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Abstract     

 

Cloud Fraction (CF) is the dominant modulator of radiative fluxes. In this study, we 

evaluate CF simulated in the IPCC AR4 GCMs against ARM long-term ground-based 

measurements, with a focus on the vertical structure, total amount of cloud and its effect on 

cloud shortwave transmissivity. Comparisons are performed for three climate regimes as 

represented by the Department of Energy Atmospheric Radiation Measurement (ARM) sites: 

Southern Great Plains (SGP), Manus, Papua New Guinea and North Slope of Alaska (NSA). Our 

intercomparisons of three independent measurements of CF or sky-cover related datasets reveal 

that the relative differences are usually less than 10% (5%) for multi-year monthly (annual) mean 

values, while daily differences are quite significant. The total sky imager (TSI) produces smaller 

total cloud fraction (TCF) compared to a radar/lidar dataset for highly cloudy days (CF>0.8), but 

produces a larger TCF value than the radar/lidar for less cloudy conditions (CF<0.3). The 

compensating errors in lower and higher CF days result in small biases of TCF between the 

vertically pointing radar/lidar dataset and the hemispheric TSI measurements as multi-year data 

is averaged. The unique radar/lidar CF measurements enable us to evaluate seasonal variation of 

cloud vertical structures in the GCMs.  

Both inter-model deviation and model bias against observation are investigated in this 

study. Another unique aspect of this study is that we use simultaneous measurements of CF and 
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surface radiative fluxes to diagnose potential discrepancies among the GCMs in representing 

other cloud optical properties than TCF. The results also show that the model-observation and 

inter-model deviations have similar magnitudes for the total CF (TCF) and the normalized cloud 

effect, and these deviations are twice as large as the deviationsthose in surface downward solar 

radiation and cloud transmissivity. This implies that other cloud properties, such as cloud optical 

depth and height, have a similar magnitude of disparity to TCF among the GCMs, and suggests 

that the better agreement among the GCMs in solar radiative fluxes is likely the result of 

compensating errors in cloud vertical structure, cloud optical depth, overlap assumption and 

cloud fraction. The internal variability of CF simulated in ensemble runs with the same model is 

very minimal. Similar deviation patterns between inter-model and model-measurement 

comparisons suggest that the climate models tend to generate larger biases against observations 

for those variables with larger inter-model deviation.  

Differences are found in The GCM performance in simulating the probability distribution, 

transmissivity and vertical profiles of cloud are comprehensively evaluated over the three ARM 

sites: Southern Great Plains (SGP), Manus, Papua New Guinea and North Slope of Alaska 

(NSA).. The GCMs perform better at SGP than at the other two sites in simulating the seasonal 

variation and probability distribution of TCF. However, the models remarkably underpredict the 

TCF at SGP and cloud transmissivity is less susceptible to the change of TCF than observed. 

Much larger inter-model deviation and model bias are found over NSA than the other sites, 

suggesting that the Arctic region continues to challenge cloud simulations in climate models.  In 

the tropics, most of the GCMs tend to underpredict CF and fail to capture the seasonal variation 

of CF at middle and low levels. The high altitude-level CF is much larger in the GCMs than the 

observations and the inter-model variability of CF also reaches a maximum at high levels in the 

tropics, indicating difficultiesdiscrepancies in the representation of ice cloud associated with 

convection in the models. While the GCMs generally capture the maximum CF in the boundary 

layer and vertical variability, the inter-model deviation is largest near the surface over the Arctic. 

  



3 

 

1. Introduction 

Three dimensional general circulation models (GCMs) are probably the most powerful 

tools currently available to quantitatively investigate the EarthEarth’s climate system and to 

predict future climate change, which is affected by human activities that cause changes in 

greenhouse gases, aerosols, and land use and land cover (IPCC, 2007). From a physical point of 

view, anthropogenic climate change is first of all a perturbation of the Earth’s radiation balance 

(Wild, 2008). Realistic simulation by GCMs of the perturbations of radiationradiative forcing is 

an important pre-requisite for projecting reliable future climate responses. As Webb et al. 

(2001)As Webb et al. (2001) emphasize: “If we are to have confidence in predictions from 

climate models, a necessary (although not sufficient) requirement is that they should be able to 

reproduce the observed present-day distribution of clouds and their associated radiative fluxes.” 

Many previous studies have evaluated GCMs’ performance in simulating shortwave (SW) and 

longwave (LW) radiation under cloudy and cloudless skies, both at the surface, where global 

ground radiation measurement networks are available, and/or at the top of atmosphere (TOA), 

where satellite observations can be used as constraints (e.g. Garratt, 1994; Wild et al., 1995, 1998, 

2008; Li et al, 1997; Walsh et al., 2008). These studies found that GCMs hadwere better at 

producing the mean TOA radiation budget than the surface radiation budget, although there were 

significant biases and inter-model variability in estimating the SW and LW radiation in particular 

regions (Wild and Liepert, 1998; Wild et al., 1999, 2005; Walsh et al., 2008; Wild, 2008). 

Although in some cases good agreement was found between the observed and modeled cloud 

radiative forcing, that could be a result of compensating errors in either cloud vertical structure, 

cloud optical depth or cloud fraction (Potter and Cess, 2004). 

The climate science community has identified cloudclouds as one of the highest priorities 

in climate modeling and climate change projection (IPCC, 2001, 2007). Accurate representation 

of cloud-radiation interactioninteractions is critical for climate models to simulate the evolution 

of the climate system. Cloud isClouds are also an essential variable in the climate system 

because it isthey are directly associated with precipitation through its microphysical 

processprocesses and with the aerosol loading through the aerosol aqueous-phase chemistry and 

wet removal process. Physically, cloud-radiation interactions depend largely on the cloud 

macrophysical (e.g. cloud fraction, liquid and ice water path) and microphysical (e.g. cloud 
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droplet number, size, and shapeice particle habit) properties. Cloud Fraction (CF) has long been 

recognized as a dominant modulator of radiation flux at both the surface and the top of the 

atmosphere (Xi et al., 2010). For example, a 4% increase in the area of the globe covered by 

marine stratocumulus clouds would offset the predicted 2–3 K rise in global temperature due to a 

doubling of atmospheric carbon dioxide (Randall et al. 1984).Randall et al. 1984). Although 

considerable uncertainties are still associated with the cloud feedbacks in GCMs, one can assume 

that to reasonably simulate futureglobal climate, these models should be able to accurately 

reproduce the current climatology of cloud fraction (including vertical structure) at a given 

location.  

The vertical distribution of clouds affects the vertical heating rate profiles through 

radiative and diabatic processes, and thus influences the atmospheric stratification and general 

circulation (e.g., Stephens et al., 2002).Stephens et al., 2002). Recent studies have revealed that 

the uncertainty in estimating the cloud occurrence at different levels is much larger than in 

estimating the total cloud amount in most GCMs (Stephens et al., 2002; Zhang et al., 2005; 

Illingworth et al., 2007; Naud et al., 2008). By comparing the results of 10 GCMs to ISCCP and 

CERES datasets, Zhang et al. (2005) found that models simulated a four-fold difference in high-

top clouds against theStephens et al., 2002; Zhang et al., 2005; Illingworth et al., 2007; Naud et 

al., 2008). observations. Because different dynamical and thermodynamic conditions produce 

differing vertical distributions of clouds, accurately characterizing this vertical distribution in the 

model is critical to understanding cloud feedback processes.  

Simultaneously evaluating climatological simulations of cloud fraction, especially vertical 

structure, and radiation in GCMs against observations is difficult because of the lack of a long-

term continuous cloud observational dataset. In situ aircraft measurements reveal the 

macroscopic structure of clouds, but suffer from sampling problems and can only provide 1D 

cloud snapshots. Combining aircraft and ground-based instrumentation can provide a more 

comprehensive view of clouds and their radiative forcing, however the limitations of aircraft 

campaigns make this possible only for a number of isolated case studies raising the question of 

representativeness (Illingworth et al., 2007). Remote sensing from space has provided global 

cloud properties over many years (Rossow and Schiffer 1991; Webb et al. 2002001), but 

information concerning cloud vertical structure has been lacking. The recent launch of cloud 
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radar on CloudSat accompanied by the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite 

Observation (CALIPSO; Winker et al. 2003) provides valuable global cloud information 

including cloud vertical structure. However, this dataset is still relatively short, and is also 

limited to only two observational times per day, providing limited information on the diurnal 

cycle.  

A review by Wild (2008) indicates that the inter-model range in SW TOA flux is about 4% 

of its absolute value while the inter-model range in surface SW flux is up to 14% of its absolute 

value. This result is likely due to the relative availability of global satellite versus surface data 

and the adjustment of model cloud parameterizations to get agreement with global mean satellite 

observations. Thus, information on the relationships between clouds and surface fluxes is needed 

to further constrain the model parameterizations so that the correct radiation budget can be 

obtained at both the top and bottom of the atmosphere.  

In this study we use simultaneous measurements of cloud fraction and broadband radiation 

at the surface from the measurement sites operatedsponsored by the Department of Energy (DOE) 

Atmospheric Radiation Measurement (ARM) Program. Using radiometers, cloud radar and lidar 

systems, and other advanced instruments at five permanent sites located in several different 

climate regimes, ARM provides long-term and nearly continuous observations of the surface SW 

and LW radiative fluxes, sky cover and cloud vertical distributions. The long-term 

comprehensive ARM climatological dataset makesdatasets make it possible to evaluate the CF 

and surface radiation budgets simulated by GCMs simultaneously, which provides a unique 

opportunity to study the role of cloud in estimating the surface radiation budgets (Xie et al., 

2010).  Due to the different scales of the ARM measurements and the GCM simulations, as well 

as the difficulty inimpossibility of simulating exact weather systems in a free-running GCM, we 

do not perform direct hour-by-hour or daily comparisons, but instead use the multiple years 

ofmulti-year ARM data to evaluate the GCMs in a climatological sense. 

ARM instruments provide several CF or sky cover related products, such as cloud cover 

derived from the Total Sky Imager (TSI), Total Sky Covertotal sky cover (TSK) derived from 

the surface broadband SW radiometers during daytime (Long et al., 2006), effective sky cover 

(ESK) using broadband LW radiometers during both daytime and nighttime (Long and Turner, 

2008), and the frequency of hydrometeor occurrence statistics derived from the narrow field-of-
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view (FOV) lidar and radar observations (i.e. the Active Remote Sensing ofRemotely-Sensed 

Clouds Locations or ARSCL product, Clothiaux et al. 2000). Before these data can be used to 

validate GCM cloud statistics, it is necessary to evaluate the measurements by these different 

instruments and to see if they are consistent betweenamong themselves at different time scales. 

