The kinetics and mechanism of an aqueous phase isoprene reaction with hydroxy radical

D. Huang, X. Zhang, Z. M. Chen^{*}, Y. Zhao and X. L. Shen

State Key Laboratory of Environmental Simulation and Pollution Control,

College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

Supplementary material

Table S1. Mechanisms for the OH oxidation of isoprene into MACR and MVK in the box model.

Fig. S1. Time series of products in the aqueous isoprene-OH reaction under the condition of 1.5 L top space in the 2.1 L reactor.

Fig. S2. The temporal profile of ln[isoprene] and reaction time (t)

* *Correspondence to:* Z.M. Chen (zmchen@pku.edu.cn)

NO.	Reaction	Initial Rate constant (M ⁻¹ s ⁻¹) 298 K	Adjusted Rate onstant (M ⁻¹ s ⁻¹) 298 K
1	$\mathrm{H_2O_2} + hv \rightarrow 2 \cdot \mathrm{OH}$	2.2×10 ⁻⁵ (s ⁻¹)	2.2×10 ⁻⁵ (s ⁻¹)
2	$H_2O_2 + OH \rightarrow HO_2 + H_2O$	2.7×10 ⁷	2.7×10 ⁷
3	$HO_2 \cdot +H_2O_2 \rightarrow H_2O + O_2 + OH$	3.7	3.7
4	$HO_2 \cdot + HO_2 \cdot \rightarrow H_2O_2 + O_2$	8.3×10 ⁵	8.3×10 ⁵
5	isoprene + $\cdot OH \rightarrow R1O_2$	5.2×10 ⁸	5.2×10 ⁸
6	isoprene + $\cdot OH \rightarrow R2O_2$	1.6×10 ⁹	1.6×10 ⁹
7	isoprene + $\cdot OH \rightarrow R3O_2$	1.8×10 ⁸	1.8×10 ⁸
8	isoprene + $\cdot OH \rightarrow R4O_2$	1.8×10 ⁸	1.8×10 ⁸
9	isoprene + $\cdot OH \rightarrow R5O_2$	2.6×10 ⁷	2.6×10 ⁷

Table S1. Mechanisms for the OH oxidation of isoprene into MACR and MVK in the box model.

10	isoprene + $\cdot OH \rightarrow R6O_2$	7.9×10^{8}	7.9×10 ⁸
11	$R1O_2 + R1O_2 \rightarrow R1O + R1O + O_2$	1.4×10 ⁸	1.4×10 ⁸
12	$R2O_2 + R2O_2 \rightarrow R2O + R2O + O_2$	4.2×10 ⁶	4.2×10 ⁸
13	$R3O_2 + R3O_2 \rightarrow R3O + R3O + O_2$	1.7×10 ⁸	1.7×10 ⁸
14	$R4O_2 + R4O_2 \rightarrow R4O + R4O + O_2$	1.7×10 ⁸	1.7×10 ⁸
15	$R5O_2 + R5O_2 \rightarrow R5O + R5O + O_2$	1.0×10 ⁸	1.0×10 ⁸
16	$R6O_2 + R6O_2 \rightarrow R6O + R6O + O_2$	2.8×10 ⁸	2.8×10 ⁸
17	$R1O_2 + R2O_2 \rightarrow R1O + R2O + O_2$	1.2×10 ⁸	2.0×10 ⁸
18	$R1O_2 + R3O_2 \rightarrow R1O + R3O + O_2$	1.7×10 ⁸	1.7×10 ⁸
19	$R1O_2 + R4O_2 \rightarrow R1O + R4O + O_2$	1.7×10 ⁸	1.7×10 ⁸
20	$R1O_2 + R5O_2 \rightarrow R1O + R5O + O_2$	1.2×10 ⁸	1.2×10 ⁸
21	$R1O_2 + R6O_2 \rightarrow R1O + R6O + O_2$	1.7×10 ⁸	1.7×10 ⁸
22	$R2O_2 + R3O_2 \rightarrow R2O + R3O + O_2$	1.2×10 ⁸	2.2×10 ⁸

