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Abstract

The release of vast quantities of methane into the atmosphere as a result of clathrate
destabilization is a potential mechanism for rapid amplification of global warming. Pre-
vious studies have calculated the enhanced warming based mainly on the radiative
effect of the methane itself, with smaller contributions from the associated carbon diox-
ide or ozone increases. Here, we study the effect of strongly elevated methane (CH,)
levels on oxidant and aerosol particle concentrations using a combination of chemistry-
transport and general circulation models. A 10-fold increase in methane concentra-
tions is predicted to significantly decrease hydroxyl radical (OH) concentrations, while
moderately increasing ozone (O3). These changes lead to a 70% increase in the atmo-
spheric lifetime of methane, and an 18% decrease in global mean cloud droplet number
concentrations (CDNC). The CDNC change causes a radiative forcing that is compa-
rable in magnitude to the longwave radiative forcing (“enhanced greenhouse effect”)
of the added methane. Together, the indirect CH,-O5 and CH,-OH-aerosol forcings
could more than double the warming effect of large methane increases. Our findings
may help explain the anomalously large temperature changes associated with historic
methane releases.

1 Introduction

Among the various worst-case scenarios for catastrophic climate change suggested
over the past decades, the so-called clathrate-gun hypothesis (Kennett et al., 2000) is
one of the most dramatic. In this scenario, a rise in temperatures leads to the desta-
bilization and subsequent release of methane clathrates in the Arctic permafrost and
seabed into the atmosphere, vastly amplifying the initial warming. This type of mech-
anism has been suggested as a possible reason for millennial-scale warming during
the last ice age, as well as the Paleocene — Eocene Thermal Maximum (PETM; see
e.g. Kennett et al., 2000), though the evidence so far is inconclusive (Clark et al., 2008;
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Sowers et al., 2006). One criticism of the hypothesis is that the amount of methane
estimated to have been released during the PETM is not sufficient to explain the ob-
served warming, at least if only the longwave radiative forcings of CH, and its oxidation
product CO, are accounted for. For example Higgins and Schrag (2006) suggest that
a large additional (non-methane) source of carbon is required to explain the PETM.

Estimates (see e.g. Clark et al., 2008) of the total size of the current methane
clathrate reservoirs vary from some hundreds to several thousands of gigatons of car-
bon (GtC). Even the low-end estimates are at least two orders of magnitude larger than
current atmospheric methane content (about 5 Gt, or 4 GtC). If even a fraction of the
clathrate reserves were to be released over anything less than millennial timescales,
the atmospheric methane concentrations could thus potentially increase significantly.

Although the growth rate of methane concentrations in the atmosphere has de-
creased markedly in the past decade (Clark et al., 2008; Rigby et al., 2008), methane
concentrations are predicted to rise significantly on a hundred-year timescale (Riahi
et al., 2007). Moreover, recent observations (Hill et al., 2004; Shakova et al., 2010)
of large methane emissions in Arctic areas have heated up the discussion on the
“clathrate gun” hypothesis, at least in popular media. It is still uncertain whether these
measurements represent a new source of atmospheric methane, and thus a potential
feedback mechanism, or a previously unknown part of the natural cycle. In any case,
even though a massive release of methane from clathrate reservoirs during this cen-
tury is currently thought to be improbable, the potential implications of such a scenario
warrant careful assessment of all potential effects, as well as consideration of possible
CH,-related mitigation or geoengineering options (Boucher and Folberth, 2010).

