

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China

J. B. Zhang, Z. Xu, G. Yang, and B. Wang

Department of Environmental Sciences, College of Environmental Sciences and Engineering,
State Joint Laboratory of Environmental Simulation and Control, Peking University, Beijing
100871, China

Received: 15 February 2011 – Accepted: 22 February 2011 – Published: 10 March 2011

Correspondence to: J. B. Zhang (jbzhang@pku.edu.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

8173

Abstract

Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) were measured sequentially in situ by an online gas-phase chromatograph with electron capture detector at urban (Peking University, PKU) and suburban (Yufa, A town in the south of Beijing) sites in Beijing during the photochemical season in 2006. Maximum and average values of PAN were 11.22 ppbv and 1.95 ppbv at PKU during 15 to 27 August, and maximum and average values of PPN were 2.51 ppbv and 0.41 ppbv at Yufa during 2 to 12 September. Average mixing ratios (PAN/PPN) were 5.60 (at PKU) and 5.83 (at Yufa), which is much lower than those in other metropolitan areas. High correlation between PAN and PPN reflects similar volatile organic compound origins. Thermal loss of PAN and PPN was remarkable when compared with their ambient concentrations. PAN and PPN with ozone have similar trend by day. Thermal decompositions of PAN and PPN were calculated, and results indicated that thermal losses influence their atmospheric lifetime significantly. The percentages of PAN loss at the two sites were very similar; however, PPN urban loss was higher than that in suburban.

1 Introduction

Peroxyacyl nitrates (PANs, RC(O)OONO_2) play an important role in tropospheric chemistry and are better indicators of photochemical smog (Carter et al., 1981; Schrimpf et al., 1995) than ozone (Rappengluck et al., 1993, 2003). They are toxic to the environment and can damage plants (Dugger and Ting, 1968; Teklemariam and Sparks, 2004; Temple and Taylor, 1983), irritate human eyes (Dugger et al., 1963), and lead to genetic mutation (Kleindienst et al., 1990). These compounds, especially PAN, are prominent and ubiquitous in the atmosphere. Temperature affects their lifetimes remarkably. For PAN, at -26°C (the average temperature at 6 km) and NO to NO_2 ratios of ca. 0.1, the lifetime of PAN is 5.36 yrs (Kleindienst, 1994), and at 25°C , it depletes exhaustively in only 30 min (Bridier et al., 1991). Their stable properties under low temperatures mean

that PAN and PPN can be transported long distances, acting as reservoirs for odd nitrogen compounds, becoming involved in atmospheric circulation, and influencing air quality (Singh et al., 1992a, b) on local, regional, and global-scales.

Gaffney et al. (1999) indicated that PAN and PPN produced in megacities are likely to contribute strongly to regional scale ozone and aerosol production during long range transport. To date, PPN (Grosjean, 2003) has been reported in fewer studies than that for PAN. Only a few studies have reported PAN and PPN in East Asia concurrently (Lee et al., 2008; Sun and Huang, 1995; Zhang and Tang, 1994; Zhang et al., 2009) and no studies on mainland China except Zhang and Tang (1994) done by more than a decade ago. More comprehensive studies have been carried out in North America (Shepson et al., 1992; Singh and Salas, 1989; Williams and Grosjean, 1991), and ambient PAN and PPN have been studied in southern California since 1960 (Grosjean, 2003). No previous in situ simultaneous study of PAN and PPN in Asia has been reported ever before.

To illustrate the status of PAN and PPN pollution in urban and suburban areas and to make comprehensive comparisons with results from other sites, a global summary is provided in Table 1. Since the occurrence of photochemical smog in Los Angeles, California, during the last century, substantial improvements in air quality have been implemented. PAN and PPN pollution have declined significantly in the United States.

From its highest level of 58 ppbv, PAN levels have generally dropped to below 10 ppbv, and the average concentration is much lower. Beijing and its surroundings suffer air pollution severely due to photochemical smog (reported high ozone) and aerosol (Ding et al., 2008; Guttikunda et al., 2005) and O₃ episodes have been studied comprehensively there (An et al., 2007; Duan et al., 2008; Xu et al., 2008). However, few studies have been done apart from those on ozone. Therefore, PAN and PPN measurements were conducted both in urban and suburban sites of Beijing during the summer of 2006. The results were provided in the following sections.

8175

2 Methods

2.1 Sampling

Beijing locates in the northwest of the North China Plain and is high in the northwest and low in the southeast. Its west, north, and northeast are surrounded by mountains; its southeast is a gently sloping plain to the Bohai Sea. At the end of 2008, the resident population in Beijing was 16.95 million, which represented a 0.62 million increase over the end of 2007. Beijing had only 2300 motor vehicles in 1949; by 1966, this number had increased to 26 000 and by 1978, it was 77 000. With 10 years of development under policies of reform and outreach, the number of motor vehicles approached 1 million in February 1997, and Beijing has entered a period of rapid development since then. Vehicle exhaust pollution plays pretty important role in Beijing's air quality. In 2006, the total number of motor vehicles was 2.45 million. On 26 May 2007, the number of motor vehicles exceeded 3 million. In recent years, the average annual rates of increase in motorized transport have been generally higher than 10%.

