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Abstract

A module predicting the oxidation state of organic aerosol (OA) has been developed
using the two-dimensional volatility basis set (2D-VBS) framework. This model is an
extension of the 1D-VBS framework and tracks saturation concentration and oxygen
content of organic species during their atmospheric lifetime. The host model, a one-5

dimensional Lagrangian transport model, is used to simulate air parcels arriving at
Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008
(FAME-08). Extensive observations were collected during this campaign using an
aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical
composition and volatility, respectively, of the ambient OA. Although there are several10

uncertain model parameters, the consistently high oxygen content of OA measured
during FAME-08 (O:C=0.8) can help constrain these parameters and elucidate OA
formation and aging processes that are necessary for achieving the high degree of
oxygenation observed. The base-case model reproduces observed OA mass con-
centrations (measured mean=3.1 µg m−3, predicted mean=3.3 µg m−3) and O:C ratio15

(predicted O:C=0.78) accurately. A suite of sensitivity studies explore uncertainties
due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed
enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added
for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the
first generation of compounds formed from SOA precursor oxidation, and (6) biogenic20

SOA aging. Perturbations in most of these parameters do impact the ability of the
model to predict O:C ratios well throughout the simulation period. By comparing mea-
surements of the O:C ratio from FAME-08, several sensitivity cases including a high
oxygenation case, low oxygenation case, and biogenic SOA aging case are found to
unreasonably depict OA aging. However, many of the cases chosen for this study pre-25

dict average O:C ratios that are consistent with the observations, illustrating the need
for more thorough experimental characterizations of OA parameters including the en-
thalpy of vaporization and oxidation state of the first generation of SOA products. The

8554

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/8553/2011/acpd-11-8553-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/8553/2011/acpd-11-8553-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 8553–8593, 2011

Simulating the
oxygen content of
ambient organic

aerosol

B. N. Murphy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ability of the model to predict OA concentrations is less sensitive to perturbations in
the model parameters than its ability to predict O:C ratios. In this sense, quantifying
the O:C ratio with a predictive model and constraining it with AMS measurements can
reduce uncertainty in our understanding of OA formation and aging.

1 Introduction5

Organic aerosol (OA), although a significant component of submicron particles
throughout the world, is poorly simulated by predictive models when compared to simu-
lations of particulate inorganic constituents (Kanakidou et al., 2005; Fuzzi et al., 2006).
Thousands of individual organic compounds make up this OA mixture, making its bulk
properties (e.g. reactivity, volatility, hygroscopicity, etc.) difficult to assess and repre-10

sent in mathematical models of the atmosphere (Goldstein and Galbally, 2007). These
chemical transport models (CTMs) thus typically use surrogate species with averaged
properties to represent dominant OA formation, evolution, and removal pathways in
order to predict ambient OA mass concentrations at the Earth’s surface or aloft. Mass
concentration currently is believed to be the best predictor for negative human health15

impacts, and is therefore the preferred metric for government particulate matter regula-
tion. Still, current CTMs consistently underpredict OA mass concentrations, missing up
to 80% of the observed material at the surface during summertime conditions (Morris
et al., 2006). Underpredictions at high altitudes have been reported as well (Heald et
al., 2005) although available aircraft OA monitoring campaigns and thus comparisons20

to models are sparse.
The distribution of bulk organic mass between the particle and gas phases is tra-

ditionally modeled with an equilibrium partitioning approach taking into account ab-
sorption into the OA phase, while neglecting growth by adsorption to particle surfaces
(Pankow, 1994; Odum et al., 1996; Seinfeld and Pandis, 2006). In order to use this25

approach to model atmospheric OA, one must account for the volatility of any modeled
semi-volatile organic, whether it originates directly from an emission source (primary
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organic aerosol or POA) (Robinson et al., 2007) or is formed from the oxidation of or-
ganic compounds too volatile to readily condense (secondary organic aerosol or SOA)
(Odum et al., 1996; Griffin et al., 1999). Because these models treat the absorption
of constituents into a bulk aerosol phase, the addition of mass to the absorbing phase
enhances the particle-phase partitioning of individual species. In theory, one could5

enumerate and model every one of the thousands of individual organic compounds that
contribute to OA formation and obtain an accurate prediction of OA mass concentra-
tions. However, in practice, this approach would make computation times impractically
long and require a wealth of experimental data that does not exist. Current models
instead lump mass from compounds that are believed to behave similarly in the atmo-10

sphere (e.g. terminal alkenes or SOA from anthropogenic sources). Some models use
heavily lumped approaches to further streamline computation time, but run the risk of
losing information about contributions from specific sources and interactions between
them (e.g. mixing behavior). Thus, models exist on a spectrum from ones that describe
broad, aggregate behavior (Pandis et al., 1992; Binkowski and Roselle, 2003; Gaydos15

et al., 2007) to ones that describe more detailed chemistry (Griffin et al., 2005). A
major challenge for the field of atmospheric aerosol modeling is to find an acceptable,
reasonably performing balance between these two extremes.

Recently, the volatility basis set framework was developed to describe OA absorptive
partitioning by organizing the total OA mass into surrogates along an axis of volatility20

(Donahue et al., 2006; Stanier et al., 2008). This approach typically employs species
with effective saturation concentrations separated by one order of magnitude while
spanning atmospherically relevant saturation concentrations (about 0.01 to 106 µg m3).
Several studies have found this framework a useful approximation for describing both
formation of SOA (Presto and Donahue, 2006; Pathak et al., 2007; Stanier et al., 2008;25

Chan et al., 2009; Hildebrandt et al., 2009; Shilling et al., 2009) and evaporation of
semivolatile POA constituents (Shrivastava et al., 2006; Robinson et al., 2007; Shrivas-
tava et al., 2008; Grieshop et al., 2009) as well as for modeling ambient OA formation
and chemical aging processes (Lane et al., 2008; Murphy and Pandis, 2009; Cappa
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and Jimenez, 2010; Farina et al., 2010; Tsimpidi et al., 2010). One major advantage of
this framework is its focus on volatility, the most important property for determining the
condensed fraction of an organic compound. Compounds with widely varying emission
sources and otherwise different properties are lumped into these saturation concen-
tration bins and a straight-forward prediction of OA mass concentrations is possible.5