In addition to the direct radiative effects of the methane itself, large methane emis-
sions will have several indirect effects on the radiative balance. A large increase in the
methane loading would increase the concentration of tropospheric ozone and strato-
spheric water vapor, while significantly decreasing the concentration of hydroxyl radi-
cals (OH) in the troposphere (Schmidt and Shindell, 2003; Clark et al., 2008; Shindell
et al., 2009). The increased O5; and stratospheric water vapor concentrations lead
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(Schmidt and Shindell, 2003; Shindell et al., 2009) to an additional positive radiative
forcing that is on the order of a few tens of percent of the direct longwave (“greenhouse-
gas”) forcing of methane itself. The decrease in OH concentrations reduces the oxida-
tion rate, and thus increases the lifetime, of many pollutants and trace gases — including
methane itself (Higgins and Schrag, 2006; Shindell et al., 2009). Furthermore, lower
OH concentrations will reduce the formation rate of nucleating and condensing vapors
(though this may partly be compensated by increased oxidation of some organic vapors
by ozone), and lead to lower aerosol and cloud droplet number concentrations (CDNC).
This will lower the average cloud albedo, decrease cloud lifetimes and cloudiness, and
thus further warm the climate.

In a recent study (Shindell et al., 2009) the CH,-OH-aerosol — forcing was estimated
to increase the global warming potential of present-day methane by approximately 40%
(with large error bars) on a 100-yr time scale. However, since the different effects (direct
CH,, CH,4-O3, CH4-OH-aerosol) all depend nonlinearly on the CH, concentration, the
relative magnitudes of the different forcings may be very different in a catastrophic
clathrate release scenario. Schmidt and Shindell (2003) have assessed the CH,4-O4
and stratospheric H,O — related forcings over a wide range of methane emission and
concentration scenarios in a prehistoric scenario, but to our knowledge this has not
been done for the potentially more significant CH,-OH-aerosol forcing.

In this study, we have investigated the magnitude of the CH,-OH-aerosol forcing, and
compared it to the direct longwave CH, and CH,-O5 — forcings, for scenarios where
the methane concentration increases by factors of 10 and 100. We also investigated
the effect of increasing NO, concentrations by a factor of 2 in a scenario where CH,
concentrations were increased by a factor of 10. The CH,-OH-aerosol forcing has
been computed with two different global models: GLOMAP (Mann et al., 2010), which
accounts only for the 1st indirect (cloud-albedo) aerosol effect, and ECHAM5-HAM
(Stier et al., 2005), which accounts for both the 1st and 2nd (cloud-lifetime) indirect
effects.
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2 Computational details
2.1 Global models

Oxidant fields were generated with the TOMCAT chemical transport model (Chip-
perfield, 2005), with CH, concentrations fixed at different values (present-day, 10 x
present and 100 x present). Emission estimates for year 2000 were used for all other
chemical species. TOMCAT is a three-dimensional off-line chemical transport model
(CTM). The model is forced using pre-defined large-scale transport and meteorology
specified from 6-h European Centre for Medium-Range Weather Forecasts (ECMWF)
analyses. TOMCAT includes a detailed tropospheric chemistry scheme (Arnold et al.,
2005). In the applied version of TOMCAT, an additional isoprene chemistry scheme
was added to the model. The model was run for the year 2005 with a 1-yr spin up,
using T42 spectral resolution, which corresponds to a horizontal resolution of about
2.8° by 2.8°, with 31 vertical levels up to 10 hPa.

We used a global aerosol model GLOMAP (Mann et al., 2010) and a general circula-
tion model ECHAMS5-HAM (Stier et al., 2005) to give independent estimates for how the
changes in the oxidant predicted by the TOMCAT model change the aerosol forcing.
TOMCAT oxidant fields were directly applied in the GLOMAP simulations, while the
monthly mean oxidant fields of ECHAM5-HAM were scaled according to TOMCAT pre-
dictions. Both models used T42 spectral resolution and a similar aerosol microphysics
set-up. Aerosol distributions are described using seven log-normal modes with one sol-
uble nucleation mode, and both soluble and insoluble Aitken, accumulation and coarse
modes, corresponding to the M7 setup (Vignati et al., 2004). Both models include emis-
sions of primary elemental and organic carbon, sea salt, sulfate, and dust obtained
from the AEROCOM emission inventory (Dentener et al., 2006). Secondary aerosol is
produced by binary homogeneous nucleation of sulfuric acid and water and by an em-
pirical activation nucleation mechanism (Sihto et al., 2006) in the boundary layer, where
the nucleation rate of 1 nm particles is given by J =2x107°s™ [H,SO,]. Both mod-
els also include a representation of secondary organic aerosol based on monoterpene