Measurements of PAN and PPN were taken sequentially from the campus of Peking University (PKU; urban) and Yufa (suburban). Sampling sites are shown in Fig. 1. At PKU, the sampling location was on the roof of the Science Building (25 m high, 39°59'20.92" N, 116°18'25.91" E). Zhongguancun Street is on the east side of the building. To the north and west of the building are some relatively low-floor teaching buildings, and to the south is Fourth Ring Road. PKU is located in the Zhongguancun area, which is densely populated, with high levels of human activity and heavy traffic. This sampling site should reflect the air pollution in a typical urban area. At Yufa, the sampling location was on the roof of the Main Teaching Building of Huangpu University (15 m high, 39°30'52.63" N, 116°18'30.49" E). This is the higher than the surrounding buildings and is ca. 60 km south of PKU. Yufa is in the southern suburbs of the Daxing district, neighboring the Yongding River and on the border of Hebei Province. The site was characterized by high levels of natural vegetation and low local anthropogenic pollutant emissions compared to PKU.

8176

2.2 Equipment

Ambient PAN and PPN were measured using a gas column-electron capture detector (GC-ECD). Detailed information about this instrument can be found in Williams et al. (2000). Briefly, the detector was manufactured by the United States National Oceanic and Atmospheric Administration (NOAA). The column (model DB-210, internal diameter (ID) 0.53 mm, 2 m; J&W Scientific, Folsom, CA) was wrapped around an aluminum block, which was thermoelectrically cooled to 15 °C to minimize the thermal decomposition of PAN and PPN. During sample loading, the oven was also cooled to 15 °C. The volumes of helium (carrier gas) and nitrogen (make-up gas) were at 15 standard cubic centimeters per minute (sccm) and 30 sccm, respectively. Whole-air injections were made from a 2-mL sample loop composed of a PFA (Polytetrafluoro ethylene, commercially named NEOFLOLON PFA) with an outside diameter (OD) of 1/8 inch. Ambient air at 1 standard liter per minute (slpm) was drawn continuously by a diaphragm pump and sampled by a Teflon sampler at 5-min intervals using a Teflon six-port rotary valve (VICI Valco Instruments Co. Inc., Houston, TX) automatically. The ECD used was a ⁶³Ni model maintained at 40 °C. The detection limits for PAN and PPN were 5 and 10 parts per trillion by volume (pptv), respectively, with uncertainties (2σ).

All inlets (less than half a meter long with the diameter of 6 mm) were made of Teflon to minimize the loss of PAN and PPN and to prevent heterogeneous formation. Gaseous PAN was prepared directly through the reaction of CH_3COCH_3 with NO under ultraviolet (UV) light (wavelength, 285 nm). It is diluted for calibration. The diluted concentration of PAN ranges from couple of pptv to ca. 15 ppbv to cover the range of ambient PAN concentration. PPN was synthesized in liquid phase in laboratory and then volatilized. These preparations were used for instrument calibration. The ECD's response to PPN was 0.83 when compared to the PAN response, which was set equal to 1.0. The value of 0.83 is from Roberts' studies (1998, 2003a, b, 2007). Calibration was performed before and after the measurement period, and no significant changes were observed. The system was also calibrated before and after the in situ sampling.

8177

Overall uncertainty was 15% for PAN and 20% for PPN. The in situ sampling at PKU and Yufa took place from 15 to 27 August and 3 to 12 September, respectively.

While PAN and PPN measurements were being taken, ozone (It was calibrated by situ standard ozone) was also measured (this stopped on 11 September 2006 at Yufa) using an analyzer (EC9810 Ozone analyzer, ECOTECH) with a detection limit of 1 part per billion by volume (ppbv). NO_x were measured using a high-sensitivity NO_x analyzer (EC9841 NO/NO₂/NO_x analyzer, ECOTECH) with a detection limit of 0.4 ppbv. Both instruments were dynamically calibrated using a dynamic calibrator. Since the chemiluminescent NO_x analyzer measures the sum of NO₂, NO, PAN, PPN, etc. (Steinbacher et al., 2007; Winer et al., 1974), the NO₂ mixing ratio was estimated by subtracting the mixing ratios of NO, PAN, and PPN from the total NO_x level (Carter et al., 1981). As a preliminary study into the relationships between PAN and PPN and their primary volatile organic compounds (VOCs), some species (n-butane, trans-2-butene, 1-butene, cis-2-butene, and propylene) were measured with a time resolution of 1 h. The method (EPA's Method TO-15) specifies steps for collecting samples of ambient air in passivated stainless steel canisters and analyzing them using a gas chromatograph (Shimadzu Mini-2) with flame ionization detection. The canisters were cleaned and evacuated before being placed at the sampling sites.

After cleaning, the canisters were analyzed for the presence of VOCs to verify that they were clean before final evacuation and the initiation of the next sampling event. Ambient air samples were pre-concentrated by a multiadsorbent technique and then analyzed using a gas chromatograph with a flame ionization detector. The detection limits were about 0.1 ppbv.

All examined pollutants and corresponding meteorological parameters (including temperature, RH, pressure, wind speed, wind direction, levels of UV-A and UV-B light, and precipitation) were measured continuously from the same height as were PAN and PPN (at Yufa, meteorological observation stopped on 13 September). Any breakpoints in the following time series were due to power outages or calibration.

8178

3 Results and discussion

3.1 Time series of PAN and PPN

PAN and PPN were measured at PKU from 15 August to 27 August 2006 and at Yufa from 3 to 12 September 2006, and the results are shown in Fig. 2. The variations in PAN, PPN, and ozone (in Fig. 2a and b) basically follow the same trends (Stephens 1973, Taylor 1969). PAN and O₃ are highly correlated in aged air masses as both are secondary pollutants. Major statistical data are shown in Table 2.