VariousOne difficulty is that various observational methods and climate models use different 

definitions for CF (Kassianov et al., 2005). For example, the International Satellite Cloud 

Climatology Project (ISCCP) defines “total cloud amount” as “the fraction of the earth’s surface 

covered by cloud” (Hahn et al. 2001Hahn et al. 2001). However, in surface observer climatology 

studies, it is defined as “the fraction of hemispherical sky covered by cloud” (Hahn et al. 

2001Hahn et al. 2001). Climate models, on the other hand, typically interpret CF as “the 

horizontal area fraction covered by clouds as viewed from nadir” (Del Genio et al. 1996Del 

Genio et al. 1996). Therefore, comparisons between these FOV and hemispheric observations are 

important if we want to utilize these data to evaluate climate models. Because of the difficulty in 

relating model variables to quantities retrieved from remote sensing observations, instrument 

simulators which use model output to directly simulate the signal that an instrument would 

observe have been developed in recent years. For climate models, these simulators have focused 

primarily on satellite observations to date. Development of techniques to simulate ground-based 

remote sensing observations of the type used in this study would be useful to alleviate some of 

the uncertainties in the model/observation comparisons. 

The aim of the present paper is to evaluate the CF simulations by the GCMs in the 4th 

assessment report of the Intergovernmental Panel on Climate Change (IPCC AR4,; IPCC, 2007), 

with a focus on the total cloud amount and the vertical structure of CF. Our assessment will 

seekseeks to identify systematic biases and inter-model deviation in cloud fields simulated in the 

GCMs across seasonal scales over different regions of the world (e.g. tropics, mid-latitude 

continent and Arctic). Conducting the analysis over three very different climate regimes provides 

a better understanding of the geographical variability of clouds and their radiative forcing and a 

stronger constraint on model simulations.  

We also discussexamine how the CF affects cloud transmissivity, a ratio of all-sky mean 

downwelling SW flux to the cloud-free sky mean, in both observations and GCMs. In the 

following sessionssections, we first introduce the IPCC AR4 GCMs and ARM datasets used in 
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the analysis (Section 2). In Section 3 we compare three CF-related ARM datasets and examine 

their consistency at different time scales. Then we evaluate the CF simulations in GCMs against 

theselected ARM observations, with Section 4 focusing on the total cloud amount and cloud 

transmissivity, and Section 5 focusing on the vertical profiles of CF. Summary and discussion 

are given in Section 6. Results of this study willcan help the climate modeling community to 

better understand the CF-related measurements from ARM sites and provide useful insights for 

improving the cloud-radiation interaction and the CF parameterization in climate models.  
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2. GCMs and ARM datasets 

2.1 IPCC AR4 GCMs 

The CF and radiative fluxes simulated by more than a dozen GCMs participating in the 

experiments for IPCC-AR4 are available from the program for climate model diagnosis and 

inter-comparison (PCMDI). This experimental framework is also known as the World Climate 

Research Program (WCRP) Coupled Model Intercomparison Project (CMIP3, Meehl et al., 

2007). It should be noted that some GCMs archived both total cloud amount and CF at each 

model layer, but some GCMs only archived total cloud amount. There are also models that did 

not archive cloud-free sky surface radiation fluxes. For a consistent and fair 

comparisonconsistency, we removed some GCMs from the pool. As shown in Table 1,use 

monthly mean CF and surface radiation fluxes from 11 selected GCMs are used in this study., as 

shown in Table 1. The 11 models included arewere from NCAR (model versions ccsm3 and 

pcm1), GFDL (cm2), GISS (e_r), CCSR (MIROC3_2 with high resolution), MRI (cgcm2), 

UKMO (hadcm3), MPI (echam5), CNRM (cm3), IPSL (cm4) and INM (cm3). The model 

outputs used in this study are from the AMIP (Atmospheric Model Intercomparison Project) 

experiment, in which identical observed SSTs were used for all GCMs. Over 20+ years of results 

are available approximately from 1980 to 1999, with starting and ending years slightly varied 

among the models. For moreMore information about the project and these models, the reader is 

referred to can be found at the website of PCMDI (http://www-pcmdi.llnl.gov/http://www-

pcmdi.llnl.gov/).  

 

Table 1 

CF is a critical variable in climate models in for determining the radiative fluxfluxes 

through the atmosphere and at the surface. ItDepending on the complexity of the model, CF may 

also be used in many other physics parameterizations in the model such as cloud microphysics, 

aerosol wet removal and convective transport. In this study, we focus on the role of CF in 

radiation, where the area-averaged CF is usuallyused.  As discussed in Brooks et al. (2005), 

although CF produced by most cloud schemes is volume-averaged, most GCMs assume that the 

cloudy area of a grid box fills the entire grid box in the vertical, thus essentially assuming area-

http://www-pcmdi.llnl.gov/
http://www-pcmdi.llnl.gov/
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averaged CF is the same as the volume-averaged CF. In GCMs, CF can be parameterized using 

statistic, diagnostic or prognostic approaches in the models. Table 1 also summarizes. Due to 

space constraints, we just summarize the CF parameterization schemes for all GCMs used in this 

study in Table 1; for more details of each cloud scheme, including references, see  

http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php. 

http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php. 

In GCMs, the vertical correlations between cloud layers have to be prescribed because 

cloud elements are often smaller than a typical GCM grid cell and there is no general theory for 

how different cloud systems should overlap (Collins, 2001). Assumptions about vertical overlap 

of clouds can affect the exchange of energy between the atmosphere and other components in the 

model, influencing not only radiative heating rates but also atmospheric temperature and 

hydrological processes (Collins, 2001). In the IPCC AR4 models, the most common overlap 

assumptions are maximum/random (Geleyn and Hollingsworth 1979). One type of 

maximum/random assumption has maximum cloud overlap in each of three regions representing 

the lower, middle, and upper troposphere, and random overlap between these regions (e.g., Chou 

et al. 1998). A second type of maximum/random overlap scheme has maximum overlap between 

clouds in adjacent levels and random overlap between groups of clouds separated by one or more 

clear layers (e.g., Zdunkowski et al. 1982). The latter form of maximum/random overlap was 

found to be more consistent with a statistical analysis of observed cloud distributions (Tian and 

Curry 1989). 

 

2.2 ARM Datasets  

 Our ground observational data are based on the measurements from three permanent 

ARM sites: the US Southern Great Plains (SGP) atsite in Lamont site, Oklahoma, the North 

Slope of Alaska (NSA) Barrow site, and the Tropical Western Pacific (TWP) Manus site, 

respectively representing. These sites represent mid-latitude continent, Arctic and tropical 

climate regions. Conducting the analysis over three very different climate regimes provides 

better understanding of the geographical variability of cloud and its radiative forcing and a 

stronger constraint on model simulations. , respectively. 

http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php
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ARM sites are equipped with ground-based active and passive remote-sensing 

instruments, including the millimeter-wavelength cloud radar (MMCR), the micropulse lidar 

(MPL), the laser ceilometer, broadband SW and LW radiometers, and the total sky imager (TSI). 

Through its value-added product (VAP) efforts, ARM has implemented advanced retrieval 

algorithms and sophisticated objective data analysis approaches to process and integrate data 

collected from these instruments (Xie et al., 2010). The CF and surface radiation fluxes data are 

available starting from late 1990s at mostBelow we give a brief overview of the sites. 

Approximately 10 years of valid data areobservational datasets used in this study. More details 

about these ARM data products used in this study can be found at in Xie et al. (2010).) and in the 

references therein. 

a) Radiation Flux and Total Sky cover (TSK) 

At the SGP site, surface radiation flux data are measured by three separate radiometer 

systems. An ARM Value Added Product called the Best Estimate Flux (the BEF data) (Shi and 

Long, 2002) combines the measurements from the three systems to produce the best estimate of 

surface radiation fluxes. For the NSA and TWP sites, the radiation measurements are from the 

SkyRad (sky radiation) and GndRad (ground radiation) systems measuring downwelling and 

upwelling fluxes, respectively. The total downwelling SW fluxes used in this study are primarily 

the sum of the direct plus diffuse components (measured by Eppley Normal Incidence 

Pyrheliometer and Eppley shaded Precision Spectral Pyranometers, respectively) whenever 

available; otherwise the global SW fluxes from the unshaded Eppley Precision Spectral 

Pyranometers are used. All radiation data used for this study have been quality tested using the 

QCRad (Quality Control for Radiation measurements) methodology of Long and Shi (2006, 

2008). After the quality tests, data are further processed by the Radiative Flux Analysis (RFA). 

The RFA is a collection of analysis tools that detects clear-sky periods and produces continuous 

clear (i.e. cloudless) sky estimates of SW fluxes (Long and Ackerman, 2000) and LW fluxes 

(Long and Turner, 2008) and infers bulk cloud properties such as daylight total sky cover (TSK (; 

Long et al., 2006), longwave effective sky cover (ESK (; Durr and Philipona, 2004), and cloud 

effective SW transmissivity from the broadband radiometer data. These measurements have a 

hemispherical FOV and thus provide time series of fractional sky cover (Kassianov et al., 2005).  
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The TSK measurements with 1-second sampling interval have hemispheric fields of view 

and hence are more related to fractional sky cover, the angular amount of the sky dome covered 

by clouds. The derived TSK is based on measurements, so also includes the uncertainties of the 

measured quantities themselves. The ARM Program documents the uncertainties in broadband 

radiation measurements (Stoffel, 2005) as 4 Wm-2 or 3% (whichever is greater in Wm-2) for 

diffuse SW, 20 Wm-2 or 6% for direct normal SW, and 4 Wm-2 or 4% for LW. For the direct 

component SW, then, the uncertainty is roughly the normal incidence uncertainty weighted by 

the cosine of the solar zenith angle or 20 Wm-2, whichever is greater. The clear-sky estimations 

for diffuse, direct, and total SW are about the root mean square (RMS) of twice the measurement 

uncertainty for the SW components (Long and Ackerman, 2000), and about 4-5 Wm-2 for the 

clear-sky LW (Long and Turner, 2008). Because the cloud effective SW transmissivity includes 

the instrument characteristics in both the numerator and denominator, the instrument 

characteristics are largely removed from the ratio. Thus the effective uncertainty of the ratio is at 

about the 2% level (Long and Ackerman, 2000). For TSK, there is no “truth” for sky cover 

because of the nebulous definition of what is and is not a cloud in the community. However, the 

TSK, as well as sky imager retrievals and human sky observations all tend toward the same 

definition of cloud. Comparisons between TSK and sky imager and human observations give 

agreement to better than 10% sky cover (Long et al, 2006). All ARM radiometer-based inferred 

quantities are produced at the same 1-minute resolution as the measurements, and averaged to 

longer temporal resolution as appropriate.  

b) Total Sky Imager (TSI) 

The ARM observational strategy does not include human observations, however the TSI 

is the instrument most similar to a traditional human observation of cloud cover.  The TSI takes 

hemispheric “fish eye” color digital pictures of the sky every 30 seconds during daylight hours 

from a camera mounted looking down on a curved mirror. These images are then processed to 

infer what fraction of the sky view contains cloud elements, or fractional sky cover. The 

processing uses the ratio of red to blue color values for each pixel in the sky image, except for 

that part of the image that is masked for the camera arm and sun blocking strip on the rotating 

mirror.  One advantage of sky imagers over human observations is consistency of the retrieved 

results, where the subjective nature that affects human observations is removed. An overview 
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and examples of this processing methodology are presented in Long (2010). Comparisons with 

TSK give overall agreement at better than 10% (Long at al., 2006) and with the Scripps Whole 

Sky Imager at the same level (Long et al., 2001).  