Moreover, the VBS can easily describe, at least to a first approximation, organic oxi-
dation processes (aging) occurring in the actual atmosphere after the initial oxidation
step observed in smog chamber investigations. Experiments suggest that this addi-
tional processing may reduce the volatility of the bulk organic compound populations
considerably depending on the OA source and experimental conditions (temperature,10

relative humidity, NOx mixing ratios, etc). It is straight-forward to use the VBS to trans-
fer mass from one volatility bin to another and thus affect the overall OA concentration.
However, experimentally determined reaction rates and yields for these processes are
uncertain and their magnitudes are likely dependent on compound properties as well
as environmental conditions. It is thus useful to combine atmospheric modeling sensi-15

tivity studies with constraints from experiments and ambient measurements in order to
reduce the current uncertainty in homogenous gas-phase aging of organic compounds.

Recent developments in OA measuring techniques have seriously increased ana-
lytical capabilities of smog chamber and ambient OA investigations. Specifically, the
aerosol mass spectrometer (AMS) and the thermodenuder systems provide detailed20

information about the average chemical composition and volatility distribution of OA.
Using the AMS, field campaigns throughout the world have found that ambient OA
has high oxygen content, indicating extensive oxidation during its atmospheric lifetime
(Zhang et al., 2007; Kroll et al., 2011). Thermodenuder studies have found ambient OA
to be quite low in volatility, also indicative of extensive oxidation and addition of polar-25

izing functional groups (Huffman et al., 2009; Lee et al., 2010). However, these same
instruments deployed in smog chamber studies tend to observe OA that is somewhat
lower in oxygen content and higher in volatility (Jimenez et al., 2009). It is quite possible
that continued atmospheric oxidation would help explain both of these inconsistencies.
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Moreover, if continued oxidation tends to decrease the average volatility of atmospheric
OA populations, then the subsequent mass enhancement (which would be more pro-
nounced in summer periods with higher photochemical activity) may help close the gap
in mass concentration between models and ambient measurements. However, as dis-
cussed above, the required parameters for describing these processes in a framework5

like the VBS are highly uncertain. There are many possible combinations of reaction
rates and stoichiometric yields (transformations in volatility space) that would predict
results consistent with chamber observations (Dzepina et al., 2009; Grieshop et al.,
2009). The two-dimensional volatility basis set (2D-VBS) tracks the oxygen content as
well as the saturation concentration of model species (Donahue et al., 2010), and this10

additional information could be used to compare predictions to the results from AMS
observations. Simulating this added dimension may help constrain some of the uncer-
tainties in OA aging as well as provide more precise predictions of the concentration of
organic carbon, which is reported by ambient monitoring networks (Chow et al., 2001;
Watson et al., 2005).15

The major advantage of extending the VBS to describe oxygen content is the ability
to quantify the degree of oxygenation. In this study, we will characterize this value as
the ratio of oxygen to carbon atoms (O:C ratio). Previous modeling efforts have im-
plemented OA aging in the one-dimensional VBS (1D-VBS) and found it to improve
predictions of the high degree of oxygenation in the ambient. However, this analy-20

sis was based only on estimating the fractional contribution of species that had never
been oxidized in the model versus species that had been oxidized at least once. The
current study performs a more rigorous analysis in which the extent of oxygenation is
predicted and evaluated. There are many uncertainties associated with this effort in-
cluding the initial O:C ratio distribution of OA constituents and the change in O:C ratio25

with every aging generation. The hydroxyl radical can also be taken up into the or-
ganic particulate phase and react with condensed phase organic compounds, thereby
altering their volatility and enhancing their oxygen content. OH uptake to condensed
organic compounds has been studied in many experimental setups including uptake
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on organic surfaces (Bertram et al., 2001) to particles in a flow tube (George et al.,
2007; George et al., 2008; Kroll et al., 2009; George and Abbatt, 2010) and in smog
chambers (Lambe et al., 2007). A modest range of uptake coefficients have been mea-
sured and reported in the literature but a lifetime for exposure to OH of about 6 days
(kOH ≈2×10−12 cm3 molec−1 s−1with [OH]=106 molec cm−3) is largely representative5

of these findings. This reaction rate constant is much lower than the base-case ho-
mogeneous OH reaction rate constant (George and Abbatt, 2010). It is therefore not
expected that heterogeneous oxidation (by this pathway) will be significant near ur-
ban areas and large OA sources. However, after significant atmospheric transport,
heterogeneous aging may increase the oxygenation of condensed phase material con-10

siderably.
Oxidation of biogenic VOCs like isoprene, monoterpenes and sesquiterpenes is a

significant source of SOA at both global and regional scales, especially outside of urban
areas. Therefore representing the atmospheric behavior of these SOA components ac-
curately in models is crucial for predicting the total OA budget well. Smog chamber ex-15

periments have observed reductions in volatility and enhancements in oxygen content
of biogenic SOA from multiple generation oxidation by the OH radical (Qi et al., 2010).
Murphy and Pandis (2010) found that PMCAMx-2008, a regional-scale CTM that mod-
els OA aging with the 1D-VBS, reproduced observed OA mass concentrations in urban
and rural areas well when anthropogenic SOA aging with the base-case OH reaction20

rate constant was taken into account but tended to overpredict when biogenic SOA ag-
ing was included as well. When aging of SOA from both sources was included with a
reduced reaction rate constant (kOH =2.5×10−12 cm3 molec−1 s−1), performance was
comparable to the base case, but slightly worse. We will look at both of these cases to
see the affect of including biogenic SOA (bSOA) aging in this 2D-VBS aging framework.25

The 2D-VBS requires many more model species than its 1D counterpart, and so
computation time becomes an important concern. Thus, we will first use this framework
in a host transport model with reduced spatial dimensionality in order to evaluate the
usefulness of this approach for modeling regional-scale OA behavior. The Finokalia
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Aerosol Measurement Experiment (FAME-08), which took place in May 2008 on the
island of Crete, measured ambient OA with an AMS and thermodenuder, providing
hourly simultaneous information about the O:C ratio and volatility (Pikridas et al., 2010).
Measurements from the campaign indicate extensive, consistent OA aging with high
O:C ratios, low volatility and little diurnal variation (Hildebrandt et al., 2010; Lee et al.,5

2010). Thus this episode is a good candidate for a proof of concept modeling evaluation
of the 2D-VBS and its capabilities.