9061

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

ACPD
11, 9057-9081, 2011

Large methane
releases lead to
strong aerosol
forcing

T. Kurtén et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/9057/2011/acpd-11-9057-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/9057/2011/acpd-11-9057-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

emissions. The main difference between GLOMAP and ECHAM5-HAM models is that
ECHAM5-HAM generates its own winds and temperatures using climatological val-
ues for sea-ice concentration and sea surface temperatures, while GLOMAP uses a
pre-defined large-scale transport and meteorology using ECMWEF analyses. Since the
ECHAM5-HAM model climate is not fixed, we ran the model for 5 yr for a representative
average of CDNC and radiative fluxes, while GLOMAP runs covered 1 yr with 4 month
spin-up with results based on the year 2005 climate. The two models also use differ-
ent approaches for the calculations of cloud droplet number concentrations (CDNC)
and cloud radiative forcings: in GLOMAP, boundary layer CDNC is post-processed
from aerosol fields using the parameterization of Nenes and Seinfeld (2003), while in
ECHAMS5-HAM, aerosols are activated to cloud droplets according to the parameteri-
zation by Lin and Leaitch (1997), and reported CDNC values are analyzed at cloud-top
height.

The aerosol radiative forcing was evaluated as the change in the cloud radiative
effect (defined as the difference between all-sky and clear-sky fluxes) at the top-of-
atmosphere (TOA). For GLOMAP, only the first indirect aerosol effect was considered
and it was evaluated using the offline Edwards and Slingo (1996) (E-S) radiative trans-
fer model with cloud data from the International Satellite Cloud Climatology Project
archive (Rossow and Schiffer, 1999) and a monthly averaged climatology based on the
ECMWEF reanalysis data (Rap et al., 2010). For ECHAM5-HAM, the simulated radiative
fluxes are influenced by changes in CDNC as well as cloud fraction and condensate
amounts; hence both the 1st and 2nd aerosol indirect effect are included. For aerosol-
related forcings, the difference between TOA and tropopause values is likely negligible,
so these values are comparable to the tropopause-level forcings calculated for CH,
and O,.

We also calculated the first indirect (cloud-albedo) forcing using ECHAM CDNC fields
and the analysis methods of the GLOMAP and E-S models in order to assess the
sensitivity of the results toward the details in the forcing calculations.
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2.2 1-D chemistry — transport models

The 1-D chemistry — transport model SOSA (a model to simulate the concentrations
of organic vapors and sulfuric acid) was used for detailed atmospheric chemistry sim-
ulations, with data from the field measurement station in Hyytiala, Finland. The model
builds upon an atmosphere boundary layer model SCADIS (Sogachev et al., 2002; So-
gachev, 2009), which includes the vertical transport for moisture, heat, and for other
compounds of interest. The chemistry was calculated with the Kinetic PreProcessor
(KPP) with more than 2000 reactions generated by the Master Chemical Mechanism
(MCM). Emissions of organic vapours (isoprene, monoterpene, etc.) were predicted by
the model MEGAN. A detailed description of the model and initialization can be found
in Boy et al. (2011). The initial concentration for methane was first set to mean con-
centration measured in Hyytiala (1.8 ppm) to represent the current CH, concentration
scenario. By multiplying this initial value by 10 and 100 times we could then carry out
the simulations under different CH, concentration scenarios. The same procedure was
applied to NO, to get different NO, concentration scenarios.

The effect of methane concentration increases on decreasing OH concentrations
predicted by the SOSA model was very similar to that predicted by TOMCAT for the
grid cell and column containing Hyytiala, indicating that the lesser chemical detail of
the global model is not a significant error source. On the other hand, the effect of
increased NO, on OH concentrations was much greater in the SOSA simulations than
in TOMCAT.