At PKU, the maximum concentration ratio of PAN to PPN and PAN to O₃ ($\times 10^2$) for each day during this short campaign ranged from 4.70–7.52 (average 5.64 ± 0.62) and 10 0.25–0.81 (average 0.51 ± 0.14). At Yufa, the maximum ratio of PAN to PPN and PAN to O₃ ($\times 10^2$) ranged from 4.99–7.25 (average 6.04 ± 0.73) and 0.13–0.26 (average 0.20 ± 0.04). PAN and PPN were lower than O₃; the PAN concentration was consistently higher than that of PPN. These findings are in accord with PAN and PPN measurements taken from other places (Grosjean, 2003; Lee et al., 2008; McFadyen and Cape, 2005; Roberts et al., 2007; Zhang et al., 2009).

During the sampling period, the maximum concentrations of PAN and PPN at PKU both occurred on 24 August (see Fig. 2). At Yufa, the maximum concentrations of PAN and PPN were on 6 September, and the peak level of O₃ on that day was much higher than the levels regularly observed, up to 114 ppbv (see Fig. 2). However, occasional 20 discrepancies did occur on some days, such as at PKU on 20 August, when PAN and PPN showed no diurnal variation, while O₃ fluctuations followed their usual pattern. This is discussed in Sect. 3.2. Tiny peaks for PAN, PPN, and O₃ were observed at midnight on 19, 22, 24 and 25 August at PKU and 7 and 12 September at Yufa.

As shown in Fig. 2c, when comparing the statistical parameters of PAN, PPN and ozone, we found that levels of PAN and PPN were higher in 2006 than those in 2005 (Wang and Zhang, 2007). Ozone levels were lower in the first quartile of 2006 than they were in 2005, but were otherwise higher in 2006. PAN showed the greatest increase (158%), followed by PPN (118%) and O₃ (15%). PAN concentrations over 10 ppbv

8179

were observed for the first time in Beijing. The maximum concentrations of PAN and PPN measured in the summer of 2006 were about 3 times higher than those measured at PKU in the summer of 2005, when the maximum concentration of PAN was 2.49 ppbv and that of PPN was 0.51 ppbv. In urban Beijing, PAN and PPN pollution 5 had increased in 2006 compared with 2005. Levels of PANs pollution in Beijing are still much lower than those recorded from Los Angeles, California, during the 1960s and 1970s (70 ppbv) (Grosjean et al., 2001) and from Mexico City in 1997 (34 ppbv) (Gaffney et al., 1999). As shown in Fig. 3, higher concentrations of PAN and PPN 10 were generally associated with southerly winds, which are conducive to pollutant stagnation. The number of vehicles in Beijing continues to increase, so does off-gassing (NO_x + VOCs). According to information from the Traffic Authority of Beijing Municipal Public Security, Beijing is experiencing a rapid increase in vehicle numbers. In 2006, 370 000 motor vehicles were put into use, causing a net increase of 287 000, and by the end of 2006, the total number of motor vehicles in Beijing had reached 2.45 million. 15 Concern about the health effects of PANs and their potential damaging effects on vegetation prompted the World Health Organization (WHO) to set an air quality guideline of 5 ppbv over 8 h for PANs (WHO, 1987). During our study period, PAN levels did not exceed this guideline; however, extensive attention should be focused on the contribution of traffic to photochemical pollution.

20 With increasing economic development and urbanization, and given the geographical terrain (the city is surrounded on the west, north, and northeast by mountains that impede the diffusion of pollution), Beijing is at risk for increasing pollution levels. In order to characterize the effects of wind direction and wind speed on pollutants, wind roses were plotted as shown in Fig. 3.

25 As shown in Fig. 3, the effects of wind on PAN and PPN followed similar patterns at both sites. Higher mixing ratios of PAN and PPN mainly related to south or southwest wind directions. Pollution became serious when the wind speed was less than 4 m s⁻¹.

In this study, we analyzed relationships between PAN and PPN with their major VOC precursors. Because propylene (Chang and Tso, 1994; Kleindienst, 1994) and total

8180

butene, including n-butane, trans-2-butene, 1-butene, and cis-2-butene (Gaffney et al., 1999; Kleindienst, 1994), accounted for an important proportion of PAN and PPN formation, a time series of PAN and PPN with propylene and total-butene at PKU Site was plotted in Fig. 4, showing negative correlation.

When compared with other sites, PAN and PPN pollution at PKU is not particularly high, but the overall pollution levels in Asia are high relative to those of other regions worldwide. High mixing ratios mainly occur in Mexico City, Santiago de Chile, Sao Paulo, and some Asian cities, which are undergoing rapid urbanization or are being influenced by surrounding areas. Current levels of PAN pollution are a little higher than the maxima of 6.8 ppbv when compared to that in 1990s. The suburban Yufa site was lightly polluted. PAN pollution at the Yufa site was not much higher than background levels of PAN recorded from Mt. Waliguan in China, and it was even lower than levels recorded from Lanzhou. PAN concentrations at this background site were an order of magnitude higher than those recorded from a background site at Chebogue Point, Nova Scotia, North Atlantic. Zhang et al. (2009) demonstrated that PAN mixing ratios at Mt. Waliguan may be influenced by Lanzhou and other surrounding areas. A cruise around Charleston, South Carolina, also measured relatively high levels of PAN pollution. With back trajectory, it was demonstrated that mainland transportation resulted high levels of PAN pollution at sea (Rappengluck et al., 2003, 2004; Roberts et al., 2007).