We present in this work an implementation of the 2D-VBS within a one-dimensional
Lagrangian transport host model to describe ambient organic aerosol formation and
oxidative aging. We use extensive observations of the OA chemical composition dur-10

ing the FAME-08 study in order to evaluate the model’s ability to accurately predict
the average degree of oxygenation of bulk OA. We have chosen a suite of alterna-
tive model formulations that probe the major uncertainties of the 2D-VBS approach
to understand their impacts on the model’s prediction of total OA mass and extent of
oxidation. Knowing the magnitude of these impacts, we recommend areas where de-15

tailed experimental characterization would lead to significant improvement in accuracy
for ambient OA models.

2 Organic aerosol module

2.1 Two-dimensional volatility basis set framework

The traditional VBS framework of segregating OA surrogates based on effective satu-20

ration concentration, or C∗, is extended here to resolve OA mass in terms of O:C ratio
as well. We assume organic compounds can range in O:C ratio from very low (fresh
emissions) to O:C >1 (highly oxygenated species). This 2D-VBS implementation re-
solves OA mass into 12 discrete linearly spaced O:C bins varying from 0 to 1.2. One
could extend the O:C range up to 2 (CO2); however, we are not aware of observations25
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of OA species at these exceptionally high levels of oxygenation. Few ambient AMS
data reveal bulk OA O:C ratios above 1.1 (Ng et al., 2010; Kroll et al., 2011).

Donahue et al. (2006) and Stanier et al. (2008) recommended choosing saturation
concentration bins separated by an order of magnitude in C∗ space. Lane et al. (2008)
chose to use four bins (C∗ =1 to 1000 µg m−3) to represent SOA production from volatile5

precursors since most atmospherically relevant chamber experiments focus on OA
loadings in this range. Shrivastava et al. (2008) expanded this range (C∗ =0.01 to
106 µg m−3) in order to better represent evaporation of POA mass explored in dilution
experiments (Lipsky and Robinson, 2006). Cappa and Jimenez (2010) employed a
wider C∗ range (10−15 to 1000 µg m−3) for their model of ambient OA mass from Mex-10

ico City and Los Angeles passing through a thermodenuder. Since the current work
involves evaporation of POA emissions, emission of intermediate volatility organic com-
pounds (C∗ =103 to 106 µg m−3), and comparison to thermodenuder data taken during
the FAME-08 campaign, we choose C∗ =10−5 to 106 µg m−3 (12 total bins). The module
will thus be able to capture phenomena relevant to several different volatility regimes.15

The following five OA source classes are resolved: (1) aSOA is OA formed from the
oxidation products of anthropogenic VOCs (aromatics, alkenes and alkanes), (2) bSOA
is OA formed from oxidation products of biogenic VOCs (isoprene, monoterpenes and
sesquiterpenes), (3) POA is fresh emitted OA with C∗ ≤1000 µg m−3. This mass may
evaporate and recondense during its atmospheric lifetime, but once it reacts with20

OH it is removed from this classification becoming (4) semi-volatile SOA (sSOA).
(5) intermediate volatility SOA (iSOA) mass is emitted largely in the gas phase with
C∗ >1000 µg m−3. This material, following Tsimpidi et al. (2010) is in equilibrium with
emitted particulate OA mass. Because of the difficulty in measuring mass in this volatil-
ity range, emission inventories do not yet include these compounds. We thus add an25

intermediate volatility organic gas emission rate equal to 1.5 times the POA emission
rate following several past studies (Robinson et al., 2007; Murphy and Pandis, 2009;
Hodzic et al., 2010; Tsimpidi et al., 2010). In the gas phase, this mass is susceptible
to oxidation by OH and may go to lower volatility and condense to form SOA.
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One source of uncertainty for SOA formation is the initial O:C distribution for 1st-
generation products of organic gas oxidation. For the base case mass from the oxida-
tion of anthropogenic and biogenic VOCs is assigned an O:C ratio equal to 0.4 consis-
tent with smog chamber AMS measurements (Hildebrandt et al., 2009; Kostenidou et
al., 2009). Kostenidou et al. (2009) evaluated this assumption using a thermodenuder5

in tandem with an AMS to segregate the O:C ratio by volatility for SOA from traditional
monoterpene precursor oxidation and found higher O:C ratios for lower volatility prod-
ucts in general. A similar conclusion was reached by Shilling et al. (2009) who used
a continuous flow chamber with varied SOA loadings instead. The uncertainty in our
assumption of volatility independent initial SOA O:C of 0.4 will be evaluated in a sensi-10

tivity study using an initial O:C distribution that varies with volatility. Semi-volatile and
intermediate volatility gases (compounds from evaporation of diluted POA mass) are
assigned an O:C=0. The fate of the products from the OH oxidation of these gases
in the 2D-VBS is then calculated by assuming that the emitted gases age similarly to
later generation compounds (discussed in the next section).15