 

c) ARSCL Cloud Fraction 

By integrating the measurements from the MMCR, MPL and laser ceilometers, the 

ARSCL product provides an estimate of the total amount and best estimate vertical location of 

clouds (Clothiaux et al., 1999 and 2000). These are vertically pointing instruments havewith a 

narrow FOV and that can only detect clouds directly above them.the instruments. However, 

unlike the TSI and TSK measurements, they provide both vertical location of clouds and 

nighttime cloud detection. The CF of ARSCL CF is then derived based on the ARSCL cloud 

boundary information using the algorithm described in the Climate Modeling Best Estimate 

(CMBE, Xie et al., 2010 and also at http://science.arm.gov/wg/cpm/scm/best_estimate.html). In 

this algorithm, a cloud point is first determined by MMCR or MPL and then screened by the best 

estimate of cloud base from both laser ceilometers and MPL to reduceminimize the problem 

caused by precipitation in determining cloud base. As indicated in Clothiaux et al. (2000), the 

laser ceilometers and MPL can provide quite accurate cloud base measurements because they are 

usually insensitive to ice precipitation (if the concentration of precipitation particles is not 

sufficiently large) or clutter. The ARSCL CF is then calculated by averaging the cloud 

mask  points (where cloudy, clear or missing points are set) in athe one -hour time period. 

Therefore, the ARSCL CF actually represents the frequency of cloud occurrence rather than 

cloud fraction. Furthermore, since MMCR cannot separate cloud and precipitation particles 

throughout the vertical column, the derived ARSCL CF is contaminated by rain particles during 

precipitation periods, which should be borne in mind in comparing the ARSCL CF with other 

measurements and model data.fractional cloud area coverage.  

The cloud statistics obtained from such narrow FOV height–time transects might not be 

representative of a larger area surrounding these instruments at a short time scale (e.g. Berg and 

Stull, 2002; Kassianov et al., 2005), which is one reason we use longer-term observations for 

comparisons to the model results. Another issue with the ARSCL clouds is that cloud radar tends 

to underestimate the cloud top heights for thin high-altitude clouds because of detection limits 
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and signal attenuation (Comstock et al. 2002). The consequence of this problem has been 

mitigated with the use of ARM MPL in CMBE, which is sensitive to small cloud particles. The 

ARSCL cloud statistics used in this study are calculated based on data during periods when both 

MMCR and MPL were in operation. 

 

 d) Vertical mapping of CF  

The vertical resolution (layer thickness) of the ARSCL data and the models are quite 

different. We vertically mapped the CF from each GCM into the ARSCL vertical grid so the 

model-observation comparisons presented later are all based on the finer ARSCL vertical grid. 

Since the CF is assumed vertically constant within each GCM grid layer, we simply distribute 

the CF in each GCM layer evenly into the much finer ARSCL layer (about 45 m thick). This 

should be similar to using a simple average to map the finer vertical resolution ARSCL CF to the 

coarser GCM vertical grid, but allows us to have a single vertical grid for comparison (rather 

than mapping ARSCL to each GCM vertical grid with different layer thicknesses).  

CF and surface radiation data are available starting from late 1990s at most of the sites. 

Approximately 10 years of data are used in this study. There is occasional missingwere frequent 

data gaps in the ARM observations, especially at the remote Manus and NSA sites. In the 

analysis that follows, we require a To make full use of the ARM datasets, we setup the following 

individual rules for data selections. Overall, it’s required to have at least 30% or above of 

goodquality-controlled data for a day or hour to be included in the analysis. For dataset inter-

comparisons of two (or three) datasets against each otherat daily time scale, we use the exact 

same periods for whichwhen all involved datasets compared have good data. are available (e.g. 

for scatter and PDF Figures). For comparison of a single dataset against the GCMs at 

climatology scales, we include all goodavailable data from that dataset, without considering the 

availabilityregardless of the other two. Therefore, it’s possible that different volumes of the 

datasets.  are used for different purposes. 
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3. Inter-Comparisons of three ground-based CF related datasets 

The ultimate goal of this study is evaluation of GCM simulations of CF and surface 

radiative fluxes.  However, cloud amount can be defined in several different ways. Thus, 

beforeBefore presenting the evaluation of the GCM results, we first present inter-comparisons of 

the three ground-based CF related datasets at different time scales to understand the uncertainties 

inherent in the observed cloud amount. One definition of cloud amount is the angular amount of 

the sky dome that is covered by clouds, which is often called the fractional sky cover. The TSI 

and TSK measurements have hemispheric fields of view and hence are more related to fractional 

sky cover.  In contrast to the sky cover, the earth cover or cloud fraction is defined as the 

projection of clouds directly down to the surface. The ARSCL CF is derived from the narrow 

FOV radar and lidar measurements and is simply the percentage of returns that are cloudy within 

a specified sampling time period. That is, CF is the ratio of the number of 5-min samples when 

clouds were detected to the total number of 5-min samples when both radar and lidar/ceilometer 

instruments work. The cloud statistics obtained from such narrow FOV height–time transects 

might not be representative of a larger area surrounding these instruments at a short time scale 

(e.g. Berg and Stull 2002, Kassianov et al., 2005).  

To demonstrate the discrepancydifferences between the three datasets on a daily 

timescale, two time periods are selected here: April 29 to July 8 of 2006 and January 16 to 

March 26 of 2007 when all three datasets are available and both MPL and MMCR 

operateoperated normally in ARSCL. Figure 1 shows the time series of daily total cloud fraction 

(TCF) based on ARSCL, TSI, TSK and ARSCL minus TSK over Manus, averaged only for 

daytime hours between 08:00 to 17:00 (local time).  Overall the daytime TCF from ARSCL, TSI 

and TSK are temporally correlated, especially when TCF is lower (e.g. June 1 and 21 in 2006) 

and/or wind speed is larger (e.g. February 1 to 12 and February 28 to March 3 in 2007). However, 

apparent differences can be found among them, especially between ARSCL and the other two 

datasets. For example, ARSCL TCF is much larger than TSK and TSI around May 22-26, 2006, 

as highlighted in top-left panel. This overestimation of TCF by ARSCL is probably related to 

persistent cloudiness located directly overhead, as shown in one of the sky images for May 24, 
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2006 (top-right panel).) (Boers et al., 2010). An opposite case is for March 17-18 of 2007, as 

highlighted in the bottom-left panel, in which the ARSCL underestimates the TCF probably 

because the clouds are visible, but not directly overhead, as shown on one of the sky images for 

March 17, 2007 (bottom-right panel). The wind speed is generally less than 2 m s-1 for the above 

two cases, which implies that ARSCL tends to generate larger biases in estimating the TCF as 

the cloud isclouds are slowly moving or stationary, because the one hour temporal average 

represents a smaller spatial scale during these conditions.  

 
Figure 1 

  

The ARM sites represent three different climate regimes, so it is important to 

comprehensively compare the three CF measurements over the different sites. Here we first 

describe the three sites and their typical meteorological conditions and then present detailed 

analysis at daily and monthly time scales over each site. 

3.1 Manus 

Manus, one of the three TWP sites located in the Western Pacific Warm Pool region, is 

influenced by the El Nino-Southern Oscillation (ENSO), which also plays a large role in the 

interannual variability observed in the global climate system. The TWP region consistently has 

warm sea surface temperatures that produce large surface heat and moisture fluxes into the local 

atmosphere, causing the formation of deep convective cloud systems and consequent high-

altitude cirrus clouds.  

The scatter plots forcomparing the daily averaged ARSCL and , TSI, ARSCL and TSK, 

and TSI and TSK values over Manus for days when both datasets are available are shown in the 

top panel of Figure 2. The correlation coefficient between ARSCL and TSI is 0.63, and the root 

mean square deviation (RMSD) is 0.23, indicating a significant bias (>30%) between ARSCL 

and TSI on the daily timescale. There is also a similar significant inconsistency between ARSCL 

and TSK, with a correlation coefficient of 0.56 and RMSD of 0.24. (not shown). The correlation 
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coefficient between TSI and TSK is 0.79 and RMSD is 0.17, indicating a relatively smaller bias 

between TSK and TSI.  

Figure 2 

 

 As we are interested in examining the performance of GCMs in a climatological sense, 

we now examine multi-year monthly means and annual means of TCF from the three datasets 

over each site (Figure 3). There are approximately 10 years of data available for ARSCL and 

TSK over these sites. The TSI has fewer years of observations, especially at Manus and NSA. 

Since only 2-3 years of TSI data are available at NSA, we do not include it in this analysis. The 

average TCF ranges from 0.65 to 0.85 at Manus, with a minimum value in May. The overall 

seasonal variability of TCF is small over Manus. Compared to the daily-based TCF, the 

differences among the three multi-year averaged datasets are much smaller. The annual RMSD 

between ARSCL and TSI, ARSCL and TSK, TSI and TSK are all less than 0.075, indicating less 

than 10% disagreement among the three multi-year averages.  

Figure 3 

 

Given the large differences in the daily TCF between ARSCL and TSI/TSK, it is 

somewhat surprising that the monthly differences are less than 10%. Figure 4 (top) shows the 

frequency distribution of daily total sky cover or cloud fraction over Manus for multiple years of 

data. The TSI frequency is larger (smaller) than ARSCL when CF is less (larger) than 0.6. Also 

the difference between the TSI and ARSCL tends to be significant when CF is larger than 0.8 or 

smaller than 0.2. This is not surprising due to the several orders of magnitude difference in field-

of-view between the TSI and ARSCL. During days with large amounts of CF, because of the 

small sampling of the ARSCL narrow FOV, the ARSCL beam is more likely to be filled with 

cloud and hence overestimates the TCF. On days with lower cloud cover, the ARSCL beam is 

more likely to sample clear sky than cloud, and hence underestimates the TCF. The 

overestimation for larger CF by ARSCL is compensated by less frequent smaller CF, resulting in 

the small difference among the multi-year monthly mean CFs. The difference in the frequency 
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distributions between TSI and TSK are smaller because both of them have hemispheric fields of 

view. 