3.2 Diurnal variations in PAN and PPN

Diurnal variations in PAN and PPN levels (as shown in Fig. 5) were similar to those reported from other sites worldwide (Corkum et al., 1986; Evmorfopoulou and Glavas, 1998; Lee et al., 2008; McFadyen and Cape, 2005; Penkett et al., 1975; Rappenglück et al., 1993; Roberts et al., 1998b, 2007; Schrimpf et al., 1998; Shepson et al., 1992; Stephens, 1973; Tsanibazaca et al., 1988; Williams and Grosjean, 1990). After sunrise and the morning rush hour, precursors for PAN and PPN formation (such as VOCs and NO_x) increased, leading to gradual increases in PAN and PPN concentrations, which

8181

reached their maximum levels during the afternoon, thereafter slowly decreasing to their minima at about midnight (see Fig. 5).

The daytime peak at PKU was similar to that measured at Yufa. Strictly, there were two peaks during the day, but the second peak was not clear. The peak always occurred after 15:00, as shown in Fig. 5a and b. During the night, two peaks were observed for PAN and PPN, before and after 00:00, which were different from those measured at Yufa. The afternoon peaks for PAN and PPN were probably due to the heavy work-related traffic. Although sunlight is not particularly strong by the mid-afternoon, emission of pollutants (such as NO_x) was heavy, resulting in the afternoon peak. At Yufa, which is suburban, vehicle contributions to pollution were less important than they were at the urban site of PKU.

At Yufa, PAN and PPN concentrations increased rapidly from 08:30 through photochemical reaction, and they reached their daytime maxima between 12:00 and 15:00. After this first peak, PAN and PPN concentrations initially fell until the downward trend reversed to approach a second peak between 18:00 and 21:00. After 20:30 when the sun had set, PAN and PPN concentrations gradually declined. At about 00:00, there was a slight increase to a short peak, before a gradual drop to early morning.

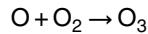
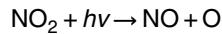
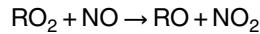
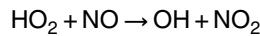
3.3 Correlations between PAN, PPN and O₃

The VOC precursors of PAN were unlike those of PPN. PAN precursors are generators of CH_3CO_3^- , which originates from both biological and anthropogenic sources, whereas PPN precursors are those that generate $\text{CH}_3\text{CH}_2\text{CO}_3^-$, which originates almost exclusively from anthropogenic sources (Grosjean et al., 1993, 2001; Grosjean, 2001; Roberts et al., 2004). The main VOC sources can be inferred based on the concentration ratios of PPN to PAN (Roberts et al., 2004).

25 PAN and its analogues have relatively similar chemical properties. Their thermal stabilities are also basically the same. Linear regression between PAN and PPN at PKU is shown in Fig. 6a [PAN] = 5.60[PPN] + 135 pvt, ($R^2 = 0.98$, $n = 3678$). Williams et al. (1998) and Roberts et al. (1998b, 2001) demonstrated that when the regression

8182

slope was less than 7.4, photochemical processes in the area were primarily influenced by anthropogenic hydrocarbons (AHCs). A steeper slope indicated that the percentage of AHCs participating in photochemical reactions was much higher. Roberts et al. (1998a, 2001) and Williams et al. (1998) indicated that ratios of PAN to PPN ranging from 5.8 to 7.4 reflected AHC-dominated photochemical reactions. At PKU, the ratios of PAN to PPN ranged from 4.70 to 7.52, suggesting that AHCs dominated local photochemical processes. PAN and PPN measurements were also taken during 13–28 August 2005, and the correlation between PAN and PPN was found to be $[PAN] = 4.98[PPN] - 19$ pptv, ($R^2 = 0.95$, $n = 3459$).





The linear regression between PAN and PPN at Yufa is shown in Fig. 6b: $[PAN] = 5.83[PPN] + 77$ pptv, ($R^2 = 0.93$, $n = 2841$). Ratios of PAN to PPN ranged from 4.99 to 7.25 and were considerably lower than 7.4, indicating that photochemical processes at Yufa were also mainly controlled by AHCs. However, the effect of AHCs at Yufa was weaker than it was at PKU, and biological hydrocarbons (BHCs) also contributed partly. Yufa is located in the suburbs of Beijing, and although there were not many vehicles in the area, it neighbors the Jingkai Highway Express. Vehicles had a great impact on pollution at the site, and AHCs still dominated local photochemical processes.

PAN is a product of photochemical smog, and tropospheric O_3 also comes primarily from photochemical reactions of NO_x (NO and NO_2) generated by vehicle and industrial emissions. Therefore, variations in PAN and ozone tend to be closely correlated (Schrimpf et al., 1998). The linear regression for O_3 , PAN, and PPN at PKU was described as $[O_3 (\text{ppbv})] = 18.87[\text{PAN} (\text{ppbv})] + 6.88$, ($R^2 = 0.65$, $n = 3400$); $[O_3 (\text{ppbv})] = 9.900[\text{PPN} (\text{ppbv})] + 11.64$, ($R^2 = 0.56$, $n = 3306$). At Yufa, the correlation for O_3 , PAN, and PPN was $[O_3 (\text{ppbv})] = 42.94[\text{PAN} (\text{ppbv})] + 4.92$, ($R^2 = 0.59$, $n = 2205$); $[O_3 (\text{ppbv})] = 234.09[\text{PPN} (\text{ppbv})] + 8.95$, ($R^2 = 0.51$, $n = 1994$).

