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1 Introduction

This supplementary material is in three parts:-
— Section 2:- Extra figures referred to in the main paper
— Section 3:- The use of SMARTS to provide groups from molecular structures.

- Section 4:- The correction to the Nannoolal Tb method for dicarboxylic acids.

2 Extra figures referred to in the main paper

Figures S1 and S2 show predicted particulate properties across a range of emissions
with the BVOC level held constant at 0.01times that of the standard scenario (S1), and
with the AVOC level held constant at the same value (S2).

Figure S5 shows very similar scatter for two extreme conditions for the standard
scenario and they both look very similar to Figure 3 in the main paper. This supports
the change in compound ordering being relatively insensitive to the conditions used for
the partitioning.
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Fig. S1. Surface plots of key properties for those scenarios with very low biogenic inputs (BVOC
= 0.01x typical UK emissions) at conditions T = 293.15K, %RH = 70 and 3.0 ugrams.m—3
involatile core. SOA mass is in ugrams.m—3)
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Fig. S2. Surface plots of key properties for those scenarios with very low anthropogenic in-
puts (AVOC = 0.01x typical UK emissions) at conditions T = 293.15K, %RH = 70 and 3.0
ugrams.m~—3 involatile core. SOA mass is in ugrams.m—3
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Fig. S3. Surface plots of the distribution of key functional groups for those scenarios with very
low biogenic inputs (BVOC = 0.01x typical UK emissions) at conditions T = 293.15K, %RH =
70 and 3.0 pgrams.m~2 involatile core. The plots show the average number of the specified
functional group per molecule in the SOA
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Fig. S4. Surface plots of the distribution of key functional groups for those scenarios with very
low anthropogenic inputs (AVOC = 0.01x typical UK emissions) at conditions T = 293.15K, %RH
= 70 and 3.0 ugrams.m~2 involatile core. The plots show the average number of the specified
functional group per molecule in the SOA
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Fig. S5. Scatter plots showing the changes in the order of the top 200 compounds contributing
to predicted SOA mass, compared to the base case (X-axis). SOA compositions used were
from the standard (1.0/1.0/1.0) scenario; with:- panel A- T = 273.15K, %RH = 80 and 3.0
ugrams.m—3 involatile core; panel B- T = 303.15K, %RH = 10 and 3.0 ugrams.m—3 involatile
core. Key to the models is the same as in Figure 3 in the main paper:- Black circles:- Non Ideal;
Yellow squares:- Hydrolysed; Blue circles:- SB-N/VP; Red circles:- JR-N/VP; Green asterisks:-
N-MY; Blue asterisks:- SB-MY; Red asterisks:- JR-MY.



3 The use of SMARTS to identify groups for the Group Contribution Methods
from molecular structures.

The software used to parse molecular structures into the groups required for the phys-
ical property estimation methods is written in Python. A Python interface has been de-
veloped for our selected chemical parsing software (OpenBabel)(O’Boyle et al., 2008).
The Automated extraction of molecular substructure information is performed using the
SMILES format (Simplified Molecular Input Line Entry System) for the target molecule.
SMILES is a simplified chemical notation that allows a user to represent a two dimen-
sional chemical structure in linear textual form. The notation is commonly employed
in commercial and public software for prediction of chemical properties. It can be im-
ported by most molecule editors for conversion into 2D/3D models and has a wide base
of software support and extensive theoretical backing (see www.daylight.com). The
OpenBabel chemical toolbox has the ability to filter and search molecular files using
the SMARTS format (created by Daylight Chemical Information Systems, Inc alongside
the SMILES format). SMARTS have been used, often in addition to descriptors derived
from molecular modeling software, in the prediction of aqueous solubility of drug-like
molecules (Hou et al., 2004; Klopman et al., 1992; Klopman and Zhu, 2001). Predic-
tion of pure component vapour pressures requires development of bespoke SMARTS
libraries. For this work, SMARTS libraries have been designed for a set of vapour pres-
sure models using the 2742 compounds within the master chemical mechanism (MCM;
Jenkin et al. (2003). Figure S6 shows the SMARTS required to identify some functional
groups (Nannoolal primary groups see - Nannoolal et al. (2004)) that contribute to the
structure of selected MCM compounds shown in Figure S7:-



Table S01:- SMARTS for some key Nannoolal primary groups

Functional Group Nannoolal Group SMARTS
A -COOH NG_44 #BIICX3)(=[OX1]HOX2;:H1]
B -OCH New group [#6;1S([CX3)=[OX1])][OX2][0X2;H1]
C -OH(primary) NG_35o0r NG_36
SMARTS:-

a-{0X2H1][CX4;H2 H3]

b-[OX2;H1;!S(O[H#6][#6 #7 #B][#6,#7 #B)[#5,#7 #8][#6])][CX4,H2 HI'S(O[#6][#6 47 #8][#6 #7 #8]
#6,#7 #8][#6])
L:-EOXZ H]!I :!S;I(i]f)[#ﬁ][#ﬁ,#?,#ﬁ][#ﬁ.#?]{ [#B])[#6])][CX4:H2 H3;I$(O[#6][#6,%#7 #8][#6.#T)([#6])[#6]))

d:-[OX2:H1:1$(O[#E][#6, #7]([#6])[#6, 47 #8][#6])][CX4:H2, H3;1$(O[#6][#6 #7)([#6])[#6 47 #8)[#6])]
e:-[OX2;H1IS{O[#6][#6]([#6][#6])[#6])][CX4:H2, H3.|S(O[#E][#6]([#6] H[#6])[#6])]