2.3 CH, and O; radiative forcing calculations

The radiative forcing due to increased methane concentrations was estimated in
two phases. First, an estimate for the clear-sky radiative forcing was derived using
the highly accurate (algorithmic accuracy approximately 0.5%) Line-by-Line-Radiative
Transfer Model (LBLRTM; Clough et al., 1995). Calculations for five McClatchey et
al. (1971) standard atmospheres (tropical, midlatitude summer, midlatitude winter,
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subarctic summer and subarctic winter) yielded an estimate of 3.14 Wm™2 (8.20 Wm™?)
for the average clear-sky longwave radiative forcing at the tropopause level due to
increasing the methane concentration by 10 (by 100). Impacts on shortwave radia-
tion were not included. Second, the impact of clouds on methane radiative forcing
was estimated roughly using the ECHAMS5.4 radiation scheme (Mlawer et al., 1997;
Cagnazzo et al., 2007). Off-line calculations for a global dataset extracted from a one-
year ECHAMS5.4 simulation suggested that clouds reduce the CH, radiative forcing on
average by ~20%. Therefore, we multiplied the clear-sky forcings from LBLRTM by
0.8, which yields all-sky radiative forcings of 2.51 Wm™2 and 6.56 Wm~2 for 10-fold and
100-fold CH, concentration, respectively. Note that the ECHAMS5.4 scheme has not
been designed to work well for such high CH, concentrations. Therefore, we do not di-
rectly use the all-sky forcing for this scheme; it is only used to provide a rough estimate
of how much clouds influence the forcing.

The net (longwave + shortwave) radiative forcing due to changed O5 concentration
was estimated in off-line calculations with the ECHAMb.4 radiation scheme, using the
aforementioned global dataset. The forcing was computed as the difference between
two sets of calculations, one using the present-day O5; concentration multiplied by
the local (x,y,z) fractional change in annual-mean O4 concentration from the TOMCAT
model, and the other using the present-day O; concentration as such.

2.4 CH, lifetime estimation

The lifetime of methane under different OH concentrations, 7([OH]), was computed as
follows. First, the lifetime under present-day OH concentrations, 7pesent Was assumed
to be 12yr, as given in the IPCC 4th assessment report (Solomon et al., 2007). Next,
the total contribution of stratospheric and soil sinks given current OH levels ([OH],esent)
was assumed to be 12% of the total methane removal (Schmidt and Shindell, 2003;
Solomon et al., 2007). The soil sink very likely does not depend on atmospheric OH,
O3 or NO, concentrations, and variations in the stratospheric sink due to tropospheric
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a large role in the final lifetime of methane. Therefore, the rate constant associated
with the combined non-tropospheric sinks (denoted kgy,s,) Was assumed to remain
constant. The total removal rate, R, of methane then becomes:

R = KotherlCH4]1 + kKo[OHI[CH,] (1)

where kg is the average rate constant for removal by OH, and we have assumed
Kother = (0.12/0.88)kon[OH]present = 0-137kon[OH]present-  The lifetime is equal to the
methane concentration divided by the removal rate: 7([OH]) = 1/(Kother + Kon[OH]).
Given these assumptions, the lifetime as a function of OH concentration can be ex-
pressed as:

T([OH]) = Tpresent X (kother + kOH[OH]present)/(kother + kOH[OH]))
= Tpresent X 1 -137kOH[OH]present/(O- 1 37kOH[OH]present + kOH[OH])
= Tpresent X 1.137/(0.137 + [OH]/[OH]present) (2)

Thus, for example a halving of the atmospheric OH concentration would lead to a
lifetime increase of a factor of about 1.8. The ratio [OH)/[OH],esent Was assumed to be
roughly equal to the ratio of the average atmospheric concentrations of OH below 13 km
in the simulation runs. (Using the total atmospheric average including stratospheric
OH would tend to underestimate the changes, while using ground-level concentrations
would tend to overestimate them.)