8183

Based on our measurements, the correlation between PAN and O_3 was not significant (see Fig. 7). The correlation coefficients were 0.65 and 0.59 at PKU and Yufa, respectively. The main reasons for this finding can be summarized as follows:

Different chemical formation and removal processes. During the day, net O_3 production occurs through the following reactions (Roberts et al., 1995):

VOC precursors for PAN can transfer to aldehyde vinyl substances with CH_3CO , such as acetaldehyde and acrylamide. The subsequent reaction is $CH_3O \cdot + O_2 \rightarrow CH_3C(O)OO$,

$CH_3C(O)OO \cdot + NO_2 \rightarrow CH_3C(O)OONO_2$ (PAN). In the removal process, O_3 mainly reacts with NO, whereas PAN is mainly removed by thermal decomposition, the rate of which is determined by temperature and NO/NO_2 ratios (Tuazon et al., 1991).

Heterogeneous reactions take place on aerosol surfaces, which can reduce tropospheric O_3 concentration by directly or indirectly adsorbing O_3 precursors (NO_x and VOCs) (Jia et al., 2006). In addition, the stability of PAN and PPN is weaker than that of O_3 , which also has external input from the atmospheric boundary layer exchange.

PAN and PPN have no natural emission sources and are only generated by human activities.

The relationship between ozone and PAN is discussed separately by daytime (08:00–20:00) and nighttime (20:00–08:00). The relationship of PPN with ozone was similar to that of PAN with ozone, except for magnitude differences, and has therefore been omitted from this discussion. PAN and O_3 were well correlated during the day, but the correlation was much weaker at night. This is mainly because PAN (PPN) and O_3 are

8184

primary integral parts of photochemical smog, which is generated to a large extent by photochemical reaction effected by light, especially by the short-wave bands found during the day. At night, light is insufficient for photochemical reactions such as PAN and ozone formation. During nighttime, decomposition (sink) becomes very important, and PAN (PPN) and O₃ vary from each other in their decomposition mechanisms (Roberts et al., 1995).

PAN and PPN were strongly correlated both during the day and at night (see Fig. 8), with only slightly different slopes. Since PAN and PPN are very similar at the structural level, both their reaction and decomposition mechanisms are alike, with only a minor difference in rate constants.


3.4 Thermal decomposition of PAN and PPN

PAN and PPN have three main sink pathways: dry deposition, surface reaction, and thermal decomposition. Thermal decomposition is the main pathway by which PAN and PPN are removed from the atmosphere.

PAN was generated by acetyl-peroxynitrite (CH₃C(O)OO[·]) and NO₂:

Acetyl-peroxynitrite can be generated by a broad species of organic compounds. Reaction (R1), leading to PAN formation, was competitive with Reaction (R2), showing the reaction of acetyl-peroxynitrite with NO:

Thermal decomposition of PAN in the atmosphere was also important:

Reaction (R4) was considerably active at room temperature, and the reaction rate increased rapidly when the temperature increased. This was the most important of the PAN sink pathways (Talukdar et al., 1995).

Based on Reactions (R2–R4), the thermal decomposition rate of PAN mainly depended on temperature and on the concentration ratio of NO to NO₂. The rate of thermal decomposition can be calculated as follows:

$$-\frac{d \ln[\text{PAN}]}{dt} = \frac{k_2 k_4 [\text{NO}]}{k_2 [\text{NO}] + k_1 [\text{NO}_2]} \quad (5)$$

In which, k₁, k₂, and k₄ are the reaction constants for [PAN], [NO], and [NO₂], respectively. When temperature ranged from 10–40°C, at standard atmospheric pressure, k_{4-PAN} = 2.52 × 10¹⁶ e^{-13573/T} s⁻¹, k_{2-PAN}/k_{1-PAN} = 1.95 ± 0.28 (Tuazon et al., 1991) and k_{6-PPN} = 7.94 × 10¹⁶ e^{-13940/T} s⁻¹ (Kirchner et al., 1999). Equation (5) can be simplified as

$$-\frac{d \ln[\text{PAN}]}{dt} = \frac{k_{4-\text{PAN}}}{1 + \frac{[\text{NO}_2]}{1.95[\text{NO}]}} \quad (6)$$

$$-\frac{d \ln[\text{PPN}]}{dt} = \frac{k_{4-\text{PPN}}}{1 + \frac{k_{1-\text{PPN}}[\text{NO}_2]}{k_{2-\text{PPN}}[\text{NO}]}} \quad (7)$$

For C₂H₅C(O)OO:

Low pressure limit: 9.00^E – 28(300/T)^{8.9}

High pressure limit: 7.70^E – 12(300/T)^{0.2}

F_c : 0.6, see JPL06 <http://jpodataeval.jpl.nasa.gov/download.html> and IUPAC, <http://www.iupac-kinetic.ch.cam.ac.uk/>

The equations for the rate constant of Reaction (R8) are shown as follows:

$$k_r = \frac{k_{\infty,T} k_{0,T} [M]}{k_{\infty,T} + k_{0,T} [M]} F_c^{\left[1 + \left(\lg \frac{k_{0,T} [M]}{k_{\infty,T}}\right)^2\right]^{-1}} \quad (9)$$

5 $[M] = N_d = 6.02E + 23\left(\frac{PV}{RT}\right)$, molec cm⁻³ (10)