2.2 Homogeneous oxidative aging

The 2D-VBS framework describes the evolution of OA volatility and oxygen content by
distributing mass along both axes (saturation concentration and O:C ratio) when mass
from any bin reacts with the OH radical. This study focuses primarily on homogeneous
gas-phase aging because it occurs rapidly (kOH =0.1–10×10−11 cm3 molec−1 s−1)20

compared to estimates for heterogeneous reaction with OH. Previous work with the
1D-VBS describe gas-phase OH aging using various approaches that typically act
to reduce the volatility of the products compared to the reactant species. Lane et
al. (2008), Shrivastava et al. (2008), and Murphy and Pandis (2009, 2010) used a
1-bin (or decade) volatility reduction per reaction. This approach will be used in the25

present study as the base-case scenario. The model must specify the transformation
in O:C ratio space as well. For the base case, we will assume that oxidation by the
OH radical has an equal probability of adding one or two oxygen atoms to the organic
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reactant molecule. In order to calculate the increase in O:C ratio for each added oxy-
gen, the average carbon number of the reactant species must be known. Donahue
et al. (2010) used structure activity relationships from the SIMPOL group contribution
method (Pankow and Asher, 2008) to estimate vapor pressures as a function of car-
bon number and oxygen content. These trends can then be applied to the range of5

saturation concentrations and O:C ratios used in the current work and a representa-
tive carbon number for every combination of C∗ and O:C can be estimated (Fig. S1 in
supplement). This representative carbon number can be used to calculate the average
increase in O:C ratio. This O:C ratio will likely fall “between” the model O:C ratio bins so
we interpolate between them and subsequently split the mass between the two adja-10

cent bins for each oxygen added. This approach introduces some numerical diffusion,
but the OA aging process is expected to “diffuse” mass throughout the 2D-VBS space
so this is an acceptable result. The O:C ratio increase due to oxidation by OH changes
depending on where in the 2D-VBS space the reactant species is. An OA species with
the same volatility but higher O:C than another OA species presumably has fewer car-15

bons since the greater functionality will act to reduce its volatility. Thus it will increase
more in O:C when oxygen atoms are added than a larger hydrocarbon.

Shrivastava et al. (2008) and Murphy and Pandis (2010) employed an OH reaction
rate constant equal to 1×10−11 for aSOA and 4×10−11 cm3 molec1 s1 for sSOA and
iSOA species in PMCAMx-2008, and found the model to reasonably reproduce ob-20

served OA concentrations in the summer and winter. The same rates are used for the
current model in the base case. For bSOA, the model does simulate the oxygenation
of this mass as it reacts with OH, but assumes that these reactions increase the O:C
ratio without a net change of the volatility of the products. These gases are aged with
the same rate constant used for aSOA aging. When modeling OA with the 1D-VBS,25

the amount of mass added for each generation of oxidation must be assumed. Lane et
al. (2008) assumed each addition of oxygen adds 7.5% of the reactant mass. Grieshop
et al. (2009) used 7.5% and 40% added mass for fitting their chamber results to the 1-
and 2-bin volatility reduction models, respectively. Resolving the basis set framework
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along the O:C ratio axis allows explicit calculation of this added mass. Assuming car-
bon is conserved when mass is moved up in O:C, the new organic matter (carbon,
hydrogen, and oxygen) mass can be calculated as:

[OM]Final =
[

OM
OC

]
Final

[OM]Initial

([
OM
OC

]
Initial

)−1

(1)

where OM is the organic matter and OC is the organic carbon concentration. The5

OM/OC before and after oxidation can be calculated knowing the O:C ratios of both the
initial and final organic species:[

OM
OC

]
=1+

16
12

[
O/C

]
+

1
12

[
H/C

]
(2)

where O/C is the O:C ratio of the species of interest, and H/C is the ratio of moles of
hydrogen to moles of carbon. This relationship assumes that the presence of organic10

nitrate will not significantly alter this approximation. Also, we will assume that the H:C
ratio is a function of the O:C ratio:[
H/C

]
=2−

[
O/C

]
(3)

following Heald et al. (2010) who determined analyzing AMS field data that, on average,
one hydrogen atom is lost from a population of organics for every gain of one oxygen15

atom.

2.3 Alternative homogeneous oxidative aging configurations

This study will also explore the uncertainty in the O:C and volatility distribution predic-
tions due to the specific aging configuration chosen. Grieshop et al. (2009) and Hodzic
et al. (2010) investigated a 2-bin reduction in saturation concentration with a reduced20

OH reaction rate constant in addition to the 1-bin reduction scenario and found it to
perform adequately. We assume that this 2-bin reduction in volatility is accompanied
by an addition of 2 or 3 oxygen atoms, each with equal probability, and we divide all of
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the base-case aging rate constants by a factor of 2. The 1- and 2-decade volatility shift
scenarios reflect similar model scenarios in that for every reaction with OH their propor-
tional enhancement in O:C ratio for a given reduction in volatility are similar. Therefore,
we will also present the following two sensitivity cases: (1) a 1-bin volatility shift with
a 40% and 60% probability of adding 3 or 4 oxygen atoms, respectively to explore the5

possibility of rapid oxygen addition with low reduction in volatility and, (2) a 2-bin volatil-
ity shift with a 60% and 40% probability of adding 1 or 2 oxygen atoms, respectively,
to explore the scenario where few oxygen additions are needed to substantially reduce
the volatility.

A fourth sensitivity study will examine the affect of assuming aging of bSOA does not10

change its volatility. For this analysis, bSOA species are aged with the same mecha-
nism and rate constant used for aSOA aging. When both of these species are aged
with the base-case OH reaction rate in the 1D-VBS framework, model predictions gen-
erally overshoot ambient measurements (Murphy and Pandis, 2010). We will study
a case where all SOA is aged with the base-case reaction rates and then explore a15

second case with OH rate constants reduced by a factor of 4.

2.4 Heterogeneous oxidative aging

The impact of heterogeneous-phase oxidation by OH uptake directly to OA species will
be explored by employing the same aging mechanism as for the base case with an OH
aging rate constant (kOH =2×10−12 cm3 molec−1 s−1) for all species in the particulate20

phase. This process, although significantly slower than its gas-phase analogue, may
be able to significantly enhance the average O:C ratio of the bulk OA population af-
ter much of the highly oxygenated mass has condensed and is no longer available for
continued gas-phase oxidation. This sensitivity case assumes, as a first approxima-
tion, that heterogeneous phase aging only adds functional groups to the OA species25

and does not lead to fragmentation and enhanced evaporation of OA mass. Other
processes that would affect OA formation rates may also be occurring in the particu-
late phase including accretion combinations and reactions in the aqueous phase with
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hydrophilic organic species like glyoxal. These systems should be further explored in
future studies.