O -OH(vinyl) assigned to - [OX2;H1;${[OX2;H1])[CX3]=[CX3])]
OH(sec) NG_34
E -OH(tertiary) NG_33 [OX2;H1:$([OXZ:H1)[CX4:HO))]
F -NO2Z(aliphatic) NG_68 [CINX3)(=[OX1])}{=[OX1])
G -ONO2 NG_72 [#E61S([CXI]=[OX1])[OX2)NXI)(=[OX1]){(=[0OX1])
H >C=0(aliphatic) NG_51 [ClICX3)(=0)[C]
I -CHO({aliphatic) NG_52 [CX3:H1)(=0)[C]
J -00-(bridging) NG_94 [#6][OX2;R][OX2;R][#6]

Fig. S6. SMARTS for some key Nannoolal primary groups

With regards to Figure S6, there are some specific items to consider for functional
groups 'B’, 'C’ and 'D’. B:- Recursive SMARTS ”I$([CX3]=0X1])” is used to specify



that the carbon holding the hydroperoxide group must not also be double bonded to
an oxygen (to avoid hitting peroxyacids. C:- It is easier enough to identify all primary
alcohols (SMARTS a) but the Nannoolal method requires primary alcohols to be split
between NG_35 (carbon chain of 5 or more atoms) and NG_36 (primary alcohols on a
C4 or smaller chain) although the exact criteria for this split is not clear in the literature.
In this work the allocation of primary alcohols is achieved using a set of five SMARTS.
SMARTS b identifies whether the primary alcohol is on a carbon chain of 5 or more
atoms. This chain has to be terminated by carbon atoms (which may bear functional
groups that are not part of this count), but the intermediate atoms can be N or O as
well as C. Hence (using SMILES notation) OCCCO and OCCCCO would both have
two alcohol groups belonging to NG_36 while OCCCCC, OCCOCC and OCCN (C)CC
would have primary alcohols belonging to NG_35. The other three SMARTS account
for the possible branching of this heavy atom chain:- thus OCC(C)(C) and OCN(C)C
would both be NG_36 alcohols while OCC(C)(C)C and OCN(C)CC would be NG_35
alcohols. D:- Alcohol groups attached to a carbon-carbon double bond (vinyl alcohols)
are not covered by the Nannoolal method. These SMARTS are used to identify vinyl
alcohols which are then treated like secondary alcohols within the GCM.
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Fig. S7. Identification of some key functional groups for a small selection of MCM compounds.
The functional groups are identified with letters and the associated SMARTS, for use with the
Nannoolal group contribution methods, are given in Figure S4.



4 The correction to the Nannoolal Tb method for dicarboxylic acids.

In Barley and McFiggans (2010) it was shown that the slope of a vapour pressure curve
with temperature, estimated using the Nannoolal method (Nannoolal et al., 2008), was
generally accurate. The main source of error in in the estimation of vapour pressure
was in the calculation of the Tb value. In a further development of the Nannoolal
vapour pressure equation Moller et al. (2008) recognized that strongly hydrogen bond-
ing groups such as alcohols and carboxylic acids were not adequately represented in
the Nannoolal method and included extra terms in the vapour pressure equation to
handle multiple occurrences of these groups. It is not surprising that similar issues
affect the estimation of Tb values and this is shown by the discrepancies between pre-
dicted Tb values for dicarboxylic acids by the Nannoolal Tb method (Nannoolal et al.,
2004) and experimentally measured vapour pressures for a range of linear dicarboxylic
acids.

Fifty four sets of experimental vapour pressure data for dicarboxylic acids from 12
sources were obtained from the literature. In most cases the experimental data were for
solid state samples so experimental latent enthalpies of fusion were required to correct
the solid state vapour pressure values to sub-cooled liquid values (Barley and McFig-
gans, 2010; Prausnitz et al., 1986). The vapour pressure values were then extrapolated
using the Nannoolal vapour pressure equation up to one atmosphere to obtain an ex-
perimentally derived estimate of the normal boiling point for the diacid. These values
are plotted, along with the estimated Tb values by the Nannoolal method, in Figure
S8:-

Although there is considerable scatter in the values it is clear that the Nannoolal
method is substantially underpredicting the Tb for dicarboxylic acids, especially those
of low carbon number. From these data A T (the difference between the experimen-
tally derived Tb value and the value estimated by Nannoolal) could be calculated and
then correlated as a function of carbon number. The correction to the Nannoolal Tb
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Fig. S8. A comparison of the experimentally derived normal boiling point values for a range
of linear dicarboxylic acids with the boiling points estimated by the Nannoolal Tb method (red
line).



estimation methods for dicarboxylic acids is:-
AT = —9.2169C + 84.11 (1)

where C is the number of carbon atoms in the diacid. This correction is about +50K
for a C4 diacid, +20K for a C7 and becomes negative for a C10 molecule. It should not
be used outside the range C3-C12.
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