 

Figure 4 

 

3.2 SGP 

The SGP site is located in north-central Oklahoma, representing the interior regions of 

many mid-latitude continents, where the clouds are driven by frontal systems or by heating and 

local convection. The convection is usually short lived over the SGP and doesn’t have the 

extensive cirrus that is found in the tropics (Mace and Benson, 2008). Shallow cumuli often form 

in spring and summer under stable synoptic conditions with a strong surface forcing and well-

developed boundary layers (Berg et al., 2010). 

The scatter plots for the daily ARSCL and TSI, and TSI and TSK values over SGP are 

shown in the middle panel of Figure 2. The correlation coefficient between ARSCL and TSI is 

0.82, and the RMSD is 0.23, indicating a significant bias between ARSCL and TSI on the daily 

timescale. The correlation coefficient between TSI and TSK is 0.86 and RMSD is 0.20. The 

differences among three measurements as shown from scatter plots are similar at SGP with that 

at Manus.  

Figure 4 (middle) shows the frequency distribution of daily total sky cover or cloud 

fraction over SGP. While the occurrence frequency of cloudiness shows an upward trend with 

the increase of CF at Manus, much more clear sky days can be found at SGP than at either NSA 

or Manus, where most of the time there are clouds at least part of the day. The TSI frequency is 

larger (smaller) than ARSCL when CF is less (larger) than 0.3. The TSI is more than two times 

larger than the ARSCL when CF is less than 0.1. Similar to Manus, the difference of frequency 

distribution between TSI and TSK are much smaller than between TSI and ARSCL.  

The multi-year mean TCF over SGP ranges from 0.35 to 0.62 (Fig.3, middle). The 

overall magnitude of TCF is significantly smaller than over the tropics, although the seasonal 

variability is greater. The maximum TCF is during winter and spring and the minimum is during 
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July to September. Similar to the results seen at Manus, the monthly mean TCF from ARSCL is 

larger than that from TSI or TSK, but disagreement among the three datasets is less than 15%. 

3.3 NSA 

 The NSA site is located at Barrow, the northernmost location in Alaska. This site, 

located near cryospheric boundaries, has a prevailing east-northeast wind off the Beaufort Sea 

and is influenced by both extratropical and Arctic synoptic activity (Stone et al., 2002). Previous 

research has estimated that clouds in the Arctic are more prevalent and persistent than clouds 

elsewhere (Curry et al. 1996).  Additionally, the Arctic site has a large amount of mixed-phase 

clouds, which are not well treated in current climate models (Verlinde et al. 2007). 

The bottom panel of Figure 2 shows the scatter plots for the daily ARSCL and TSI, and 

TSI and TSK values over NSA. At NSA only days from April to September (when solar 

elevation is high enough for reliable TSI and TSK measurements) are used in this analysis. The 

correlation coefficient between ARSCL and TSI is 0.73, and the RMSD is 0.24, similar to that at 

the other two sites. The correlation coefficient between TSI and TSK is 0.90 and RMSD is 0.15, 

indicating a better agreement between TSI and TSK than at the other two sites.  

Figure 4 (bottom) shows the frequency distribution of daily total sky cover or cloud 

fraction over NSA. Similar with at Manus, the occurrence frequency of cloudiness shows an 

upward trend with the increase of CF and overcast skies (CF>0.9) account for almost 40% of 

days at NSA. Generally, the TSI frequency is larger (smaller) than ARSCL when the CF is less 

(larger) than 0.8. Similar to the other two sites, the difference of frequency distribution between 

TSI and TSK are smaller than between TSI and ARSCL.  

The multi-year mean ARSCL TCF ranges from 0.5 to 0.9 at NSA, showing a stronger 

seasonal variability over the Arctic than at Manus or SGP. TCF increases significantly from 

March to May (0.5→0.8), remains relatively high from May to October except for June and July, 

and then decreases from October to the next March. The maximum TCF occurs in August-

October and the minimum occurs in March. For the available months, the ARSCL and TSK 

match very well and the difference between them is less than 10%. 

3.4 A summary and discussion for inter-comparison of three datasets 
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For all sites, the correlation coefficients are higher and RMSD are lower for the TSI/TSK 

comparisons than for the ARSCL/TSI comparisons. This is not surprising because ARSCL is 

derived from the time-slice measurement with narrow lidar/radar FOV, but both TSI and TSK 

are from hemispheric observations.  

There are several possible reasons for the significant bias between the daily TCF from 

ARSCL and the TSI/TSK measurements. The first possibility is the different fields of view.  

Although one might expect the TSI/TSK to have a higher CF than ARSCL because the 

hemispheric FOV instruments willare more likely to be affected by cloud sides as well as cloud 

bases, it is also true that the narrow FOV ARSCL instrument samples only a very small fraction 

of the domain seen by the hemispheric view instruments (TSI and TSK).  Thus, if the cloud field 

is not isotropic, then sampling such a small portion of the cloud field could easily lead to large 

biases in CF over short time periods. Analysis by McFarlane and Evans (2004) shows that the 

Nauru cloud field is definitely anisotropic and therefore one would not expect the percentage of 

clouds seen by the zenith-pointing radar to be the same as the percentage of clouds in a 

hemispheric field of view. Similar analysis has not been done for the other sites, however, the 

Nauru site is significantly influenced by the local formation of clouds due to the prevailing wind 

direction and island heating and there is no indication that the other ARM sites would have 

similar biases.  Pincus et al (2005) used cloud scenes produced by a 3D large-eddy simulation 

model to simulate the CF that would be seen by a vertically pointing narrow FOV instrument and 

compare it to the model’s domain-mean CF. They found that the difference in cloud fraction 

varied from scene to scene and also depended on the averaging period used, with smaller 

differences over larger averaging periods. . 

Another reason for differences in the CF is that the TSI, broadband radiometer, and 

radar/lidar measurements use very different techniques to detect cloud and thus have different 

sensitivities to different types of clouds. The MPL instrument, which is included in the ARSCL 

TCF, can detect very optically thin cirrus clouds that may not significantly affect the broadband 

SW measurements used to determine the TSK cloud amount.  The significant bias between 

narrow FOV and hemispheric observations on a daily basis suggests thethat users should be 
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extremely cautious to use these datasets to quantitatively evaluate the hourly or daily CF 

calculated in climate models or retrieved by satellite instruments. 

Figure 2 

 

 As we are interested in examining the performance of GCMs in a climatological sense, 

we now examine multiple-year monthly means and annual means of TCF from the three datasets 

over the sites. There are approximately 10 years of data available for ARSCL and TSK over 

these sites. The TSI has fewer years of observations, especially at Manus and NSA. Figure 3 

shows the multiple-year averaged monthly mean TCF for ARSCL, TSI and TSK over Manus, 

SGP and NSA, respectively sites both have. The average TCF ranges from 0.65 to 0.85 at 

Manus, with a minimum value in May. The overall seasonal variability of TCF is small over 

Manus. Compared to the daily-based TCF, the differences among the three multi-year averaged 

datasets are much smaller. The annual RMSD between ARSCL and TSI, ARSCL and TSK, TSI 

and TSK are all less than 0.075, indicating less than 10% of disagreement among the three multi-

year averages.  

Given the large differences in the daily TCF between ARSCL and TSI/TSK, it is 

somewhat surprising that the monthly differences are less than 10%. Figure 4 shows the 

frequency distribution of daily total sky cover or cloud fraction over Manus for multiple years of 

data. The TSK of overcast cases and relatively few clear sky cases compared to SGP.  At Manus, 

much of the overcast is likely due to ice anvil and cirrus associated with deep convective 

systems, while at NSA there is often extensive low-level cloudiness. At all sites, the ARSCL 

frequency is larger (smaller)less than ARSCL TSI when CF is less (larger) than 0.6.small (< 0.3) 

and greater than TSI when CF is large (> 0.8). Also the difference between the TSKTSI and 

ARSCL tends to be significant when CF is larger than 0.8. This is not surprising due to the 

several orders of magnitude difference in field-of-view between the TSK and ARSCL. or smaller 

than 0.2. The compensating errors in  During days with large amounts of CF, because of the 

small sampling of the ARSCL narrow FOV, the ARSCL beam is more likely to be filled with 

cloud and hence overestimates the TCF. On days with lower cloud cover, the ARSCL beam is 

more likely to sample clear sky than cloud, and hence underestimates the TCF. The 
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overestimation for largerand higher CF by ARSCL is compensated by less frequent smaller CF, 

resultingdays result in the small difference among the multi-year monthly mean CFs. 

Figure 3 

 

 The mean TCF over SGP ranges from 0.35 to 0.62 (Figure 3b).  The overall 

magnitudebiases of TCF is significantly smaller than over the tropics, although the seasonable 

variability is greater. The maximum TCF is during winter between ARSCL and spring and the 

minimum is during July to September. Similar to the results seen at Manus, the monthly mean 

TCF from ARSCL is larger than that from TSI or TSK, but disagreement among the three 

datasets is less than 15%.  

The/ ARSCL TCF ranges from 0.5 to 0.9 at NSA, showing a stronger seasonal variability 

over the Arctic than at Manus or SGP. TCF increases significantly from March to May (0.5→

0.8), remains relatively high from May to October except for June and July, and then decreases 

from October to the next March. The maximum TCF occurs in August-October and the 

minimum occurs in March. The TSI data is available for fewer years at NSA so is not included in 

the multiple-year average. TSK measurements are only available from April to September at 

NSA because they are based on solar radiation. as multiple-year data is averaged.    For the 

available months, the ARSCL and TSK match very well and the difference between them is less 

than 10%.  

 

Figure 4 

 

Table 2 summarizes the annual mean TCF from the different observations and some 

previous studies over the three sites. The mean TCF over Manus derived from the ARSCL, TSI 

and TSK is 0.76, 0.74, and 0.71, respectively. We did not find any previous studies that 

summarized annual mean TCF over Manus. The TCF ranges from 0.45 to 0.51 over SGP, based 

on this and some previous studies. The TCF from ARSCL in SGP is 0.51 in this study, very 

close to the values (0.49-0.50) from other studies, including those from synoptic weather stations. 

The annual TCF based on ARSCL are larger than 0.73 over NSA, which are comparable to those 
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derived from ground-based radar/lidar observations during the Surface Heat Budget of the Arctic 

Ocean experiment and from satellite observations over the western Arctic regions (Walsh et al., 

2009). 

Table 2 

 

Although the point-to-point differences are significant among the three CF datasets on a 

daily basis, the differences are less than 15% in the multi-year monthly means and less than 5% 

in the annual means over the three sites. The differences in annual mean TCF among ARSCL, 

TSI, TSK and observation from synoptic weather stations are less than 0.04 (8-9%) over SGP. 

Additionally, it gives us some confidence in using the narrow field of view ARSCL data to 

assess the models’ vertical distribution of clouds. Thus the multi-year monthly means are the 

best available dataset to compare to the climate model results. However, this does not necessarily 

mean that the estimates of measured CF are unbiased, only that averaging over a longer time 

period and a multiplicity of cloud types tends to offset detection differences between the 

different instruments.  

