward and an adjoint model run for every

iteration.

All three data assimilation systems are able to improve ozone estimates using TES profile retrievals. For
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(a) Free model ozone concentration at the beginning of the

assimilation window

(b) 4D-Var ozone analysis at the beginning of the assimilation

window

(c) Absolute difference between the 4D-Var optimal initial con-

dition, and the background initial condition

(d) Cumulative difference between the 4D-Var and 3D-Var

analyses throughout the assimilation window

Fig. 9. The cumulative difference (25) between the 4D-Var and the 3D-Var ozone analyses, projected at the beginning

of the five days assimilation window, and averaged over the first 10 GEOS-Chem vertical levels. A two-week long

data assimilation window is used, starting at 00:00 GMT on August 1, 2006.

the five days assimilation window the sequential methods, 3D-Var and suboptimal KF, perform similarly:

they decrease the relative difference between mean analysis and ozonesonde measurements to about 5-520

20%. 4D-Var, on the other hand, brings this error down to less than 4%, for up to 180 hPa. For the

two weeks assimilation window the performance of the sequential methods changes with different height

levels. In the lower and mid troposphere 3D-Var performs better, while in the mid to upper troposphere

the suboptimal Kalman filter analysis is more accurate. The relative error (measured against ozonesonde

data) is 4-16% for the sequential analyses, and is less than 4% for up to 150 hPa for 4D-Var. The correc-525

tions of ozone concentration performed by the sequential assimilation methods are localized along the

satellite orbit. On the other hand, the 4D-Var solution is physically and chemically self-consistent over the

assimilation window. The region between latitudes 30◦ N to 60◦ N has the greatest impact from all the

assimilation systems. This region extends up to 90◦ N in case of 4D-Var, which accounts for the transport
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of high latitude ozone into the mid-latitudes. However, we should caution that the IONS datasets were530

primarily over North America. Therefore, we can not assess whether the increased northern mid-latitude

ozone concentrations lead to a more accurate analysis.

A method to directly compare the analyses provided different schemes is proposed, based on “pulling

back” differences to the initial time, as discussed in Section 6.3.2. The calculations show that the 4D-

Var corrections are larger than those provided by 3D-Var. The adjoint sensitivity analysis in section 6.3.1535

reveals that 4D-Var has the intrinsic capability of capturing mechanistic relationships between multiple

chemical species, and between emissions and concentrations fields. In a similar vein, this adjoint analysis

can be used in conjunction with other assimilation schemes (3D-Var, suboptimal KF) to interrogate what

model parameters are driving the residual differences with the observations.

The comparison results presented here will guide the choice of the best assimilation scheme for the prob-540

lem at hand. The sub-optimal Kalman filter and the 3D-Var solution provide useful solutions that do not

require significant changes as the forward model physics and chemistry are updated. By virtue of their

simplicity, they make less model assumptions, e.g., all differences between observation and forecast can

be attributed to initial conditions, and therefore can be robust under a variety of conditions. On the other

hand, the 4D-Var approach provides a physically consistent solution where uncertainties are ascribed to a545

combination of initial and boundary conditions. This physical consistency makes it more straightforward

to interpret and make scientific inferences. We have introduced a new method that applies the adjoint

sensitivity to help interpret the 3D-Var solutions, which provides a kind of middle ground between the

more efficient 3D-Var approach and the more sophisticated 4D-Var approaches. Interesting extensions of

the GEOS-Chem data assimilation framework, such as efficient information content estimation of obser-550

vations and construction of full rank covariance matrices, are discussed in companion papers Singh et al.

(2010a,b,c).
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Appendix A The 3D-Var equivalent initial condition

Finally, we want to determine the “3D-Var equivalent initial condition” xe(3)
0 such that the resulting trajec-

tory fits best the 3D-Var analysis in a least squares sense. To our knowledge, no attempt has been made

to date to estimate the equivalent effect of all 3D-Var corrections at the initial time. (Note that the 3D-Var

analysis is not a trajectory of the model). The dynamic equations for the 3D-Var trajectory, linearized

about the 4D-Var analysis, read:

xa(3)
i −xa(4)

i =Mi ·
(

xe(3)
0 −xa(4)

0

)
+ θi , i = 0,··· ,N . (A1)

The errors θi = xa(3)
i − xe(3)

i are assumed to be normally distributed with mean zero and covariance Qi.

We now seek the equivalent 3D-Var initial condition that solves (A1) in a least squares sense. The scaled

linearized dynamic equations are

Q−1/2
i Mi

(
xe(3)

0 −xa(4)
0

)
−Q−1/2

i

(
xa(3)

i −xa(4)
i

)
=Q−1/2

i θi , i = 0,··· ,N ,

and involve the scaled residuals Q−1/2
i θi which are standard normal random vectors. Therefore the least

squares solution is the one that minimizes the sum of scaled residual norms squared

xe(3)
0 = argmin

N

∑
i=0

∥∥∥Mi

(
xe(3)

0 −xa(4)
0

)
−
(

xa(3)
i −xa(4)

i

)∥∥∥2

Q−1
i

.
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The minimum of this quadratic function is obtained by imposing that its gradient equals zero. This leads

to the following system of linear equations:(
N

∑
i=0

MT
i Q−1

i Mi

)
︸ ︷︷ ︸
∇2

xa
0,xa

0
D
(

xa(4)
0

)
(

xe(3)
0 −xa(4)

0

)
=

N

∑
i=0

MT
i Q−1

i

(
xa(3)

i −xa(4)
i

)
︸ ︷︷ ︸

∇xa
0
D
(

xa(4)
0

)
.

Therefore the least squares solution to finding the 3D-Var equivalent initial condition is

xe(3)
0 = xa(4)

0 −
(
∇2

xa
0,xa

0
D
(

xa(4)
0

))−1
·∇xa

0
D
(

xa(4)
0

)
. (A2)

Consider a standard normal random perturbation is applied at t0 to the 4D-Var optimal initial condition.

This perturbation is propagated through the linearized model, and its covariance at ti is MiMT
i . Let

Qi = ρi MiMT
i in (23) in order to account for an increasing error with the model evolution. The scalar

weights ρi decrease with i, to account for the reduction in uncertainty through 3D-Var assimilation, and

are chosen such that ∑N
i=0 ρi = 1. Using the fact that MT

i Q−1
i Mi = I for all i we have that the equivalent

3D-Var initial solution is

xe(3)
0 = xa(4)

0 −
N

∑
k=0

MT
i Q−1

i

(
xa(4)

0 −xa(3)
0

)
= xa(4)

0 −∇xa
0
D
(

xa(4)
0

)
.

The 3D-Var solution has incorporated all the observation information when it reaches tN , the end of the

assimilation window. Therefore it makes sense to choose ρ0 = ···= ρN−1 = 0 and ρN = 1 in order to have

the equivalent initial condition match the 3D-Var analysis only at the final time. In this case

xe(3)
0 = xa(4)

0 −
(

MT
N Q−1

N MN

)−1
MT

N Q−1
N

(
xa(4)

0 −xa(3)
0

)
. (A3)
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