3 Application to the FAME-08 campaign

3.1 Measurements

FAME-08 was conducted from 8 May to 4 June 2008 and continuously measured chem-5

ical and physical characteristics of PM, air ions, gaseous species and meteorological
parameters (Pikridas et al., 2010). No distinct variation was seen in relative humid-
ity or wind speed, but intense solar radiation was observed with daily maxima always
exceeding 850 W m−2. This feature of the FAME-08 campaign makes it a desirable
scenario for the initial testing of the 2D-VBS OA aging module.10

The non-refractory PM1 chemical composition was measured with an Aerodyne, Inc
quadrupole aerosol mass spectrometer (Q-AMS) as described in detail by Hildebrandt
et al. (2010). Using the organic mass at m/z 44 as measured by the Q-AMS, that
study estimated the O:C ratio with the parameterization of Aiken et al. (2008). The
contribution from m/z 57 (characteristic of fresh, hydrocarbon-like organic species) was15

barely detectable throughout the campaign, indicating heavily aged organic aerosol
was arriving at the site regardless of the source location.

Measurements of the OA volatility with a thermodenuder were obtained simultane-
ously with the AMS chemical composition observations and are documented by Lee et
al. (2010). The OA observed had low volatility (approximately two orders of magnitude20

less volatile than laboratory-generated α-pinene SOA). Comparing the C∗ distribution
predicted by the 2D-VBS with a fit obtained from the thermodenuder observations is
ill-constrained. Instead, the final C∗ distribution of OA arriving at the Finokalia receptor
site is used, along with the size distribution of OA mass as input to a dynamic mass
transfer model of a thermodenuder system (Riipinen et al., 2010). This model is then25

used to predict the fraction of initial OA remaining (MFR) after exposure to the ele-
vated thermodenuder temperature. The thermodenuder model also needs as input the
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thermodenuder temperature and residence time as well as the enthalpies of vapor-
ization and accommodation coefficients of the OA constituents. The 2D-VBS model
assumes enthalpies of vaporization for every organic species, so it makes sense to
keep this parameter consistent between the transport model and the thermodenuder
model. A range of vaporization enthalpy inputs to the thermodenuder model will also5

be explored when comparing MFR predictions to the FAME-08 observations.

3.2 Lagrangian transport model

The 2D-VBS organic aerosol module has been added to a one-dimensional Lagrangian
transport model which simulates air parcels as they arrive at a receptor site. The Fi-
nokalia site during the FAME-08 campaign in May 2008 will be used here. Previous10

versions of this host model have been applied to California in efforts to develop pre-
dictive modules for processes such as SOA formation (Strader et al., 1999; Koo et al.,
2003) and gas/particle partitioning of atmospheric pollutants (Gaydos et al., 2003). The
model takes into account relevant atmospheric processes including gas-phase chem-
istry (using SAPRC-99), dry and wet deposition, and vertical turbulent dispersion. Re-15

moval processes have been updated with treatments similar to those in PMCAMx-2008
(Gaydos et al., 2007). The 10 grid cell column reaches 2.5 km in the atmosphere with
the first cell top boundary at 60 m. Gridded inputs were obtained for a domain includ-
ing the entire European continent as well as parts of northern Africa and western Asia
(Fig. S2 in supplement). All of the meteorological parameters (horizontal winds, ver-20

tical dispersion coefficients, temperature, pressure, water vapor, clouds, and rainfall)
input to this model are calculated by the Weather Research and Forecasting (WRF)
Model (Skamarock et al., 2008) (Fig. S3 in supplement). WRF was driven by static
geographical data and dynamic meteorological data (near real-time and historical data
generated by the Global Forecast System (1×1 deg)). 27 sigma-p layers up to 0.125

bars were used in the vertical dimension. The WRF May 2008 run was periodically re-
initialized (every 3 days) to ensure accuracy in the corresponding fields that are used
as inputs to this Lagrangian model.
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Anthropogenic and biogenic emissions are input as hourly gridded fields. Anthro-
pogenic gases include land emissions from the GEMS dataset (Visschedijk et al., 2007)
and emissions from international shipping activities. Anthropogenic particulate matter
mass emissions of organic and elemental carbon are based on the Pan-European Car-
bonaceous Aerosol Inventory that has been developed as part of the EUCAARI activ-5

ities (Kulmala et al., 2009). Three different datasets are combined in order to produce
the biogenic gridded emissions for the model. Emissions from ecosystems are pro-
duced by Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther
et al., 2006). Since sea surface covers a considerable portion of the domain, the ma-
rine aerosol model developed by O’Dowd et al. (2008) has been used to estimate mass10

fluxes for both accumulation and coarse mode including the organic aerosol fraction.
Wind speed data from WRF and chlorophyll-a concentrations are the inputs needed
for the marine aerosol model. Wildfire emissions from May 2008 were also included
(Sofiev et al., 2008a and b).

Six parcels arriving at 03:00, 07:00, 11:00, 15:00, 19:00, and 23:00 h local time (UTC15

+ 2 h) are simulated for 9 campaign days (9, 12, 15, 16, 17, 26, 27, 28 and 29 May).
These days are chosen because AMS and thermodenuder data were available, and
the air masses originated from Europe (emissions inventories for northern Africa are
quite uncertain). The Hybrid Single Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model (Draxler et al., 2009) is used to calculate 72 h back trajectories for each20

arriving air parcel. For consistency, this study uses the same meteorological fields
(calculated by WRF) as input to the HYSPLIT model to calculate the back trajectories.
One source of uncertainty in calculating back-trajectories is wind shear along the par-
cel path. Because of this phenomenon, a parcel initialized at the Earth’s surface may
have a different spatial origin than one initialized at 1 km. These parcels in theory may25

have accumulated different pollutant levels, been exposed to different weather condi-
tions, etc. To help mitigate this issue, 20 trajectories are calculated for each arrival
time by varying the height of the arriving parcel from ground level to the 2.5 km model
ceiling (Fig. 1a). The HYSPLIT clustering analysis utility is then used to estimate the
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path of one trajectory that best represents the origins of the 20 sample trajectories
simultaneously (Fig. 1b).

