

Fig 1: Number of cruise tracks undertaken onboard ORV Sagar Kanya in the Bay of Bengal during the continental outflow (Jan-mid April). The cruise undertaken in Sept-2002 represents the SW-monsoon conditions with complete reversal of winds (wind vectors are shown in Fig.2). The month of April is a transition period with winds from north easterly switching over to south westerly.

Fig 2: Typical surface wind vectors during the NE-monsoon (Jan-April) and SW-monsoon (Jun-Sept).

Fig. 3: Spatio-temporal variability of water-soluble inorganic constituents (WSIC) in the two size fractions during the cruise undertaken in the Bay of Bengal in Jan 2009.

Fig 4: PM_{10} water-soluble inorganic constituents and their fractional contribution to $\Sigma WSIC$ (sum of all measured cations and anions) averaged for all samples during respective cruises in the Bay of Bengal (Jan to mid-April). The high abundance of Na⁺ and Cl⁻ in Sept-2002 cruise is consistent with SW-monsoon conditions.

Fig. 5: Linear relationship between (a) SO_4^{2-} vs. nss- SO_4^{2-} (b) K⁺ vs. nss-K⁺ (c) Ca²⁺ vs. nss-Ca²⁺, further confirm anthropogenic impact on the MABL of Bay of Bengal during NE-monsoon (Jan-Mar).

Fig.6: Scatter plots for mass concentrations of (a) $nss-SO_4^{2-}$ and $nss-Ca^{2+}$ (b) $nss-K^+$ and $nss-Ca^{2+}$, suggest dominant contribution of anthropogenic constituents during winter months (Jan-Feb) with relatively high concentration of $nss-K^+$ and $nss-SO_4^{2-}$ compared to late NE-intermonsoon period (Mar-April).

Fig. 7: Equivalent mass concentrations plotted among $(Na^++NH_4^++Ca^{2+})$ and nss- SO_4^{2-} , suggest that excess acid (defined as remainder fraction after neutralization with ammonia) interacts with mineral aerosols (enhancing the solubility of Ca^{2+}) and sea-salts (leading to chloride depletion from NaCl).

Fig. 8: Comparison of ratio of mass concentrations of NO₃^{-/}nss-SO₄²⁻ for the aerosols collected during the continental outflow (Dec-April).

Fig 9: Spatio-temporal variability of carbonaceous species (OC, EC) and OC/EC ratio in the two size fractions; distinctly high concentrations of EC, OC and OC/EC ratios are consistent with abundance of other chemical constituents in samples collected along the coast in the north Bay of Bengal.

Fig. 10: Mean and standard deviation of Fe/Al, Ca/Al, Mg/Al and Ca²⁺/Ca ratios over the Bay of Bengal (data from Mar-April 2006 and Jan 2009) compared with the Arabian Sea (April-May 2006). The distinctly higher Fe/Al ratios over Bay of Bengal (Mar-April 2006) and Arabian Sea (April-May 2006) are associated with the transport of dust from desert regions. This is also supported by higher Ca/Al and Ca²⁺/Ca ratios.

Fig.11: Average chemical components of PM2.5 mass concentrations over the North- and South-Bay of Bengal. The measured mass concentrations of individual components (Mineral dust, Sea-Salt, Anthropogenic Species, EC and Organic Matter (OM) are forced to 100 % which yields a factor of 2.6 to convert OC to OM.