PPN thermal decomposition and the reaction between C₂H₅C(O)OO and NO are shown in Eqs. (11) and (12)

10 Therefore, $k_{\text{C}_2\text{H}_5\text{C}(\text{O})\text{OO-NO}} = 6.70 \times 10^{-12} \times e^{\frac{340}{T}}$ (13)

Namely,

$$\frac{k_{\text{C}_2\text{H}_5\text{C}(\text{O})\text{OO-NO}}}{k_{\text{C}_2\text{H}_5\text{C}(\text{O})\text{OO-NO}_2}} = \frac{6.70 \times 10^{-12} \times e^{\frac{340}{T}}}{\frac{7.70 \times 10^{-12} \left(\frac{300}{T}\right)^{0.2} \times 9.00 \times 10^{-28} \left(\frac{300}{T}\right)^{8.9} \times 6.02 \times 10^{23} \times \left(\frac{PV}{RT}\right)}{7.70 \times 10^{-12} \left(\frac{300}{T}\right)^{0.2} + 9.00 \times 10^{-28} \left(\frac{300}{T}\right)^{8.9} \times 6.02 \times 10^{23} \times \left(\frac{PV}{RT}\right)} \times 0.6} \left[1 + \left(\lg \frac{9.00 \times 10^{-28} \left(\frac{300}{T}\right)^{8.9} \times 6.02 \times 10^{23} \times \left(\frac{PV}{RT}\right)}{7.70 \times 10^{-12} \left(\frac{300}{T}\right)^{0.2}}}{7.70 \times 10^{-12} \left(\frac{300}{T}\right)^{0.2}}\right)^2\right]^{-1}$$

Unlike levels of PAN at the two sites, the ratios of $k_{2-\text{PPN}}/k_{1-\text{PPN}}$ were very different at two sites, namely 2.80 ± 0.03 at PKU site and 3.22 ± 0.096 at Yufa site.

15 During the measurement period, the temperature ranged from 18.7 °C – 37.1 °C at PKU and from 10.1 °C – 29.8 °C at Yufa, which was within the reference referred range of 10 °C – 40 °C. Thermal decomposition of PAN and PPN can therefore be calculated according to the relevant equations.

8187

High correlations in the percentages of thermal decomposition of PAN and PPN are shown in Fig. 9a and b. The slope was less than 1, indicating that the relative thermal loss of PPN was more than that of PAN. The ratio of k_1/k_2 was smaller for PAN than for PPN; thus, NO was more important in the thermal loss of PPN than in that of PAN.

5 The absolute values of PAN and PPN thermal loss were also correlated (see Fig. 9c and d), although the coefficient at Yufa was lower than that at PKU. For PPN, the slope at Yufa was larger than that at PKU and showed poor correlation. For PAN, there was little difference between the two sites. When comparing PAN thermal loss versus PPN thermal loss, it was found that the coefficient at PKU was higher than that at Yufa, indicating that plots at Yufa were more disturbed.

10 PAN and PPN thermal decomposition was calculated (see Table 3), and the results indicate that thermal loss has an important impact on their atmospheric lifetime. The percentages of PAN loss at the two sites are roughly the same; however, for PPN, urban loss was higher than suburban. TDPAN and SUM represent the thermal decomposition of PAN and the adding of it with corresponding ambient concentration.

4 Conclusions

When compared with data gathered from PKU in 2005, it was found that both PAN and PPN levels had increased in 2006. Inverse correlations between PAN, PPN, and their major VOCs were found. Diurnal variations in the levels of PAN and PPN accorded 20 with the characteristics of photochemical reactions. Correlation showed that PAN and PPN levels appeared to follow generally similar trends, with a strong correlation coefficient ($R^2 = 0.93 – 0.98$). The ratio between PAN and PPN ranged from 4.6 to 7.4, indicating that the main contributors to VOCs at both sites were AHCs. PAN and PPN thermal decomposition was calculated, and the results confirmed that thermal loss has 25 an important impact on their atmospheric lifetimes. The percentages of PAN loss at the two sites were broadly the same; however, for PPN, the urban site showed higher percentage losses than did the suburban site.

8188

Long-term measurement of PAN, PPN, NO, NO₂, O₃, and other pollutants is recommended to further increase understanding of the photochemical pollution in Beijing and its characteristics. Based on on-line monitoring data, reasonable methods and strategies can be implemented to improve air quality and curb the spread of photochemical pollution.

Acknowledgements. This work was part of CAREBEIJING 2006 (Campaign of Atmospheric Researches in Beijing and surrounding areas in 2006) and was supported by the Beijing Council of Science and Technology (HB200504-6, HB200504-2), the Natural Science Fund Project of the Beijing Municipal Government (8072014) and the National High Technology Development Plan (863 Project, 2006AA06A301). It was also supported by the special fund provided by the State Joint Laboratory of Environmental Simulation and Control, Peking University.

References

An, X., Zhu, T., Wang, Z., Li, C., and Wang, Y.: A modeling analysis of a heavy air pollution episode occurred in Beijing, *Atmos. Chem. Phys.*, 7, 3103–3114, doi:10.5194/acp-7-3103-2007, 2007.

Aneja, V. P., Hartsell, B. E., Kim, D. S., and Grosjean, D.: Peroxyacetyl nitrate in Atlanta, Georgia: Comparison and analysis of ambient data for suburban and downtown locations, *J. Air Waste Manage.*, 49, 177–184, 1999.