23	$R2O_2 + R4O_2 \rightarrow R2O + R4O + O_2$	1.2×10^{8}	2.2×10 ⁸
24	$R2O_2 + R5O_2 \rightarrow R2O + R5O + O_2$	1.2×10 ⁸	2.2×10 ⁸
25	$R2O_2 + R6O_2 \rightarrow R2O + R6O + O_2$	1.7×10 ⁸	2.6×10 ⁸
26	$R3O_2 + R4O_2 \rightarrow R3O + R4O + O_2$	1.7×10 ⁸	1.7×10 ⁸
27	$R3O_2 + R5O_2 \rightarrow R3O + R5O + O_2$	1.3×10 ⁸	1.3×10 ⁸
28	$R3O_2 + R6O_2 \rightarrow R3O + R6O + O_2$	2.2×10 ⁸	2.2×10 ⁸
29	$R4O_2 + R5O_2 \rightarrow R4O + R5O + O_2$	1.3×10 ⁸	1.3×10 ⁸
30	$R4O_2 + R6O_2 \rightarrow R4O + R6O + O_2$	2.2×10 ⁸	2.2×10 ⁸
31	$R5O_2 + R6O_2 \rightarrow R5O + R6O + O_2$	1.7×10 ⁸	1.7×10 ⁸
32	$R1O_2 + R1O_2 \rightarrow Cs$ alcohol + Cs carbonyl + O_2	9.2×10 ⁷	9.2×10 ⁷
33	$R3O_2 + R3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	1.2×10 ⁸	1.2×10 ⁸
34	$R4O_2 + R4O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	1.2×10 ⁸	1.2×10 ⁸
35	$R5O_2 + R5O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	6.5×10 ⁷	6.5×10 ⁷

36	$R6O_2 + R6O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	6.9×10 ⁷	6.9×10 ⁷
37	$R1O_2 + R2O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	2.9×10 ⁷	4.0×10 ⁷
38	$R1O_2 + R3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	1.1×10 ⁸	1.1×10 ⁸
39	$R1O_2 + R4O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	1.1×10 ⁸	1.1×10 ⁸
40	$R1O_2 + R5O_2 \rightarrow C_5 \text{ alcohol} + C_5 \text{ carbonyl} + O_2$	7.7×10 ⁷	7.7×10 ⁷
41	$R1O_2 + R6O_2 \rightarrow C_5 \text{ alcohol} + C_5 \text{ carbonyl} + O_2$	7.0×10 ⁷	7.0×10 ⁷
42	$R2O_2 + R3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	3.1×10 ⁷	5.7×10 ⁷
43	$R2O_2 + R4O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	3.1×10 ⁷	5.7×10 ⁷
44	$R2O_2 + R5O_2 \rightarrow C_5 \text{ alcohol} + C_5 \text{ carbonyl} + O_2$	2.9×10 ⁷	5.3×10 ⁷
45	$R2O_2 + R6O_2 \rightarrow C_5 \text{ alcohol} + C_5 \text{ carbonyl} + O_2$	1.9×10 ⁷	3.5×10 ⁷
46	$R3O_2 + R4O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	1.2×10 ⁸	1.2×10 ⁸
47	$R3O_2 + R5O_2 \rightarrow C_5 \text{ alcohol} + C_5 \text{ carbonyl} + O_2$	8.7×10 ⁷	8.7×10 ⁷
48	$R3O_2 + R6O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	9.3×10 ⁷	9.3×10 ⁷

49	$R4O_2 + R5O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	8.7×10 ⁷	8.7×10 ⁷
50	$R4O_2 + R6O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	9.3×10 ⁷	9.3×10 ⁷
51	$R5O_2 + R6O_2 \rightarrow C_5 alcohol + C_5 carbonyl + O_2$	7.0×10 ⁷	7.0×10 ⁷
52	$R1O_2 + HO_2 \rightarrow R1OOH + O_2$	9.8×10 ⁸	9.8×10 ⁸
53	$R2O_2 + HO_2 \rightarrow R2OOH + O_2$	9.8×10 ⁸	9.8×10 ⁸
54	$R3O_2 + HO_2 \rightarrow R3OOH + O_2$	9.8×10 ⁸	9.8×10 ⁸
55	$R4O_2 + HO_2 \rightarrow R4OOH + O_2$	9.8×10 ⁸	9.8×10 ⁸
56	$R5O_2 + HO_2 \rightarrow R5OOH + O_2$	9.8×10 ⁸	9.8×10 ⁸
57	$R6O_2 + HO_2 \rightarrow R6OOH + O_2$	9.8×10 ⁸	9.8×10 ⁸
58	$MVKAOO + R1O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
59	$MVKAOO + R2O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
60	$MVKAOO + R3O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
61	$MVKAOO + R4O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶

62	$MVKAOO + R5O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10^{6}
63	$MVKAOO + R6O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
64	$MVKBOO + R1O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
65	$MVKBOO + R2O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
66	$MVKBOO + R3O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
67	$MVKBOO + R4O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
68	$MVKBOO + R5O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶
69	$MVKBOO + R6O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶
70	$MACRAOO + R1O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶
71	$MACRAOO + R2O_{2} \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_{2}$	3.0×10^{6}	3.0×10 ⁶
72	$MACRAOO + R3O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶
73	$MACRAOO + R4O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
74	$MACRAOO + R5O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶

75	$MACRAOO + R6O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10^{6}
76	$MACRBOO + R1O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
77	$MACRBOO + R2O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
78	$MACRBOO + R3O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶
79	$MACRBOO + R4O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10 ⁶	3.0×10 ⁶
80	$MACRBOO + R5O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶
81	$MACRBOO + R6O_2 \rightarrow 0.3 * MACR + 0.3 * MVK + 0.6 * MG + HCHO + 1.2 * HO_2$	3.0×10^{6}	3.0×10 ⁶
82	$R1O_2 \rightarrow C_5H_8O_2$	3.3×10 ⁵	3.3×10 ⁵
83	$R5O_2 \rightarrow C_5H_8O_2$	3.3×10 ⁵	3.3×10 ⁵
84	$R1OOH + OH \rightarrow C_5H_8O_2 + OH$	6.4×10 ⁹	6.4×10 ⁹
85	$R5OOH + OH \rightarrow C_5H_8O_2 + OH$	6.4×10 ⁹	6.4×10 ⁹
86	$R1OOH \rightarrow C_5H_8O_2 + HO_2 + OH$	5.8×10 ⁻⁶	5.8×10 ⁻⁶
87	$R5OOH \rightarrow C_5H_8O_2 + HO_2 + OH$	5.8×10 ⁻⁶	5.8×10 ⁻⁶

88	$C_5H_8O_2 + OH \rightarrow 0.52 * C_5H_9O_5$	2.7×10 ⁹	2.7×10 ⁹
89	$C_5H_9O_5 \rightarrow 0.73*MG + 0.27*GL$	1.3×10 ⁴	1.3×10 ⁴
90	$C_5H_9O_5 + HO_2 \rightarrow C_5H_9O_5H$	1.2×10 ⁹	1.2×10 ⁹
91	$C_5H_9O_5H + OH \rightarrow C_5H_9O_5$	1.9×10 ⁹	1.9×10 ⁹
92	$C_5H_9O_5H \to 0.5*MG + 0.5*GL$	5.8×10 ⁻⁶	5.8×10 ⁻⁶
93	$R1O + O_2 \rightarrow C_5 \text{ carbonyl} + HO_2$	1.0×10 ⁵	1.0×10 ⁵
94	R1O \rightarrow C ₅ carbonyl + HO ₂	1.0×10 ⁵	1.0×10 ⁵
95	$R2O + O_2 \rightarrow MVK + HCHO + HO_2$	7.5×10 ⁴	7.5×10 ⁴
96	R2O \rightarrow MVK + HCHO + HO ₂	7.5×10 ⁴	7.5×10 ⁴
97	$R2O + O_2 \rightarrow HMVK + CH_3O_2$	2.5×10 ⁴	2.5×10 ⁴
98	$R2O \rightarrow HMVK + CH_3O_2$	2.5×10 ⁴	2.5×10 ⁴
99	$R3O + O_2 \rightarrow MVK + HCHO + HO_2$	5.0×10 ⁴	5.0×10 ⁴
100	$R3O \rightarrow MVK + HCHO + HO_2$	5.0×10 ⁴	5.0×10 ⁴