Meanwhile, Xi et al. (2010) analyzed one decade of ARM ARSCL and Geostationary 

Operational Environmental Satellite (GOES) observations at the SGP site and revealed an 

excellent agreement in the long-term mean CF derived from the surface and GOES data. Dong et 

al. (2006), Xi et al. (2010Dong et al. (2006), Xi et al. (2010), and Kennedy et al. (2010) have 

also found ARSCL CF to be statistically representative in long-term monthly or annual averages 

of the entire sky when compared with long-term satellite and surface observations, suggesting 

that the long-term ARM point observations can represent large areal observations. The 

consistency between long-term mean narrow FOV, hemispheric and satellite observations 

provides confidence for using ARM multi-year averaged monthly data to evaluate CF in climate 

models.  
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4. Evaluation of surface radiation flux and total cloud amount  

4.1 Inter-model divergence and model biases  

Wild et al (1995, 1998, 2005, and 2008) have conducted a series of studies evaluating 

GCMs’ performance in simulating solar and LW radiation at surface and top of atmosphere 

(TOA), under both cloudy and cloudless sky. One of their conclusions is that GCMs tend to 

generate a larger bias (e.g. too excessive) in estimating the surface insolation than in the net solar 

fluxes at TOA. This is not so surprising because satellite observed radiation fluxes at TOA are 

often used as constraints in GCMs. Most current GCMs are tuned to produce correct TOA 

planetary albedo by adjusting cloud parameters, such as the cloud droplet effective radius used in 

optical depth calculations and/or the threshold value of autoconversion from cloud to rain. Better 

performance of GCMs in estimating the radiative fluxes at TOA than at surface suggests that the 

excessive surface insolation in the GCMs is related to inaccurate partitioning of solar absorption 

between the surface and atmosphere rather than to excessive absorption by the planet as a whole 

(Wild et al., 2005).  

Here the TCF and the surface SW fluxes simulated in the major GCMs in IPCC-AR4 are 

inter-compared, and they are also evaluated against ARM measurements over Manus.all three 

sites. We compare the SW radiative fluxes under both cloud-free and cloudy skies and also 

calculate the cloud radiative effects and cloud transmissivity, attempting to investigate the role of 

TCF and other dimensions of cloud in contributing to the biases of simulated solar radiation 

fluxes in the GCMs. We find that the performance of GCMs in simulating radiative fluxes is 

highly related to their simulation of CF. Positive biases in monthly surface downwelling SW flux 

can be found when the CF is underestimated (figure not shown). However, our focus here is to 

compare the deviation of 11 GCMs as a group in estimating CF and related radiative effects 

rather than to examine the performance of each individual model. 

Figure 5 compares the aggregate normalized standard deviation (NSD) of annual mean 

surface downward SW radiation under clear skies (CSWdn) and all-skies (SWdn), cloud 

transmissivity (SWdn/CSWdn, TRANS), TCF (TSK, because it matches the surface radiation 

flux data), and cloud effect (CSWdn-SWdn normalized by TCF) over one of  TWPthree sites 
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(Manus) for the 11 GCMs and for the difference between models and measurements, 

respectively. We define NSD as 
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Figure 5a5 (top) shows that the inter-model NSD for CSWdn is less than 0.02 (2%), 

indicating a very small inter-model deviation in estimating the downward solar radiation under 

cloud-free skies. The03 (3%), and the model-measurement NSD for CSWdn is also small (less 

than 0.02504), indicating that the models generally do a reasonably good job with surface SW 

radiation in cloudless skies.  The tropical sites examined generally have small aerosol optical 

depths which may partly contribute to the good agreement between model and measurement for 

the cloudless sky fluxes. 

The inter-model NSD for all-sky SWdn is around 0.0708-0.18, indicating around 43-5 

times larger disparity inamong the GCMs in estimating the downward solar radiation when 

clouds are included. The NSD for cloud transmissivity is very close to the value for SWdn over 

all three sites, because the deviation in transmissivity is mainly contributed by the SWdn rather 

than CSWdn. TheAt Manus and SGP, the inter-model NSD for TCF reaches 0.14, twice18-0.28, 

2-3 times as large as for SWdn and transmissivity, which indicates the inter-model disparity in 

TCF is much larger than in downward solar radiation. Meanwhile, the NSD of normalized cloud 

effect (NCE), defined as (CSWdn-SWdn)/TCF, shows a similar magnitude of NSD as for TCF, 

indicating that the other dimensions of cloud besidesin addition to cloud amount, such as cloud 

optical thickness and/or cloud height, have a similar magnitude of disparity as TCF within the 

GCMs. This also suggests that the better agreement among GCMs in the cloudy-sky SW fluxes 
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than in TCF or NCE could be a result of compensating effects from errors in cloud vertical 

structure, overlap assumption, cloud optical depth and/or cloud fraction.   

 

Figure 5 

 The NSD for model-measurement comparison shows a similar overall pattern to that for 

inter-model deviation, but the magnitude is slightly larger for all quantities (Fig.4b5, bottom). 

The NSD for CSWdn, SWdn,  and transmissivity, TCF, and NCE is 0.02, 0.096, 0.092, 0.18 and 

0.19, respectively, over Manus. The NSD for SWdn and transmissivity is five3-4 times as large 

as for CSWdn, and the NSD for TCF and NCE is twice as large as for SWdn and transmissivity., 

except for NSA where only six months of data from April and September are used. The similar 

overall deviation pattern between inter-model and model-measurement comparisons suggests 

that the climate models tend to generate larger differences against observations for those 

variables with larger inter-model deviation. The model-measurement NSD values for CSWdn, 

SWdn, and SWdn/CSWdn are similar at both Manus and Nauru (not shown). The similarity in 

the agreement in SW fluxes at the two sites coupled with the large difference in TCF and NCE 

further emphasizes the likelihood of compensating errors in cloud vertical structure, optical 

depth, and cloud fraction.SGP. At NSA, however, both inter-model deviation and model-

measurement difference have similar magnitudes for TCF,  SWdn and Tsw, suggesting that 

models have more difficulties in simulating surface radiative fluxes in high-latitude regions.  

4.2 Comparison of seasonal cycle of total cloud fraction 

The ARM sites represent three different climate regimes, so it is important to evaluate the 

performance of GCMs in simulating the cloud macrophysical properties over the three different 

sites. Manus, one of the three TWP sites located in the Western Pacific Warm Pool region, 

represents a region associated with ENSO that plays a large role in the interannual variability 

observed in the global climate system. Figure 6The TWP region consistently has warm sea surface 

temperatures that produce large surface heat and moisture fluxes into the local atmosphere, causing 

the formation of deep convective cloud systems and consequent high-altitude cirrus clouds. These 

cloud systems affect the amount of solar energy reaching the surface as well as the amount of 

heat that can escape into space. 

javascript:openfigures('fig01')
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 Figure 6 shows comparisons of seasonal TCF for the 11 GCMs and their averages with 

the three different observations over Manus, SGP and NSA. Clouds at Manus are primarily 

driven by local convection, although high-level ice clouds are often advected over Manus from 

convective systems occurring over the Maritime Continent (Mather 2005). Although overall 

seasonal variability of TCF is small over Manus, most of the models capture the minimum of 

TCF during the late spring. Simulated TCFs are more scattered during June to October than other 

months. While the simulated TCF are very diverse among IPCC AR4 the GCMs, the ensemble 

mean TCF (averaged forover all the 11 GCMs) is close to the measurement in both magnitude 

and seasonal cycle.  

 

Figure 6 

 

The SGP site is located in north-central Oklahoma, potentially For the long-term average, 

most of the GCMs (except for one model)representing the interior regions of many mid-latitude 

continents, where the clouds are driven by frontal systems or by heating and local convection. 

The convection is usually short lived over the SGP and doesn’t have the extensive cirrus that is 

found in the tropics (Mace and Benson, 2008). Shallow cumuli often form in spring and summer 

under stable synoptic conditions with a strong surface forcing and well-developed boundary 

layers (Berg et al., 2010). For the long-term average, most of the GCMs (except for one model) 

well capture the seasonal variation of TCF over the SGP, with a maximum during winter and 

spring and a minimum during July to September. Compared to the measurements, most of the 

GCMs underestimate the TCF, so the 11-model average of TCF is consistently smaller than the 

observations by 0.05-0.1 for almost all months.  

Recent studies have demonstrated that the Arctic is more sensitive to climate change than 

other regions. In particular, the Arctic clouds have long been known to be one of the major 

sources of uncertainty in simulations of Arctic climate (Randall et al. 1998; Walsh et al. 2005). 

Cloud cover dominates downward LW radiation that, in turn, strongly influences the initiation 

and rate of ice/snow melting (Curry et al. 1996). Previous research has estimated that clouds in 

the Arctic are more prevalent and persistent than clouds elsewhere (Curry et al. 1996). As shown 

in Figure 6, the NSA Barrow site has a relatively large cloud fraction, especially during the warm 
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season in which the low-level cloud is persistent. This persistent large cloud coverage insures its 

important role in the Arctic climate system. Therefore, it is critical for global climate models to 

have the right cloud and radiation budget to project future climate change over the Arctic region 

(Vavrus et al., 2009). Unfortunately, the performance of GCMs is morevery diverse over NSA 

than over Manus and SGP, except for August and September., especially for cold season. The 

11-model averaged TCF is close to the observations, with the exception of months from January 

to April, during which most of the models overpredict the CF by up to 0.1-0.2.4.  

4.3 Frequency of occurrence vs. TCF bins  

Figure 7 shows the frequency of occurrence of monthly mean TCF simulated by the 11 

GCMs and calculated from observations (TSK, which has longest record to calculate PDF) over 

the three ARM sites. Over Manus (Figure 7a), the observed TCF shows a narrow nearly normal 

distribution, with a range from 0.4 to 0.9. Four GCMs, i.e. GISS, CCSM UKMO and CNF-Hires, 

generally well capture the observed range and PDF pattern of TCF. The PDF pattern from 

CNRM, GFDL, IPSL is slightly skewed to high TCF compared to the observed nearly normal 

distribution, indicating a too frequent overprediction with larger cloud cover in those models. 

Simulated frequency of occurrence in PCM, INM and MPI dramatically increases from lower to 

higher TCF bins with approximately 60% of the occurrences having TCF larger than 0.9 in PCM 

and INM and 45% of the occurrences having TCF larger than 0.9 in MPI. Apparently too 

frequent nearly overcast days are simulated over the tropics in these three models. TCF in MRI is 

almost evenly distributed in bins between 0.1 to 0.8, indicating a too frequent overprediction of 

low CF and underprediction of larger CF in this model. 