3 Results and discussion

The results of this study are summarized in Table 1. The direct CH, and CH,4-O4
forcings are comparable to those published previously (Schmidt and Shindell, 2003;
Shindell et al., 2009), with the CH,4-O5 — forcing amounting to about 20% of the direct
CH, forcing in both scenarios. Forcing from increased stratospheric H,O (due to CH,
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oxidation in the stratosphere) was not assessed in this study, but is likely of the same
order of magnitude.

Our modeling suggests that in a scenario where methane concentrations increase
by a factor of 10, the total aerosol-related radiative forcing may be around 80% of the
direct CH, forcing. The ECHAM5-HAM — simulations predict relatively large changes
in global cloud cover and cloud water content, implying a strong secondary indirect
aerosol effect. The difference between the GLOMAP and ECHAM5-HAM results, which
occurs in spite of similar reductions in cloud droplet number concentration (CNDC) in
the two models, suggests that cloud-albedo forcing accounts for somewhat less than
half of the total aerosol forcing, with the (considerably more uncertain) cloud-lifetime
forcing accounting for the rest. This ratio is similar to that obtained by Lohmann and
Feichter (2005).

The relative ratios of the different forcings are similar for a 100-fold methane increase,
though the absolute values of the CDNC and cloudiness changes and the correspond-
ing forcings are naturally much larger. These results indicates that the total radiative
forcing associated with large methane increases (including CH,-O; CH,4,-OH-aerosol
and stratospheric H,O forcings) may be around twice as large as the direct longwave
CH, forcing alone. This may in part help resolve the discrepancy between estimated
methane releases and warming during the PETM.

The aerosol-related forcings are caused mainly by perturbations to the sulfur cycle.
In the high-methane scenarios, the oxidation of sulfur dioxide (SO,) by OH into sulfuric
acid (H,SO,) in the gas phase becomes much less effective. This leads to smaller
H,SO, nucleation and condensation rates, and to 48% and 78% reductions in global
Aitken mode sulfate masses in the 10-fold and 100-fold methane scenarios, respec-
tively. However, in the high-methane scenarios a significantly larger fraction of SO,
is oxidized in the liquid phase (e.g. by Og), increasing the accumulation mode sulfate
masses by 9% and 15%, respectively. Overall, the changes in Aitken mode aerosols
dominate the changes in CDNC, and in the high-methane scenarios the aerosols that
can act as cloud condensation nuclei are less numerous but larger. In contrast to
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H,SQO,, the production rates of gaseous secondary organics remain nearly unaffected,
while the fraction of organics oxidized by O3 increases relative to that oxidized by OH
in the high-methane scenarios.

Figures 1 and 2 show the regional distribution of the aerosol-related radiative forc-
ing predicted by ECHAM5-HAM following 10-fold and 100-fold increases in methane,
respectively. Figures 3—4 show the corresponding CDNC changes, while Figs. 5 and 6
show the regional distribution of the cloud-albedo radiative forcings from the GLOMAP
runs using the E-S radiation model. Figures 7 and 8 show the regional distributions of
the cloud-albedo radiative forcings computed using ECHAM CDNC fields together with
the GLOMAP and E-S analysis tools. The predicted effects of a large CH, increase
on aerosol forcings are largest over ocean areas, especially the eastern parts of the
Atlantic and Pacific. This is due to three main reasons. First, the simulated fractional
changes in CDNC are relatively large in these regions (Figs. 3—4), which implies rel-
atively large changes in cloud optical depth and cloud albedo. Second, these regions
feature abundant low cloudiness, which makes changes in cloud albedo particularly
important for the radiation budget. Third, the lower albedo of the oceans compared
to land areas leads to a greater total forcing for a similar change in cloud properties.
The negative forcing observed in some equatorial regions in ECHAM5-HAM (but not in
GLOMAP) is due to increase of cloud cover in these areas. While GLOMAP uses pre-
scribed cloud fields of 2005, ECHAM5-HAM simulates changes in cloud cover between
different experiments.