101	$R3O + O_2 \rightarrow MF + HCHO + HO_2$	2.5×10^4	2.5×10 ⁴
102	$R3O \rightarrow MF + HCHO + HO_2$	2.5×10 ⁴	2.5×10 ⁴
103	$R4O + O_2 \rightarrow MACR + HCHO + HO_2$	5.0×10 ⁴	5.0×10 ⁴
104	R4O \rightarrow MACR + HCHO + HO ₂	5.0×10 ⁴	5.0×10 ⁴
105	$R4O + O_2 \rightarrow MF + HCHO + HO_2$	2.5×10 ⁴	2.5×10 ⁴
106	$R4O \rightarrow MF + HCHO + HO_2$	2.5×10 ⁴	2.5×10 ⁴
107	$R5O + O_2 \rightarrow C_5 \text{ carbonyl} + HO_2$	1.0×10 ⁵	1.0×10 ⁵
108	R5O \rightarrow C ₅ carbonyl + HO ₂	1.0×10 ⁵	1.0×10 ⁵
109	$R6O + O_2 \rightarrow MACR + HCHO + HO_2$	1.0×10 ⁵	1.0×10 ⁵
110	$R6O \rightarrow MACR + HCHO + HO_2$	1.0×10 ⁵	1.0×10 ⁵
111	$CH_3O_2 + O_2 \rightarrow HO_2 + HCHO$	1.0×10 ⁵	1.0×10 ⁵
112	$R1O_2 + CH_3O_2 \rightarrow R1O + CH_3O + O_2$	6.0×10 ⁷	6.0×10 ⁷
113	$R1O_2 + CH_3O_2 \rightarrow C_5$ alcohol + C_5 carbonyl + HCHO + O_2	6.0×10 ⁷	6.0×10 ⁷

114	$R2O_2 + CH_3O_2 \rightarrow R2O + CH_3O + O_2$	6.0×10^{7}	6.0×10 ⁷
115	$R2O_2 + CH_3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + HCHO + O_2$	6.0×10 ⁷	6.0×10 ⁷
116	$R3O_2 + CH_3O_2 \rightarrow R3O + CH_3O + O_2$	6.0×10 ⁷	6.0×10 ⁷
117	$R3O_2 + CH_3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + HCHO + O_2$	6.0×10 ⁷	6.0×10 ⁷
118	$R4O_2 + CH_3O_2 \rightarrow R4O + CH_3O + O_2$	6.0×10 ⁷	6.0×10 ⁷
119	$R4O_2 + CH_3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + HCHO + O_2$	6.0×10 ⁷	6.0×10 ⁷
120	$R5O_2 + CH_3O_2 \rightarrow R5O + CH_3O + O_2$	6.0×10 ⁷	6.0×10 ⁷
121	$R5O_2 + CH_3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + HCHO + O_2$	6.0×10 ⁷	6.0×10 ⁷
122	$R6O_2 + CH_3O_2 \rightarrow R6O + CH_3O + O_2$	6.0×10 ⁷	6.0×10 ⁷
123	$R6O_2 + CH_3O_2 \rightarrow C_5 alcohol + C_5 carbonyl + HCHO + O_2$	6.0×10 ⁷	6.0×10 ⁷
124	$CH_3O_2 + CH_3O_2 \rightarrow CH_3O + CH_3O + O_2$	7.3×10 ⁵	7.3×10 ⁵
125	$CH_{3}O_{2} + CH_{3}O_{2} \rightarrow C_{5} \text{ alcohol} + C_{5} \text{ carbonyl} + HCHO + O_{2}$	1.5×10 ⁶	1.5×10 ⁶

References:

- Jenkin, M. E. and Hayman, G. D.: Kinetics of reactions of primary, secondary and tertiary β-hydroxy peroxyl radicals, J. Chem. Soc. Faraday Trans., 91(13), 1911-1922, 1995.
- Jenkin, M. E., Boyd, A. A., and Lesclaux, R.: Peroxy radical kinetics resulting from the OH-initiated oxidation of 1,3-butadiene,

2,3-dimethyl-1,3-butadiene and isoprene, J. Atmos. Chem., 29, 267–298, 1998.

- Neta, P., Huie, R. E., and Ross, A. B.: Rate constants for reactions of peroxyl radicals in fluid solutions, J. Phys. Chem. Ref. Data., 19, 413–513, 1990.
- Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz isoprene mechanism 2 (MIM2): An isoprene oxidation mechanism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751–2777, 2009.
- Zimmermann, J., Poppe, D.: a supplement for the RADM2 chemical mechanism: the photooxidation of isoprene, Atmos. Environ., 8, 30, 1255–1269, 1996.

Fig.S1. The time series of products in an aqueous isoprene-OH reaction under the condition of 1.5 L top space in the 2.1 L reactor.

Fig.S2. The temporal profile of isoprene in an aqueous isoprene oxidation