 

Figure 7 

 

Over SGP (Figure 7b), the observed TCF also shows a near-normal distribution, with the 

mean about 0.5. The PDF of TCF at SGP has a similar shape to the PDF at Manus, but values are 

shifted to lower bins. A few of the GCMs reasonably capture the near-normal distribution pattern 

of TCF over SGP, such as IPSL, GFDL, MPI and CNRM. However, the simulated TCF in PCM 

and UKMO are too evenly distributed over a bigger range of values. In contrast, TCF is too 
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narrowly distributed in CNF_Hires. This model together with CCSM and GISS all show a 

shifted TCF distribution to the lower bins, indicating too many cloud-free and/or low cloud-

cover days in these three models. Overall the GCMs perform better at SGP than at Manus. in 

terms of the frequency distribution. This is likely related to the weaker large scale forcing at the 

TWP compared to SGP, and/or to the more diverse and varying cloud regimes over the tropical 

region, such as frequent deep convection and cirrus cloud, which are relatively poorly simulated 

in GCMs. 

Over NSA (Figure 7c), observed TCFs are widely spread in bins between 0.1 and 1.0 but 

occur more frequently in the higher bins. Except for CNF_Hires, all models tend to show a more 

narrowly distributed PDF that skews to the higher side of the bins, especially CNRM, INM and 

MPI, which means too many overcast and/or high cloud-cover days but too few low cloud-cover 

days in those models. The diversity of model performance in simulating PDF of TCF is also very 

obvious over NSA, indicating that it remains a significant challenge for GCMs to simulate the 

right cloud cover over the Arctic region.  

4.4  Transmissivity vs. TCF   

Not only the total cloud cover but also cloud optical properties influence the amount of 

SW flux reaching the surface. The absolute impact of the cloud also depends on the magnitude of 

incoming solar radiation. To characterize the normalized impact of clouds on the surface SW 

radiation, we use the SW cloud transmissivity (Tsw, or SWdn/CSWdn). By normalizingIt’s 

normalized by the clear-sky downwelling flux at the surface instead of at the top of the 

atmosphere, we remove much of so that the effect of the atmosphere on the surface fluxes so 

thatis minimized and then model treatment of molecular scattering, gaseous absorption, and 

aerosol is less important to the results (except for potential aerosol indirect effects). The monthly 

mean SW transmissivity is plotted against the corresponding TCF in Figure 8 for both the 

observations and nine GCMs over threethe ARM sites (the other two GCMs did not archive SW 

flux fluxes under cloud-free skies). Since the SW radiative flux  under cloud-free skies (i.e. 

CSWdn) is much better simulated and has less scatteredscatter among the GCMs (see Figure 5), 

the performance of models in estimating the transmissivity primarily reflects their ability to 

estimate the cloud influence on the SW flux under all-skies (i.e. SWdn). Figure 8a for Manus 
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shows that the observed transmissivity ranges from 0.5 to 0.9. The observed transmissivity and 

TCF are highly correlated over Manus, with a correlation coefficient of -0.93. Moreover, the 

transmissivity almost linearly decreases with increased TCF within the range of observed TCF. 

The slope of the fitted line (i.e.., s = ΔTSW/ΔTCF) is -0.74, and serves as an indicator of how the 

aggregate cloud optical properties change with changing cloud amount. For the models, the 

linear fit slope serves to indicate, given the cloud amounts that the model produces, whether the 

resultant aggregate cloud optical properties are in line with the observations for that climate 

regime. 

The correlation coefficients between transmissivity and TCF over Manus simulated by 

the nine GCMs range from -0.74 to -0.96, with most GCMs having less correlation between 

transmissivity and TCF than seen in the observations. The simulated transmissivity, ranging from 

0.4 to 1.0, is overall nominally consistent with the observed. However, the slope (or ΔTSW/ΔTCF) 

varies from -0.51 to -0.96, indicating a very wide range of different cloud 

transmissiontransmissivity changes per unit TCF change among the GCMs. For example, the 

ΔTSW/ΔTCF for UKMO and CNF_Hires are -0.51 and -0.52, respectively, and the smallest 

values among all GCMs. Both these models exhibit an underestimation of TCF (Figure 6a) with 

larger transmissivities at the lower TCF range. At the same time, these models overestimate the 

transmissivity for larger TCF compared to the observations. These differences suggest that the 

cloud optical thickness is underestimated in these models, resulting in a smaller ΔTSW/ΔTCF 

than observed. The ΔTSW/ΔTCF is also underestimated in MRI, which also has too many lower 

TCF values, and in GFDL, which has too many large TCF occurrences. However, ΔTSW/ΔTCF is 

-0.96 in MPI, which is much higher than the observations or other GCMs. Here again, the MPI 

TCF frequency is biased toward large TCF, with anomalously high transmissivity for the few 

occurrences of TCF in the 40-60% TCF range. This indicates that the transmissivity in MPI is 

too optically thin for the mid-TCF values, however this is compensated for by the overestimated 

TCF in MPI (see Figure 6a) and still results in a reasonable estimation of surface SW flux. Other 

models show a more reasonable agreement for ΔTSW/ΔTCF over Manus. The slope of 

transmissivity against TCF and the correlation coefficients between them for the observations 

and all GCMs and are summarized in Table 3. 
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Figure 8 

Over SGP, the observed transmissivity ranges from about 0.5 to 0.9, similar to that over 

Manus and the correlation coefficient between TCF and transmissivity is the same as at Manus. 

The ΔTSW/ΔTCF is -0.70, slightly smaller than at Manus. Except for MRI, all GCMs generally 

underestimate the ΔTSW/ΔTCF over SGP (however MRI had a large underestimate of TSW/TCF 

at Manus). The minimum ΔTSW/ΔTCF is -0.43 in IPSL, almost 40% smaller than the observed. 

As discussed in Section 4.2, most of the GCMs significantly underestimate the TCF over SGP. 

This indicates that current global models tend to remarkably underpredict both TCF and ΔTSW/

Δ TCF over SGP, i.e. cloud cover is smaller and the models tend to generate larger 

transmissivities at the larger TCF values. For instance, the observations give transmissivity 

values ranging from 0.5 to 0.7 for TCF from 0.6 to 0.7. Yet the models (except for MRI) range 

from about 0.6 to 0.7 for the same range of TCF, which then produces the underestimation of Δ

TSW/ΔTCF.  

Over NSA, a greater variety of ΔTSW/ΔTCF can be found for both observations and 

models (Figure 8c). This is at least in part due to the bi-modal behavior of the relationship for 

snow covered and non-snow-covered ground. In the snow covered case, multiple reflection of 

SW between the surface and the clouds increases the SWdn, which increases the SWdn/CSWdn 

ratio and the ratio then includes not only the actual cloud transmission but also the multiple 

reflection. The snow covered ground cases are those in the upper right of the observations, with 

both the snow-covered and non-snow-covered cases producing about the same ΔTSW/ΔTCF slope. 

The transmissivity varies from 0.2 to 0.9 in GCMs for TCF larger than 0.9, indicating more 

divergence in transmissivity and cloud optical thickness under skies with larger cloud fraction. 

The actual changes are asymptotic with respect to changes in TCF because the cloud optical 

depthsdepth usually tends to increase with increasing cloud fraction.  

 

Table 3 

While a value of -0.71 for the observed ΔTSW/ΔTCF is close to that at the SGP and 

Manus sites, the models give very diverse predictions for ΔTSW/ΔTCF, ranging from -0.60 in 
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CNF_Hires to -1.50 in INM. Both ΔTSW/ΔTCF and TCF (see Figure 6) are significantly 

underestimated in CNF_Hires, showing too large transmissivity values for larger TCF in this 

model. In contrast, ΔTSW/ΔTCF is overestimated by more than 100% in the INM, with an 

attendant lack of smaller TCF values. Seven models overestimate and two models underestimate 

the ΔTSW/ΔTCF over NSA, with most models exhibiting little stable correlation between TCF 

and transmissivity, and thus no well -defined bi-modal behavior in the relationship. Larger inter-

model deviation and model bias against observation over NSA in estimating ΔTSW/ΔTCF and 

TCF than other sites suggest that predicting the cloud over the Arctic region is more uncertain 

and remains a more challenging task for climate modelers.  
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5. Evaluation of cloud vertical structure 

In Section 4 we comprehensively evaluated the TCF simulated by IPCC AR4the GCMs 

and its impact on mean cloud transmissivity and the surface SW flux. However, for climate 

models, the uncertainty in estimating the cloud occurrence at different levels is likely even larger 

than the uncertainty in estimating TCF.Here, we use the long-term ARSCL By comparing the 

results of 10 GCMs to ISCCP and CERES datasets, Zhang et al. (2005) found that models 

simulated a four-fold difference in high-top clouds against the observations. Characterizing to 

evaluate the vertical distribution of clouds is critical to understanding the physical processes of 

the feedbacks associated with different types of clouds, because the vertical distribution of 

clouds affects the vertical heating rate profiles and stratification of the atmosphere. McFarlane et 

al. (2007) compared cloud vertical structure and radiative heating rates in two versions of the 

Community Atmosphere Model to ARM observations and found that differences in the vertical 

structure and optical depth of upper tropospheric ice clouds in the models led to large differences 

in the radiative heating in the upper troposphere, which could have important implications for 

tropospheric-stratospheric dynamics. There are fewer studies that have evaluated the vertical 

structure of clouds in current GCMs, than the overall cloud radiative forcing, partly because of 

the lack of reliable long-term observations. Here, we use the long-term ARM observations to do 

such an evaluation.of cloud fraction in the models. For simplicity in discussion, low, middle and 

high clouds are defined as those located at heights of 0-3 km, 3-6 km and higher than 6 km, 

respectively. 

5.1 Manus 

The simulation of cumulus and stratocumulus in the tropics has been a challenge to the 

modeling community for a long time (Bretherton et al., 2004). Figure 9aFigure 9 (left) shows the 

annual mean vertical profiles of cloud fraction (CF) derived from ARM ARSCL observations 

and simulated by seven GCMs over Manus while Figure 9b, and the right panel shows the 

standard deviation among the models.  Figure 10 shows the monthly time-height composite plots 

of CF. Simulated CF in most of the GCMs differs substantially from the observed. Overall, most 

of the GCMs tend to underpredict CF at low and middle altitudes. For example, the low CF in 
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IPSL, INM, and MRI are less than 4%, compared to around 10% of CF in the ARSCL 

observation. Some of the underprediction of CF at low and middle levels may be due to the fact 

that it is difficult to screen precipitating clouds out of the ARSCL observations, and the ARSCL 

CF represents a combination of cloud and precipitation particles. The CCSM is an exception, 

whichin the lower and mid troposphere. The CCSM is an exception as it significantly 

overpredicts CF of low and middle clouds. The observation shows a remarkable seasonal 

variation of CF at different levels (Figure 10). A ) with a minimum CF can be found in April and 

a maximum oneCF in July at lower levels. Except for CCSM, none of the GCMs capture this 

seasonal variation of CF at lower levels over Manus. 