	N-BoB		S-BoB			N-BoB		S-BoB	
	Range	$Mean \pm SD$	Range	$Mean \pm SD$	Parameter	Range	$Mean \pm SD$	Range	$Mean \pm SD$
PM _{2.5}	13.2 - 76.7	38.0 ± 20.2	2.0 - 35.3	22.3 ± 9.9	PM_{10}	16.2 - 108	57.8 ± 30.6	6.0 - 60.7	32.2 ± 15.1
Na+	0.06 - 0.58	0.18 ± 0.14	0.1 - 0.9	0.4 ± 0.2	Na^+	0.12 - 3.7	$0.9\pm\ 0.9$	0.6 - 4.8	2.4 ± 1.1
NH4+	0.37 - 10.1	4.4 ± 3.0	0.3 - 4.1	2.1 ± 1.2	NH4+	0.25 - 12.2	$5.1\pm~3.8$	0.06 - 4.1	1.4 ± 1.4
K+	0.21 - 1.1	0.6 ± 0.3	0.1-0.7	0.5 ± 0.2	\mathbf{K}^+	0.33 - 1.3	$0.7\pm~0.3$	0.15 - 1.0	0.6 ± 0.3
Mg2+	BDL - 0.1	0.03 ± 0.02	0.01 - 0.11	0.05 ± 0.03	Mg^{2+}	0.04 - 0.4	$0.1\pm~0.1$	0.07 - 0.5	0.3 ± 0.13
Ca2+	0.03 - 0.14	0.07 ± 0.03	0.01 - 0.12	0.06 ± 0.03	Ca ²⁺	0.11 - 0.5	$0.3\pm~0.1$	0.02 - 0.4	0.2 ± 0.1
Cl-	BDL - 0.1	0.06 ± 0.02	BDL - 0.4	0.2 ± 0.1	Cl	BDL - 1.5	$0.3\pm~0.4$	0.04 - 1.2	0.5 ± 0.3
NO3-	0.05 - 1.4	0.37 ± 0.41	BDL - 0.2	0.1 ± 0.04	NO_3^-	0.1 - 2.6	$1.0\pm~0.8$	0.17 - 1.3	0.8 ± 0.4
SO42-	1.6 - 28.5	11.9 ± 7.8	1.3 - 12.1	7.0 ± 3.1	$\mathbf{SO_4}^{2-}$	2.6 - 35.1	15.2 ± 9.3	2.3 - 18.1	8.9 ± 4.2
OC	1.6 - 11.6	5.9 ± 3.7	BDL - 5.3	2.6 ± 1.9	OC	1.9 - 19.7	$9.1\pm~6.0$	0.4 - 8.5	3.9 ± 2.8
EC	0.8 - 5.0	2.0 ± 1.3	0.2 - 1.8	1.2 ± 0.4	EC	1.0 - 6.7	2.7 ± 1.7	0.2 - 2.3	1.1 ± 0.5
Al^*	BDL - 1077	349 ± 275	28.9 - 446	146 ± 107	Al	356 - 3468	1769 ± 1081	205 - 736	555 ± 153
Ca^*	BDL - 176	61 ± 35	27.8 - 110	57 ± 22.9	Ca	157 - 732	381 ± 182	41 - 433	241 ± 101
Fe^*	32 - 612	144 ± 140	14.8 -85.0	55.7 ± 22.9	Fe	127 - 1651	754 ± 517	31 - 382	213 ± 103
Mg^*	28 - 152	56 ± 29	25.3 - 120	61.1 ± 25.5	Mg	135 - 580	278 ± 125	71 - 579	341 ± 129
Pb^*	5.9 - 39.3	21 ± 11	2.4 - 41.1	20.6 ± 11.4	Pb	8.7 - 57	30.5 ± 17.3	2.7 - 70	28.7 ± 20.3
Cd^*	0.07 -2.0	1.0 ± 0.6	0.04 - 1.4	0.7 ± 0.4	Cd	0.1 - 3.0	$1.3\pm~0.9$	0.03 - 2	0.9 ± 0.6

Table 1: Range and average concentrations ($\mu g m^{-3}$) of chemical species in $PM_{2.5}$ (for N = 31) and PM_{10} (N = 33) collected from the MABL of Bay of Bengal along with standard deviation of the data.

Note: * in ng m⁻³.

	PM ₁₀		PM _{2.5}					
Variable	Factor (1)	Factor (2)	Factor (1)	Factor (2)	Factor (3)	Factor (4)		
Na ⁺	-0.28	0.94	-0.23	0.05	0.92	-0.04		
$\mathrm{NH_4}^+$	0.91	-0.34	0.86	0.22	-0.24	0.30		
\mathbf{K}^+	0.92	0.25	0.85	0.05	-0.01	0.39		
Mg ²⁺	-0.09	0.97	0.14	0.20	0.91	-0.11		
Ca ²⁺	0.92	0.21	0.68	0.41	0.31	-0.18		
NO ₃ ⁻	0.56	0.46	0.23	0.01	-0.09	0.90		
SO ₄ ²⁻	0.93	-0.08	0.89	0.23	-0.16	0.23		
OC	0.94	-0.09	0.66	0.14	-0.16	0.63		
EC	0.90	0.05	0.64	0.06	-0.06	0.70		
Al	0.89	-0.32	0.29	0.89	-0.07	-0.03		
Ca	0.97	0.12	-0.08	0.81	0.35	0.09		
Fe	0.92	-0.22	0.16	0.93	0.09	0.11		
Mg	0.26	0.93	-0.12	0.67	0.65	-0.09		
Pb	0.73	0.32	0.90	-0.11	0.06	0.07		
Cd	0.88	0.03	0.92	0.03	-0.06	0.21		
Expl.Var	9.43	3.41	5.48	3.11	2.45	2.12		
Prp.Totl	0.63	0.23	0.37	0.21	0.16	0.14		
source	continental	marine	bb	dust	sea-salt	ff-comb		

Table 2: Principal component analysis (PCA) of chemical constituents in PM_{10} and $PM_{2.5}$ fractions.

Note: bb = bio-mass burning; ff-comb= fossil-fuel combustion; Expl.Var = Explained variance; Prp. Totl = proportion of total variance.