Each trajectory is started 72 h before it arrives at the receptor site and initialized
with pollutant concentrations output from a PMCAMx-2008 simulation of the European
domain. As the modeled air parcel proceeds through the path calculated by HYS-5

PLIT, it accumulates pollutant emissions determined by the hourly gridded inventories.
Another source of uncertainty arises from the lack of horizontal dispersion in this ap-
proach. At later model times, when the parcel is near the receptor site, it is possible
that only the emissions dictated by the actual grid the parcel is located in will have an
effect on the concentrations experienced at Finokalia. At the other extreme, for earlier10

model times, when the parcel is far away from the site, it is likely that a wide area of
sources contributes to pollutants that will eventually affect levels at the receptor site.
The trajectories in Fig. 1a illustrate this divergence as they go back in time. To over-
come this weakness, a larger area of grid cells is taken into account at each time step
when calculating the average emissions experienced by the parcel. This area begins15

as a diamond 24 grid cells wide and centered on the parcel’s present grid cell. As the
model moves forward in time, the sample size decreases until it uses only the parcel
grid cell to inform pollutant emission rates for the last six model hours. PMCAMx-
2008 includes an additional OA model species that is advected from outside the model
boundaries. This species, boundary condition OA (bcOA), is assumed to be highly20

aged and essentially non-volatile.

4 Results

4.1 Organic aerosol mass concentrations

The predicted diurnally averaged organic aerosol source profile for the base-case sim-
ulations is consistent with the AMS measurements during the FAME-08 study (Fig. 2).25

The base-case average predicted OA concentrations of 3.3 µg m−3 agrees reasonably
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with the measured concentration, 3.1 µg m−3. Moreover, the model results exhibit little
variability throughout the day although slightly more than that of the measurements.
Anthropogenic sources clearly dominate the OA contribution for this case, with aSOA,
iSOA, sSOA, and POA accounting for 17.8, 36.6, 16.7 and 2.9%, respectively. bSOA
is predicted to contribute 22.7% to the total OA arriving at Finokalia on average during5

this period. The emission source strength of the IVOC precursors that lead to this mass
is quite uncertain as are its aging parameters. The very small contribution from fresh
POA due to semivolatile partitioning and oxidation is consistent with the observations
of Hildebrandt et al. (2010) during FAME-08.

4.2 Organic aerosol O:C ratio, volatility distributions10

The predicted O:C ratio distribution (Fig. 3a) shows a wide distribution with at least
three, perhaps four, peaks throughout the day. Aging of POA, which is initialized at 0 in
O:C ratio creates a peak at about 0.2, while the fresh SOA leads to a clear peak at 0.4
and perhaps another at 0.5 indicative of aged compounds that have condensed and
are no longer subject to homogeneous OH reaction. Some of the OA mass is predicted15

to reach an O:C ratio of 1.2, creating a peak at the top of the axis. When averaged,
the predicted O:C ratio of the population agrees well with observations both in terms
of magnitude and trend throughout the day. The predicted value always falls within the
estimated measurement error of 20%.

If this predicted distribution is reflective of the actual ambient O:C distributions, it20

could indicate a weakness in describing the complexity of oxygen content with one av-
eraged value. However, the strong peak at O:C=1.2 could also indicate unrealistically
aggressive aging parameters that would continue to enhance the average O:C ratio
and lead to O:C overpredictions if they were not artificially held at 1.2 by the module
boundaries.25

The predicted volatility distribution is similarly quite stable throughout a representa-
tive day of air parcels arriving from Europe during the FAME-08 study (Fig. 3b). The
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trend shows one consistent mode with a nearly constant average effective volatility
(C∗ =0.6 µg m−3) and a somewhat wide range (from C∗ =10−2 to 102 µg m−3). For ev-
ery arriving parcel, the final C∗ and size distributions are summed and input to the
dynamic mass transfer thermodenuder model of Riipinen et al. (2010) (Fig. S3 in the
supplement). Given the thermodenuder temperature and residence time used during5

the measurements, the model predicts the OA mass fraction remaining of particles in
the arriving parcel. This value, diurnally averaged, is then directly compared to the
measurements from the thermodenuder in Fig. 4. Two major sources of uncertainty
for the thermodenuder model, the vaporization enthalpies (∆Hvap) and accommodation
coefficients (α), are explored systematically in this figure. Only the base-case con-10

figuration of the transport model is used for input data here. In other words, for the
data in this figure, the vaporization enthalpies are only varied in the thermodenuder
model, not the Lagrangian model. Sensitivity to the enthalpy of vaporization in the
Lagrangian model will be explored later. Three values for the enthalpy of vaporization
(30, 50, and 75 kJ mol−1) and the accommodation coefficient (0.05, 0.5, and 1) are15

chosen to represent all OA species, independent of their volatility. Assuming a uniform
∆Hvap =30 kJ mol−1 (Fig. 4a) is not consistent with any of the actual measurements, re-
gardless of the choice of α. It is thus suggested from this campaign that the base-case
assumption of 30 kJ mol−1 is too low. Increasing ∆Hvap to 50 kJ mol−1 still overpre-
dicts MFR observations in general, although some agreement is seen around noon20

for a representative day with α =1 (the upper bound on α). With ∆Hvap =75 kJ mol−1,
the model underpredicts the observed MFR (overpredicts evaporation) for cases with
α ≥0.5. However, there are likely many model configurations that would lead to ac-
ceptable results as long as ∆Hvap ≈75 kJ mol−1 and 0.05≤ α ≤0.5. Moreover, some
error is introduced by assuming constant ∆Hvap across all volatilities (Epstein et al.,25

2010). This analysis is not meant to actually recommend specific values for ∆Hvap and
α, but does give insights into upper and lower bounds on these parameters and the
reasonableness of the 2D-VBS predictions.
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4.3 Sensitivity studies