 Figure 9 

 The high level CF in almost all GCMs is substantially larger than the observation over 

Manus. The annual mean in some GCMs is 3-4 times larger than the measured. The high level 

CF averaged in all 7 GCMs is around 3 times as large as that in the ARSCL observation. This is 

possibly to some extent a result of the coarse vertical resolutions in GCMs, but also of the 

different thresholds determining thin cloud in climate models and ARM measurements, and of 

the sensitivity limits of the ARM MMCR and MPL for high altitude clouds. The choice of 

thresholds in determining thin high-cloud is somewhat arbitrary in climate models orand in 

lidar/radar retrievals. The CF at high altitudes is almost linearly dependent on the cutoff value of 

the optical thickness of these thin high-clouds. Except for the CCSM, none of the GCMs capture 

the seasonal variability of CF at high level. The GCMs such as INM and CNF_Hires show no 

seasonal variation for the high level cloud.  

Figure 10 

Cloud top in most of the GCMs is notably higher in comparison to the ARSCL 

observations at Manus. The cloud top height is around 17 km in ARSCL, while except for MRI, 

the cloud top height reaches 19-20 km in most of the GCMs. The cloud top height in ARSCL is 

probably underestimated to some extent as the radar cannot detect small particles at the top of ice 

clouds and the lidar is often attenuated in optically thick ice cloud before reaching cloud top. It is 

interesting that only CCSM can capture the seasonal variability of CF at both low and high levels, 
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although CF in CCSM is larger than the observation at all levels. Meanwhile, the TCF simulated 

in CCSM is close to that in ARSCL (Tables 2 and 3), which indicates that a different the cloud 

overlap scheme in CCSM produces a result similar to the observation. However, we should keep 

in mind that the overlap derived from the true overlap seen in the ARSCL observations is 

probably used in CCSM.not necessarily the true overlap due to limitations in the measurements 

(such as the difficulty of lidar to penetrate through thick clouds and the lack of detection of thin 

layers by radar). The model-measurement difference reaches a maximum at around 8-16 km, 

which is also the height thatwhere the maximum of inter-model deviation of CF is located. 

Figure 9b shows that the standard deviation (SD) of CF among the 7 GCMs is larger than 0.15 

between 8-16 km, while it is less than 0.1 below 6 km. The larger model-measurement difference 

and inter-model deviation at higher levels implies the current GCMs have more problems in 

simulating the high clouds (e.g. cirrus or ice clouds) over the tropictropical region.  Much of the 

high cloud observed over Manus islie in the outflow from deep convection over the Maritime 

Continent (Mather 2005), indicating that the GCMs likely have trouble representing the full 

radiative impact of tropical deep convection systems. As argued by Waliser et al. (2009), the 

shortcomings in the representation of these clouds impact both the latent and radiative heating 

processes, and in turn the circulation and the energy and water cycles, leading to errors in 

weather and climate forecasts and to uncertainties in quantifying cloud feedbacks associated with 

global change.  

5.2 SGP 

Figures 11 and 12 show the annual mean vertical profiles and monthly time–height plots 

of CF from the ARSCL observation and GCMs over SGP. The observed CF has a bimodal 

vertical distribution with a higher peak around 6-10 km and a lower one below 2 km. The 

maximum CF of high clouds occurs during the winter and spring (Figure 12) when baroclinic 

wave activity is common over the ARM SGP site (Xi et al., 2010). High-cloud fraction also 

varies somewhat with the tropopause heights by season due to the change in thermal thickness of 

the atmosphere. CF is relatively smaller during July to September, especially for low clouds, 

which is consistent with that for TCF as shown in Figure 6b. 
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Figure 11 

The GISS and MRI simulate the smallest CF at all levels, while CNF_Hires and INM 

simulate largest CF at higher level.levels. Most of the GCMs tend to underpredict CF by 50-150% 

at low and middle levels. The CF averaged over all GCMs is around half and two-thirds of the 

values of ARSCL at low and middle levels, respectively. Except for MRI, all other GCMs fail to 

capture the distinct boundary layer cloud during winter and spring in their simulations. The 

ARSCL CF at high level is larger than that predicted in the GISS and MRI, but is smaller than 

that in the other models. The mean CF of all GCMs is only slightly larger than that for the 

ARSCL observation at high levels. While most of the models capture the minimum CF at low 

level during July to September, only CCSM relatively reasonably captures the seasonal variation 

of CF at high level.  

Figure 12 

While the model-measurement difference is larger at lower levellevels below 5 km, the 

inter-model deviation of CF is larger for the high cloudclouds (i.e. above 6 km). Figure 11b 

shows that the SD of CF among the 7 GCMs is around 0.07 between 7-13 km, and is less than 

0.03 below 6 km. The SD for both high and low clouds over SGP is only half as large as that 

over Manus. The smaller inter-model deviation in SGP suggests that the current GCMs perform 

more consistently in simulating vertical distribution of CF over the mid-latitude continent than 

over the tropic regiontropics, which could partly result from the much stronger large scale 

forcing for SGP compared to the TWP regime.   

5.3 NSA 

Barrow, the NSA site located at the northernmost location in Alaska, near cryospheric 

boundaries, has a prevailing east-northeast wind off the Beaufort Sea and is influenced by both 

extratropical and Arctic synoptic activity (Stone et al., 2002). The observed and simulated annual 

mean vertical profiles of CF over NSA are shown in Figure 13. Different from theUnlike Manus 

and SGP, most of the clouds inat NSA are constrained in a low layer, i.e. level clouds below 1-2 

km. The CF gradually decreases with the height and the maximum cloud top height is around 10-
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12 km. Therefore, the total cloud cover examined earlier is dominated by low clouds over NSA, 

either single-layered or multilayeredmulti-layered systems with a significant low-cloud 

component. Stamnes et al. (1999) found that there is a persistent multilayered cloud regime 

during summer in the lowest kilometer of the atmosphere where the upper and lower layers 

appear to be decoupled from each other. The persistence of these multilayered clouds has been 

attributed to the lack of cloud dissipative processes in the Arctic: precipitation, radiative heating, 

convective heating of the boundary layer, and/or large-scale synoptic activity. The mechanisms 

for their multilayered stratification have been proposed by Curry et al. (1996), but more 

observations are needed for verification. More recently, mixed-phase clouds have been 

recognized to occur more often than previously assumed, especially during spring and fall 

(Verlinde et al. 2007). 

Figure 13 

The observed and simulated monthly mean time–height plots of CF are shown in Figure 

13.14. The maximum CF of low clouds occurs in late spring characterized by optically thin cloud, 

late-summer and fall with more optically dense clouds. The deeper boundary layer and low 

clouds in late summer and fall than in late spring is likely due to the retreat of sea ice from the 

north coast of Alaska, which increases moisture fluxes into the lower atmosphere. In contrast, the 

cloudiness in May is typical of continental landmasses in spring (i.e., scattered “fair weather” 

cumulus clouds that form on an otherwise clear day). In a low-solar-zenith-angle environment 

such as the Alaskan North Slope, the scattered cumulus clouds sideways scatter a significant 

fraction of the downwelling solar flux to the surface (Dong et al., 2010). 

Figure 14 

While the GCMs generally capture the maximum CF in the boundary layer and vertical 

variability (i.e. decreasing with height) of CF, some GCMs (e.g. PCM) tend to overpredict the 

CF at high level and in the boundary layer. It can be found from Figures 12 and 14 that a fixed 

cloud top is probably applied in the INM. Figure 13b shows that the SD of CF among the 7 

GCMs is around 0.2 near surface and gradually decreases with height. It becomes constant 

(around 0.05-0.06) between 2-10 km.  
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5.4 Variability among ensemble runs within the same GCM 

A few IPCC AR4 models have conducted several ensemble simulations, which is 

important to identify the internal variability and uncertainty of the model results, especially in 

projecting the future climate change. For example, GISS has four and IPSL has six ensemble 

simulations in CMIP3. The modelers usually focusPrevious studies have typically focused on 

evaluating the model internal variability and uncertainty for the simulated temperature and 

precipitation. It will beis interesting to examine the internal variability of CF among ensemble 

simulations. 

Figure 15 

Figure 15 shows the vertical profiles of CF for four GISS and six IPSL simulations, and 

their SD among ensemble runs over Manus. The results show that the variability of CF among 

ensemble runs in the same GCM is minor at all levels. For example, SD for both GISS and IPSL 

is usually less than 0.005 in Manus, around 2-10% of inter-model SD. Similar conclusions are 

found over the SGP and NSA (not shown). This indicates that the internal variability of CF in the 

same model with ensemble simulations is very smallinsignificant. 
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6. Summary and discussion 

Cloud Fraction (CF) has long been recognized as the dominant modulator of radiative 

fluxes. In this study, we evaluate CF simulations in the IPCC AR4 GCMs against ARM ground 

measurements at a climatological time-scale, with a focus on the vertical structure, total amount 

of cloud and its effect on cloud transmissivity, for both inter-model deviation and model-

measurement discrepancy. The frequency of hydrometeor occurrence statistics derived from the 

Active Remote Sensing ofRemotely-Sensed Clouds Locations (ARSCL) observation, the Total 

Sky Imager (TSI), and the Total Sky Cover (TSK) derived from surface SW radiometers, all are 

CF or sky cover related products available at ARM sites. Our intercomparisonsinter-comparisons 

reveal that they are correlated with each other but the daily differences are quite significant, 

suggesting that one should be extremely cautious in using transient (hourly or daily mean) CF 

data to quantitatively evaluate CF calculated in climate models or retrieved by satellite. 

However,A common feature among three sites is that the TSI produces smaller TCF compared to 

a radar/lidar dataset for highly cloudy days (CF>0.8), but produces a larger TCF value than the 

radar/lidar for less cloudy conditions (CF<0.3). The compensating errors in lower and higher CF 

days result in small bias of TCF between the vertically pointing radar/lidar dataset and the 

hemispheric TSI measurements as multi-year data is averaged. The differences are usually less 

than 10% among their multi-year monthly mean values and less than 5% among their annual 

mean values, which gives more confidence in using ARSCL CF to evaluate the GCM 

climatology simulations.  

Detailed comparisons of the GCMs results with the ARM observations revealsreveal that 

the model bias against the observation and the inter-model deviation (disparity) have a similar 

magnitude for the total CF (TCF) and for the normalized cloud effect, and they are twice as large 

as that for the surface downward solar radiation and cloud transmissivity. This implies that the 

other dimensions of cloud, such as cloud optical depth and height, has a similar magnitude of 

disparity to TCF among the GCMs, and suggests that a better agreement among the GCMs in 

solar radiative fluxes could be a result from compensating errors in either cloud vertical structure, 

cloud optical depth or cloud fraction. Similar deviation pattern between inter-model and model-

measurement suggests that the climate models tend to generate larger bias against observations 
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for those variables with larger inter-model deviation. The simulated TCF from IPCC AR4 GCMs 

are very scattered through all seasons over three ARM sites (SGP, Manus and NSA). The GCMs 

perform better at SGP than at Manus and NSA in simulating the seasonal variation and 

probability distribution of TCF; however, the TCF in these models is remarkably underpredicted 

and cloud transmissivity is less susceptible to the change of TCF than the observed at SGP. 