Bridier, I., Caralp, F., Loirat, H., Lesclaux, R., Veyret, B., Becker, K. H., Reimer, A., and Zabel, F.: Kinetic and Theoretical-Studies of the Reactions $\text{CH}_3\text{C}(\text{O})\text{O}_2 + \text{NO}_2 + \text{M} \rightleftharpoons \text{CH}_2\text{C}(\text{O})\text{O}_2\text{NO}_2 + \text{M}$ between 248-K and 393-K and between 30-Torr and 760-Torr, *J. Phys. Chem.*, 95, 3594–3600, 1991.

Carter, W. P. L., Winer, A. M., and Pitts, J. N.: Effect of Peroxyacetyl Nitrate on the Initiation of Photochemical Smog, *Environ. Sci. Technol.*, 15, 831–834, 1981.

Chang, S. Y. and Tso, T. L.: Measurement of the Taiwan Ambient Trace Gas Concentration by Kilometer-Pathlength Fourier-Transform Infrared-Spectroscopy, *Anal. Sci.*, 10, 193–201, 1994.

Corkum, R., Giesbrecht, W. W., Bardsley, T., and Cherniak, E. A.: Peroxyacetyl Nitrate (PAN) in the Atmosphere at Simcoe, Canada, *Atmos. Environ.*, 20, 1241–1248, 1986.

Darley, E. F., Stephens, E. R., and Kettner, K. A.: Analysis of peroxyacetyl nitrates by gas chromatography with electron capture detection, *Anal. Sci.*, 35, 589–591, 1963.

Ding, A. J., Wang, T., Thouret, V., Cammas, J.-P., and Nédélec, P.: Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program, *Atmos. Chem. Phys.*, 8, 1–13, doi:10.5194/acp-8-1-2008, 2008.

Duan, J. C., Tan, J. H., Yang, L., Wu, S., and Hao, J. M.: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing, *Atmos. Res.*, 88, 25–35, 2008.

Dugger, W. M., Klein, W. H. Taylor, O. C., and Shropshire, W.: Action Spectrum of Peroxyacetyl Nitrate Damage to Bean Plants, *Nature*, 198, 75–76, 1963.

Dugger, W. M. and Ting, I. P.: Effect of Peroxyacetyl Nitrate on Plants – Photoreductive Reactions and Susceptibility of Bean Plants to Pan, *Phytopathology*, 58, 1102–1105, 1968.

Evmorfopoulou, E. and Glavas, S.: Formation of nitrogenous compounds in the photooxidation of n-butane under atmospheric conditions, *Monatshefte Fur Chemie*, 129, 1151–1159, 1998.

Gaffney, J. S., Marley, N. A., Cunningham, M. M., and Doskey, P. V.: Measurements of peroxyacetyl nitrates (PANS) in Mexico City: implications for megacity air quality impacts on regional scales, *Atmos. Environ.*, 33, 5003–5012, 1999.

Glavas, S. and Moschonas, N.: Determination of PAN, PPN, PnBN and selected pentyl nitrates in Athens, Greece, *Atmos. Environ.*, 35, 5467–5475, 2001.

Grosjean, D., Williams, E. L., and Grosjean, E.: A Biogenic Precursor of Peroxypropionyl Nitrate – Atmospheric Oxidation of Cis-3-Hexen-1-Ol, *Environ. Sci. Technol.*, 27, 979–981, 1993.

Grosjean, D.: Long-term trends in ambient peroxyacetyl nitrate in southern California, *Abstracts of Papers of the American Chemical Society*, 221, U452–U453, 2001.

Grosjean, D.: Ambient PAN and PPN in southern California from 1960 to the SCOS97-NARSTO, *Atmos. Environ.*, 37, S221–S238, 2003.

Grosjean, E., Grosjean, D., Fraser, M. P., and Cass, G. R.: Air quality model evaluation data for organics .3. Peroxyacetyl nitrate and peroxypropionyl nitrate in Los Angeles air, *Environ. Sci. Technol.*, 30, 2704–2714, 1996.

Grosjean, E., Grosjean, D., and Woodhouse, L. F.: Peroxyacetyl nitrate and peroxypropionyl nitrate during SCOS97-NARSTO, *Environ. Sci. Technol.*, 35, 4007–4014, 2001.

Grosjean, E., Grosjean, D., Woodhouse, L. F., and Yang, Y. J.: Peroxyacetyl nitrate and peroxypropionyl nitrate in Porto Alegre, Brazil, *Atmos. Environ.*, 36, 2405–2419, 2002.

Guttikunda, S. K., Tang, Y. H., Carmichael, G. R., Kurata, G., Pan, L., Streets, D. G., Woo, J.

H., Thongboonchoo, N., and Fried, A.: Impacts of Asian megacity emissions on regional air quality during spring 2001, *J. Geophys. Res.-Atmos.*, D20301, doi:10.1029/2004JD004921, 2005.

5 Kirchner, F., Mayer-Figge, A., Zabel, F., and Becker, K. H.: Thermal stability of peroxy nitrates, *I. J. Chem. Kinet.*, 31, 127–144, 1999.

Kleindienst, T. E.: Recent developments in the chemistry and biology of peroxyacetyl nitrate, *Res. Chem. Intermed.*, 20, 335–384, 1994.

Kleindienst, T. E., Shepson, P. B., Smith, D. F., Hudgens, E. E., Nero, C. M., Cupitt, L. T., Bufalini, J. J., and Claxton, L. D.: Comparison of mutagenic activities of several peroxyacetyl nitrate, *Environ. Mol. Mutagenesis*, 16, 70–80, 1990.