The computed forcings, especially the 2nd indirect aerosol effects, are associated
with significant uncertainties. In addition to uncertainties in the actual cloud parame-
terizations, the aerosol microphysics models use a fairly simplistic nucleation parame-
terization, which assumes that the formation of new particles is mainly related to sulfu-
ric acid concentrations. If organic ozonolysis products also participate in new-particle
formation, this would tend to decrease the differences between present-day and high-
methane scenarios, as methane emissions decrease OH but increase O5. This would
weaken the total CH,-OH-aerosol forcing compared to the values shown in Table 1.
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Another potentially important mechanism not accounted for in this study is that the
decreased clouds (and resulting increased solar radiation and surface temperature)
associated with the increased methane might substantially increase the emissions of
biogenic volatile organic compounds (VOC). This would lead to further decreases in
OH, but on the other hand would increase the yield of organic ozonolysis products.

We caution that the applicability of these results to explain prehistoric events (such
as the PETM) is hampered by the difference between present industrial-age atmo-
spheric chemistry and prehistoric conditions, as well as differences in the positions of
the continents. For example, the overall ratio of new-particle formation to primary par-
ticle sources, and thus the effect of oxidant concentrations on cloud albedo, may have
been very different during the PETM than today.

The prospect of methane-related feedback mechanisms has promoted a recent in-
terest in the artificial removal of methane via geoengineering techniques (Boucher and
Folberth, 2010). Even though the concentration of methane is much less than that
of carbon dioxide, its much larger global warming potential (especially after the O3 —
and aerosol-related forcings are accounted for) makes methane removal an attractive
option.

We have assessed the feasibility of perturbing tropospheric chemistry artificially in
order to increase methane removal. As a proof-of-concept study, we have considered
the catalytic effect of reactive nitrogen oxides (NO,) on methane oxidation. In most
conditions, increasing the concentration of NO, leads to an increased OH concentra-
tion, and thus a more rapid CH, oxidation, though at the expense of increased Oy
levels. There probably exist potential CH, removal catalysts that are both more ef-
fective and considerably less environmentally harmful than NO,. (Side effects of NO,
addition would include health and ecosystem damage due to air pollution and acidifica-
tion, so NO addition can thus not be recommended as a real-life mitigation measure.)
However, we have conducted our simulations using NO, as a test case since the NO,
— OH - CH, chemistry is well known, and already included in atmospheric chemistry
models.
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Preliminary studies using the 1-D chemistry model SOSA (Boy et al., 2011) indicated
that in a scenario with 10 times present methane concentration, e.g. a doubling of NO,
levels would reduce the methane lifetime significantly (by almost 40%). However, global
chemistry model (TOMCAT) simulations for the same scenario indicated only a mod-
est increase in tropospheric OH (from 0.0319 pptv to 0.0361 pptv), which corresponds
to a reduction of the methane lifetime by only 9% (from 20.5 to 18.6yr). The corre-
sponding cloud-albedo related cooling associated with the NO, doubling computed by
GLOMAP is only around 0.1 Wm™2. The discrepancy between the 1-D model and the
global model in the predicted OH-regeneration through increased NO, concentrations
(about 50%) is likely related to the more detailed chemistry included in SOSA. However,
other factors like the different emission scenarios for organic vapors and the selected
assumption of cloud-free conditions in the 1-D model could also be important factors.