4.3.1 First generation product oxidation state distribution

When the O:C distributions of first-generation VOC oxidation products are updated
with yield estimates that vary with volatility (Table 1), little change in total OA mass or
contribution from any particular OA source is seen. The average OA concentration de-5

creases from 3.3 to 2.8 µg m−3 (∼15% decrease). This is due to the enhanced oxygen
mass added in the base case from species that have the opportunity to reach high O:C
ratios before condensing and being unavailable to further oxidation processes. The
volatility distribution and diurnal average is almost unchanged between the base case
and this sensitivity test.10

The predicted diurnal average in O:C ratio resulting from using the variable O:C
distributions for the first-generation products of VOC oxidation (Table 1) are shown in
Fig. 5. Although there appears to be added mass at O:C ratios lower than 0.4, there
does not seem to be an added peak. There is, however, a substantial reduction (∼10–
15%) in the average O:C ratio throughout the day.15

4.3.2 SOA vaporization enthalpy

Temperature sensitivity is an important concern in simulating OA formation, especially
for predictions at high altitudes. Figure 6 shows, though, that for this period, surface
concentration predictions are not very sensitive to the choice of SOA vaporization en-
thalpy. For this test, we only vary the aSOA and bSOA ∆Hvap. The sSOA, iSOA, and20

POA species have vaporization enthalpies that vary with volatility consistent with Mur-
phy and Pandis (2009). As the enthalpy of vaporization is increased, the predicted O:C
ratio consistently decreases, due to OA mass condensing that would have otherwise
stayed in the gas phase until it were oxidized to greater functionality. The predicted
organic mass concentrations do not change much compared to those of the base-case25

simulation and stay generally within measurement uncertainty for the entire day. The
model predicted volatility distributions (not shown) are almost exactly the same for all
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of these cases. It is clear that for this analysis, constraining ∆Hvap is much more critical
for modeling thermodenuder behavior than for OA atmospheric behavior. This is not
to say that the enthalpy of vaporization is unimportant for CTMs in general. It is quite
important for models to correctly represent OA temperature sensitivity at high altitudes
where cooling will lead to enhanced partitioning to the particulate phase.5

4.3.3 Homogeneous oxidative aging

Two-bin volatility shift. The 2-decade reduction in volatility scenario results in a diur-
nal profile that performs nearly as well as the base case, although with the reduced
aging rate constant (half of the base-case assumption) it slightly underpredicts the
FAME-08 measurements (Fig. 7a). The average OA volatility is slightly reduced as10

well for this scenario compared to the base case (0.20 and 0.63 µg m−3, respectively).
This is somewhat less reduction than expected given the much larger jump in volatil-
ity for every generation of aging compared to the base-case aging configuration. OA
mass appears to accumulate at effective saturation concentrations of approximately
0.1–1 µg m−3 because once it gets to this point, it is more likely found in the particulate15

phase and unable to react with gas-phase OH. Thus, the full difference that might be
anticipated in moving from a 1- to 2-decade shift in volatility is not realized.

The average O:C ratio is also lowered compared to the base case in this test, and this
result is probably due to the lack of the strong peak at O:C=1.2 seen in the base-case
scenario. If this aging scenario is carried out with the base-case OH reaction rate con-20

stants instead of the reduced ones, the average OA mass increases substantially, from
2.8 to 3.7 µg m−3 but the O:C ratio agrees nearly exactly with the base case throughout
the entire representative day. Increasing the reaction rate also reintroduces the strong
peak of OA mass at O:C=1.2. It is possible that if homogeneous aging is the principal
driving force for O:C ratio increases in the ambient, then significant material must exist25

at exceptionally high O:C ratios (>0.9) in order to overcome the comparably small O:C
increase from mass that condenses to the particle phase at O:C ratio of 0.4 to 0.6.
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High oxygen addition. When the aging mechanism adds 3 or 4 oxygen atoms with
a 1-decade reduction in effective saturation concentration, the average OA mass and
volatility change little from the base case (COA =3.4 µg m−3 and C∗ =0.66 µg m−3). On
the other hand, the average O:C increases significantly to 0.94. There is also enhanced
build-up of mass at the highest O:C ratio. This O:C ratio increase is not supported by5

the AMS measurements, falling well above the upper limit of the uncertainty in the
measurement.

Low oxygen addition. This case results in a decrease in the average COA

(2.9 µg m−3), a considerable decrease in average volatility (C∗ =0.18 µg m−3), and a
sizable decrease in oxygenation (O:C=0.51). The decrease in mass is associated10

with reducing the mass added by oxygen throughout the simulation. The underpredic-
tion for average organic mass and average O:C are not supported by the observations
of either metric, and this aging scenario is likely not a realistic depiction of organic
compound aging in the atmosphere.

Biogenic SOA. Two simulations were performed to investigate the effects of adding15

bSOA aging. The first case treats bSOA with the same reaction rate constant as aSOA
and ages it with the 1-bin shift formulation. This approach results in overprediction
(Fig. 8) of the FAME-08 OA mass concentration measurements, and similar average
O:C ratio performance as the base case. In the second case, reducing the aging rate
constant for all OA constituents by a factor of 4 results in slight underprediction of the20

OA concentration and underprediction of the O:C ratio. Taken together, these results
suggest that it may not be appropriate to treat aSOA and bSOA aging in the same way,
at least from the perspective of this simple implementation of the 2D-VBS, which only
considers functionalization of organic molecules. This does not mean that bSOA aging
can be ignored; more chamber studies and modeling efforts of both aSOA and bSOA25

systems at long oxidation timescales are needed to characterize this behavior.
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4.3.4 Heterogeneous oxidative aging

The heterogeneous oxidative aging sensitivity study did not result in significant change
to the OA mass concentrations or degree of oxygenation compared to the base-case
predictions. The small scale of this enhancement is likely due to the slow reaction
rate assumed for this process. The rate was chosen to be consistent with available5

observations of OH uptake rates to organic particles so it is not expected that this
estimate is far from reality. However, this is only one of a few pathways for organic
compound oxidation involving more than one phase. These other pathways, including
aqueous phase processing, could be responsible for some O:C ratio enhancements as
well. There is a decrease in volatility (C∗ =0.4 µg m−3) due to continued reaction of OA10

mass with gas-phase OH. The further volatility reduction is comparable to, although a
little smaller than, the uncertainty in choosing between the 1- and 2-decade volatility
shift approaches. This is consistent with the trends seen by Hildebrandt et al. (2010)
during the FAME-08 campaign. That study reported similar levels of oxygenation for
parcels they believed to originate from the same source location but vary in the time15

they took to arrive at Finokalia. Future implementations of this model will investigate
other heterogeneous-phase mechanisms of OA formation and their effects on the pre-
dictions of O:C ratio and volatility.