Much larger inter-model deviation and model bias is found over NSA than other sites in 

estimating the TCF, cloud transmissivity and cloud-radiation interaction, suggesting that it 

remains a more challenging task to climate models in predicting clouds over the Arctic region.  

 Most of the GCMs tend to underpredict CF and fail to capture the seasonal variability of 

CF at middle and lower levels in the tropics. The high level CF is much higher in the GCMs than 

the observation and the inter-model variability of CF also reaches maximum at high level in the 

tropics. Most of the GCMs tend to underpredict the CF by 50-150% at low and middle levels 

over SGP. The inter-model deviation for CF is smaller at SGP than Manus, suggesting that the 

current GCMs perform more consistently in simulating CF over the mid-latitude continent than 

over the tropic region. Different fromUnlike clouds over Manus and SGP, most of clouds in 

NSA are in the lower troposphere. While the GCMs generally capture the maximum CF in the 

boundary layer and vertical variability, the inter-model deviation is largest near the surface over 

the Arctic. The internal variability of CF simulated in ensemble runs with the same model is very 

minimal. 

While the results in this study could be valuable for advancing our understanding of the 

CF-related data that are available at ARM sites and for providing insights for the climate 

modeling community in improving the cloud-radiation interaction and the CF parameterization 

in climate models, several uncertainties should be taken into account in interpreting the results of 

this study. The primary one is the cutoff value of the optical depth to define cloudiness in the 

various observations and climate models. The CF at high altitudes is almost linearly dependent 

on the cutoff value of the optical thickness of these thin high-clouds. However, the choice of 

thresholds in determining thin cloud is somewhat arbitrary in climate models and in lidar/radar 

retrievals. The different cutoff values in defining the clouds in the ARM measurements and in 

the GCMs couldcan result in an appreciable amount of uncertaintiesuncertainty in comparing the 
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CF in the observations and models. It is worth noting that there are on-going efforts to develop 

cloud radar/lidar simulators that allow simulating the signal that cloud radar/lidar would see in a 

model-generated world.  The comparison of clouds between GCMs and ARM observations 

canThis uncertainty will be improvedreduced once the cloud radar/lidar simulators are 

implemented into GCMs. 

The second uncertainty is related to the different vertical resolutions in the ARSCL 

dataset and the GCMs. The ARSCL CF is essentially the frequency of occurrence of hydrometor 

in each layer with an original thickness of around 45 m, so the values of ARSCL CF would 

change with the thickness of layers in which the statistics are conducted. Xi et al. (2010) found 

that the CF at a given altitude increases as the vertical resolution increases from 90 to 1000 m. 

On the other hand, the GCMs may have different vertical resolutions from one to another and/or 

from the ARSCL data, which is another uncertainty in comparing the CF simulated by the 

GCMS to the observations. Different from other atmospheric variables, it may not be appropriate 

to do simply linear interpolation vertically for the CF because of the complicated overlap issue 

for clouds. 

The second uncertainty is related to the different spatial coverage between the point 

observations and model results. The GCM grid variables represent an average in a grid cell (e.g., 

200 km x 200 km, which is a typical horizontal grid of AR4 GCMs in lower latitudes). The 

ARSCL is essentially the vertically pointing instruments with a narrow FOV that can only detect 

clouds directly above the instruments. This is a common problem when evaluating the model 

results, although the uncertainty introduced by this factor could be reduced by increasing the 

model spatial resolution or averaging more years of data.  

The third uncertainty is the limited length of the valid measurement data available at the 

ARM sites. Although the CF and surface radiative fluxes data are available starting from the late 

1990s inat most of the sites, less than 10 years of ARSCL and TSI data are finally used for some 

variables in this study because of missing data due to instrument down time. However, the 

surface radiation data are mostly complete, and we show good agreement between the TSI and 

TSK TCF values, suggesting that the more continuous TSK data are well suited for long term 
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comparison efforts of TCF. Nevertheless, a 20-year complete dataset would be more ideal for 

this kind of study in a climatological sense. 

 It is highly desirable and our original hope to see if the positive and negative attributes of 

model clouds can be associated with specific physical parameterizations. The results of this study 

show that there is no particular model with a specific cloud scheme that has superior 

performance in all aspects of CF simulation than other models in all three sites. The 

underestimation of TCF and the overestimation of optical thickness of clouds are common over 

SGP to models that used very different cloud schemes, however, this could be due to completely 

different reasons. As suggested by Webb et al. (2001)Webb et al. (2001), many other model 

components can be as important as the cloud and precipitation schemes in assessing clouds in 

models, such as the vertical resolution and cloud microphysical properties. Without carrying out 

controlled experiments by isolating individual physical parameterization components, it is 

difficult to pinpoint the source of the model differences. 

Finally, one future study needed is to evaluate the ARM ground-based vertical CF using 

satellite cloud data (e.g. CALIPSO), especially for high clouds. While the ARM radar/lidar 

observations provide the more reliable vertical distributions for CF for verifying the GCM 

simulations, and Xi et al. (2010) have shown a good agreement in monthly mean CF derived 

from 10 years of ARM surface and GOES satellite data, the large-scale satellite data are critical 

to evaluating GCM simulated spatial distributions of clouds partly because of their much broader 

spatial coverage and comparable pixel-size to GCM grid-spacing. Certainly the comparisons 

between the ground- and satellite-based observations must be conducted carefully because of 

fundamental spatial and temporal differences between the two different observing platforms.  

In future work, we plan to do such experiments for the physics parameterizations used in 

the Community Atmosphere Model (CAM5). Colleagues at PNNL have implemented the CAM5 

physics package in the Weather Research and Forecasting (WRF) model [Jerome Fast, personal 

communication, 2011], allowing examination of the range of behavior of the physics 

parameterizations over a range of scales, including those closer to the scale of the ARM 

observations. The WRF model can be run using all of the CAM5 physics or only individual 

components, which will allow exploration of the effects of individual parameterizations on the 
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resulting cloud fraction and radiation relationships. The WRF model can also be run at very high 

spatial resolution, which can reduce the uncertainty in model evaluation induced by the different 

spatial coverage between model and measurement. Forcing the model with reanalysis data will 

also reduce the potential discrepancies in large-scale dynamics between the model and 

observations that can exist in free-running climate models, and this can be one cause of 

model/observation disagreement. We will also save hourly output from the model to allow us to 

investigate the diurnal cycle of cloudiness in parameterization scheme. 

Inclusion of a ground-based radar and lidar simulator in the model will allow more direct 

assessment of cloud overlap, vertical structure, fall velocity, cloud phase, and cloud 

microphysical assumptions against the ARM radar observations. New radar observations and 

techniques such as radar spectra measurements provide vertical velocity statistics which can be 

used to examine assumptions in convective parameterizations (Kollias and Albrecht 2010), better 

identification of regions with multi-modal characteristics such as mixed phase regions (Shupe et 

al., 2004), and better discrimination between cloud and drizzle (Kollias et al. 2011) which will be 

useful for investigation of autoconversion rates. The satellite simulator has been installed in 

some of the IPCC AR5 GCMs; we may repeat the analysis for the IPCC AR5 GCMs and 

compare the results with those from this study.  
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Figure Captions: 

Figure 1. The time series of daily total sky cover or cloud fraction based on ARSCL, TSI,  TSK 
and ARSCL-TSK over Manus, averaged only for daytime hours for April 29 to July 8 of 2006 
(top) and January 16 to March 26 of 2007 (bottom), respectively, when all three datasets are 
available and both MPL and MMCR operate normally in ARSCL. Right panels are 
correspondedexamples of total sky imagesimage.  

Figure 2. The scatter plots for daily total sky cover or cloud fraction based on ARSCL and TSI 
(top), ARSCL and TSK (middle),left) and TSI and TSK (bottomright) over Manus. (top), SGP 
(middle) and NSA (bottom). Only the days when both datasets are available are included in each 
plot. At NSA only days from April to September (when solar elevation is high enough for 
reliable TSI and TSK measurements) are used. For each panel, the correlation coefficient and 
root mean square deviation (RMSD) are given.   

Figure 3. The multiple-year averaged monthly mean total sky cover or cloud fraction from 
ARSCL, TSI and TSK over Manus (top), SGP (middle) and NSA (bottom), respectively. 

Figure 4. The frequency distribution for daily total sky cover or cloud fraction (left: ARSCL vs. 
TSI; right: TSI vs. TSK) over Manus (Top: ARSCL ), SGP (middle) and TSK; Bottom: TSI and 
TSKNSA (bottom). 

Figure 5. The aggregate normalized standard deviation (NSD) of annual mean surface downward 
solar radiation under cloud-free skies (CSWdn) and all-skies (SWdn), cloud transmissivity 
(TRANS, SWdn/CSWdn), total cloud fraction (TCF), and cloud effect (NCE, CSWdn-SWdn 
normalized by TCF) over Manus, SGP and NSA, for inter-model comparison within 11 GCMs 
(top) and model-measurement difference (bottom), respectively. 

Figure 6.Figure 6.  The multi-year averaged monthly mean TCF for 11 individual GCMs and 
their average againstalong with three different observations over Manus (top), SGP (middle) and 
NSA (bottom). 

Figure 7. The frequency of occurrence (PDF) of monthly mean TCF simulated by 11 GCMs and 
calculated from observation over three ARM sites. (a) Manus, (b) SGP, and (c) NSA. 

Figure 8. The monthly mean SW transmissivity (Tsw) against their corresponding TCF for both 
observation and nine GCMs over three ARM sites. (a) Manus, (b) SGP, and (c) NSA. 

Figure 9. The annual mean vertical profiles of cloud fraction (CF) from ARSCL observation and 
GCMs over Manus(left) and their standard deviation in seven GCMs (right) over Manus. The 
GCM results for 1980-1999 and ARSCL observation for 1999-2008 are used in climatology 
average. 

Figure 10. The monthly mean time–height plots of cloud fraction (CF) from ARSCL observation 
and GCMs over Manus. 

Figure 11. Same as for Figure 9, but for SGP. 
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Figure 12. Same as for Figure 10, but for SGP. 

Figure 13. Same as for Figure 9, but for NSA. 

Figure 14. Same as for Figure 10, but for NSA. 

Figure 15. The vertical profiles of cloud fraction (CF) for four GISS and six IPSL ensemble 
simulations (left), and their standard deviations (SD, right) among ensemble runs over Manus. 