4 Conclusions

Using a combination of atmospheric models, we show that the total radiative forcing
associated with a large methane increase may be around twice as large as the di-
rect greenhouse effect enhancement of the added methane. The main indirect forcing
component is the decrease in cloud droplet number concentration, cloud fraction and
condensate amount caused by a strong decrease in OH concentrations. We also in-
vestigated the effect of doubling atmospheric NO, levels in order to regenerate OH, but
found this hypothetical drastic geoengineering technique to be ineffective.
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Table 1. Average tropospheric OH concentration, estimated methane lifetime, global mean cloud droplet number
concentration (CDNC), changes in the global-mean total and cloud cover and liquid water path, and various radiative
forcing components (computed with respect to the present-day atmosphere) associated with three different methane
concentrations. For CDNC and other cloud parameters, numbers shown in brackets are absolute values. O3 and CH,
forcings are computed at the tropopause, and aerosol-related forcings at the top of the atmosphere. LBLRTM = Line
By Line Radiative Transfer Model. See the Computational Details — section for details.

Presentday CH, 10 x CH, 100 x CH,
Tropospheric mass of OH 152056 kg 72834 kg 25718 kg
Average OH concentration below 0.0605 ppty, 0.0319 ppty, 0.0130 ppty
13km (TOMCAT)
Estimated methane lifetime” 12yr 20.5yr 38.8 yr

CDNC (ECHAM)

100% (215 cm™2)

82.1% (177 cm™)

63.3% (137 cm™)

CDNC (GLOMAP)

100% (152 cm™3)

82.2% (125 cm™)

66.2% (100 cm™)

Cloud cover (ECHAM)

100% (0.6509)

99.3% (0.6465)

98.4% (0.6408)

Low cloud cover (ECHAM)

100% (0.3604)

98.6% (0.3552)

96.3% (0.3469)

Cloud liquid water amount 100% 87.8% 721%
(ECHAM) (70.27 gm™~3) (61.66 g m™2) (50.65 g m™2)
CH, forcing (LBLRTM) - +2.51Wm™2 +6.56 Wm™
O; forcing - +0.76 Wm™2 +1.13Wm™
Total aerosol forcing (ECHAM) - +2.32Wm™2 +5.54Wm™
Total indirect aerosol forcing - +2.06 Wm™2 +5.11Wm™
(ECHAM)

1st indirect aerosol forcing - +0.88Wm™ +1.79Wm™
(GLOMAP™)

1stindirect aerosol forcing (ECHAM ~ — +0.65Wm™2 +1.78Wm™

& GLOMAP)™

" Present-day lifetime taken from the IPCC 4th assessment report, other lifetimes scaled using the ratio of OH concen-
trations as described in the Computational Details — section.

™ Includes only the cloud-albedo (1st indirect) aerosol effect.

*** Cloud-albedo (1st indirect) aerosol effect computed with GLOMAP, using CDNC fields from ECHAM.
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Fig. 1. Predicted aerosol radiative forcing (in W m™?) (evaluated as a difference in cloud radia-
tive forcing) associated with a CH, concentration increased by a factor of 10, using ECHAM5-

HAM.
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Fig. 2. Predicted total aerosol radiative forcing (in Wm™2) (evaluated as a difference in cloud
radiative forcing) associated with a CH, concentration increased by a factor of 100, using

ECHAM5-HAM.
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Fig. 4. Predicted percentage decrease in cloud droplet number concentration (CDNC) when
the CH, concentration is increased by a factor of 100, using ECHAM5-HAM.
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Fig. 5. Predicted cloud-albedo aerosol radiative forcing (in Wm‘2) associated with a CH,
concentration increased by a factor of 10, using GLOMAP and E-S.
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Fig. 6. Predicted cloud-albedo aerosol radiative forcing (in Wm™?) associated with a CH,
concentration increased by a factor of 100, using GLOMAP and E-S.
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Fig. 7. Predicted cloud-albedo aerosol radiative forcing (in Wm‘2) associated with a CH,
concentration increased by a factor of 10, using GLOMAP and E-S with ECHAM CDNC fields.
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Fig. 8. Predicted cloud-albedo aerosol radiative forcing (in Wm™2) associated with a CH,
concentration increased by a factor of 100, using GLOMAP and E-S with ECHAM CDNC fields.
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