5 Implications

A proof of concept model for predicting OA formation with the 2D volatility basis set20

in a Lagrangian chemical transport host model has been presented and its results
have been evaluated with extensive measurements from the Finokalia Aerosol Mea-
surement Experiment campaign. The base-case model, performs encouragingly well
for predicting OA mass concentrations, average volatility, and average O:C ratios for a
representative day (diurnal average of 9 days) in May 2008.25

The model was also used to explore the reasonableness of alternative aging scenar-
ios like the 2-bin (or decade) reduction in volatility. Constraining the aging mechanism
with the measurement of O:C ratio successfully eliminated some possible scenarios
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(such as the 2-bin volatility shift with reduced aging rate constant, the high oxygen ad-
dition, the low oxygen addition, and the bSOA aging cases) because they produced OA
that was too oxygenated or too hydrocarbon-like compared to the observations. The
inclusion of bSOA in aging mechanisms was also explored and although aging parame-
ters could be adjusted to bring mass concentrations into agreement with observations,5

these changes resulted in unrealistically low O:C ratios. Additional laboratory stud-
ies of this potentially complex aging process are required to constrain its simulation
in CTMs. Specifically, knowing how important fragmentation processes are, and what
factors drive them would be a considerable step forward in modeling this system.

Other assumptions required by the 2D-VBS framework were explored in this study10

including the initial O:C distribution for first-generation SOA compounds and the pres-
ence of heterogeneous oxidation. Including a variable O:C distribution for SOA com-
pounds when they enter the 2D-VBS, as opposed to assuming a constant value of 0.4
regardless of volatility, resulted in a 10–15% decrease in the average O:C ratio through-
out the representative simulation day. Including heterogeneous reaction of condensed15

phase organic compounds with OH did very little to alter the volatility or O:C distribu-
tion from that of the base case. However, other heterogeneous processes like SOA
production from glyoxal, or accretion reactions may still be important. This model will
be used in the future to further evaluate and constrain the 2D-VBS with measurement
campaign data from locations throughout the world. It can also be used to investigate20

uncertain feature of organic aerosol behavior like mixing interactions and fog process-
ing. Generally, this model represents a substantial step forward in the ability to synthe-
size constraints from experimental studies and ambient measurements to inform our
conceptual picture of atmospheric organic aerosol formation.

Supplementary material related to this article is available online at:25

http://www.atmos-chem-phys-discuss.net/11/8553/2011/
acpd-11-8553-2011-supplement.pdf.
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Table 1. O:C Distributions for First-Generation SOA Products.

C∗ (µg m−3) 1 10 100 1000

Anthropogenic SOA 0.6 0.4 0.3 0.25
Biogenic SOA 0.4 0.24 0.14 0.1
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Fig. 1. 72-h back-trajectories calculated in HYSPLIT with WRF gridded meteorological input
data for parcels arriving at the Finokalia site during the FAME-08 campaign on 15 May 2008
at 05:00 PM UTC. (a) 20 back-trajectories are simulated with varying arrival altitude. (b) These
paths are then combined with the HYSPLIT clustering utility to estimate one representative
trajectory for the parcel’s horizontal path.
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Fig. 2. Diurnally averaged organic aerosol mass concentrations for the FAME-08 period seg-
regated by source class. Also shown are the measurements taken by the AMS with the corre-
sponding uncertainty range.
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Fig. 3. Diurnally averaged (a) O:C ratio distribution for a representative day during the Finokalia
Aerosol Measurement Experiment. Black circles represent measurements averages while the
gray line corresponds to the model average as it evolves throughout the day. Error bars denote
20% deviation from the measurement. (b) OA volatility distribution for the same representative
day in May 2008. The gray line here represents the model average of the OA volatility.
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Fig. 4. Comparison of model predicted OA behavior in a thermodenuder to observations made
during FAME-08. Black circles and gray area indicate measurement values and uncertainty,
respectively. The transport model predictions for this base case assumes ∆Hvap =30 kJ mol−1

for aSOA and bSOA species, regardless of volatility, while ∆Hvap for POA, iSOA, and sSOA

species varies linearly from 130 to 64 kJ mol−1 as effective saturation concentration increases
from C∗ =10−5 to 106 µg m−3. The dynamic mass transfer thermodenuder model (Riipinen et
al., 2010) assumes all OA mass has (a) ∆Hvap =30 kJ mol−1, (b) 50 kJ mol−1, or (c) 75 kJ mol−1.
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Fig. 5. Diurnally averaged O:C ratio for a representative day during the FAME-08 campaign
assuming an initial O:C ratio that varies with volatility for first-generation organic products of
VOC oxidation in the 2D-VBS.
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Fig. 6. (a) Organic aerosol mass concentrations and (b) O:C ratios with several choices for
anthropogenic and biogenic volatile SOA enthalpy of vaporization in the 2D-VBS configura-
tion. All values are diurnally averaged for the 9 simulated days during FAME-08. Errors bars
correspond to the measurements uncertainty.
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Fig. 7. Diurnally averaged (a) source resolved mass concentration and (b) O:C ratio profiles
for the two-bin volatility shift scenario. Observations (bullets) appear with error bars indicating
measurement uncertainty.
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Fig. 8. Diurnally averaged (a, b) OA mass concentrations for the cases with bSOA aging with
OH reaction rate constant of 1×10−11 and 0.25×10−11 cm3 molec−1 s−1, respectively. (c) O:C
ratio for the low OH aging rate constant case.
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