10 Lee, G., Jang, Y., Lee, H., Han, J. S., Kim, K. R., and Lee, M.: Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea, *Chemosphere*, 73, 619–628, 2008.

Lee, G., Jang, Y., Lee, H., Han, J. S., Kim, K. R., and Lee, M.: Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea, *Chemosphere*, 73, 619–628, 2008.

15 McFadyen, G. G. and Cape, J. N.: Peroxyacetyl nitrate in eastern Scotland, *Sci. Total Environ.*, 337, 213–222, 2005.

Penkett, S. A., Sandalls, F. J., and Lovelock, J. E.: Observations of Peroxyacetyl Nitrate (PAN) in Air in Southern England, *Atmos. Environ.*, 9, 139–140, 1975.

20 Rappengluck, B., Kourtidis, K., and Fabian, P.: Measurements of Ozone and Peroxyacetyl Nitrate (PAN) in Munich, *Atmospheric Environment Part B-Urban Atmosphere*, 27, 293–305, 1993.

Rappengluck, B., Melas, D., and Fabian, P.: Evidence of the impact of urban plumes on remote sites in the Eastern Mediterranean, *Atmos. Environ.*, 37, 1853–1864, 2003.

25 Rappengluck, B., Forster, C., and Jakobi, G.: Unusually high levels of PAN and ozone over Berlin, Germany, during nighttime on 7 August 1998, *Atmos. Environ.*, 38, 6125–6134, 2004.

Roberts, J. M., Tanner, R. L., Newman, L., Bowersox, V. C., Bottenheim, J. W., Anlauf, K. G., Brice, K. A., Parrish, D. D., Fehsenfeld, F. C., Buhr, M. P., Meagher, J. F., and Bailey, E. M.: Relationships between Pan and Ozone at Sites in Eastern North-America, *J. Geophys. Res.-Atmos.*, 100, 22821–22830, 1995.

30 Roberts, J. M., Bertman, S. B., Parrish, D. D., Fehsenfeld, F. C., Jobson, B. T., and Niki, H.: Measurement of alkyl nitrates at Chebogue Point, Nova Scotia during the 1993 North Atlantic Regional Experiment (NARE) intensive, *J. Geophys. Res.-Atmos.*, 103, 13569–13580, 1998a.

Roberts, J. M., Williams, J., Baumann, K., Buhr, M. P., Goldan, P. D., Holloway, J., Hubler, G., Kuster, W. C., McKeen, S. A., Ryerson, T. B., Trainer, M., Williams, E. J., Fehsenfeld, F. C., Bertman, S. B., Nouaime, G., Seaver, C., Grodzinsky, G., Rodgers, M., and Young, V. L.: Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: Implications for regional ozone production from biogenic hydrocarbons, *J. Geophys. Res.-Atmos.*, 103, 22473–22490, 1998b.

35 Roberts, J. M., Flocke, F., Weinheimer, A., Tanimoto, H., Jobson, B. J., Riemer, D., Apel, E., Atlas, E., Donnelly, S., Stroud, V., Johnson, K., Weaver, R., and Fehsenfeld, F. C.: Observations of APAN during TexAQS 2000, *Geophys. Res. Lett.*, 28, 4195–4198, 2001.

Roberts, J. M., Flocke, F., Stroud, C. A., Hereid, D., Williams, E., Fehsenfeld, F., Brune, W., Martinez, M., and Harder, H.: Ground-based measurements of peroxy carboxylic nitric anhydrides (PANs) during the 1999 Southern Oxidants Study Nashville Intensive, *J. Geophys. Res.-Atmos.*, ACH 1-1, 107, 4554, doi:10.1029/2001jd000947, 2002.

40 Roberts, J. M., Jobson, B. T., Kuster, W., Goldan, P., Murphy, P., Williams, E., Frost, G., Riemer, D., Apel, E., Stroud, C., Wiedinmyer, C., and Fehsenfeld, F.: An examination of the chemistry of peroxy carboxylic nitric anhydrides and related volatile organic compounds during Texas Air Quality Study 2000 using ground-based measurements, *J. Geophys. Res.-Atmos.*, 108, ACH4(1–12), 2003.

Roberts, J. M., Flocke, F., Chen, G., de Gouw, J., Holloway, J. S., Hubler, G., Neuman, J. A., Nicks, D. K., Nowak, J. B., Parrish, D. D., Ryerson, T. B., Sueper, D. T., Warneke, C., and Fehsenfeld, F. C.: Measurement of peroxy carboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment, *J. Geophys. Res.-Atmos.*, 109, D23S21, doi:10.1029/2004JD004960, 2004.

45 Roberts, J. M., Marchewka, M., Bertman, S. B., Sommariva, R., Warneke, C., de Gouw, J., Kuster, W., Goldan, P., Williams, E., Lerner, B. M., Murphy, P., and Fehsenfeld, F. C.: Measurements of PANs during the New England air quality study 2002, *J. Geophys. Res.-Atmos.*, 112, 1–14, 2007.

50 Rubio, M. A., Lissi, E., Villena, G., Caroca, V., Gramsch, E., and Ruiz, A.: Estimation of hydroxyl and hydroperoxy radical concentrations in the urban atmosphere of Santiago, *J. Chil. Chem. Soc.*, 50, 471–476, 2005.

Schrimpf, W., Muller, K. P., Johnen, F. J., Lienarts, K., and Rudolph, J.: An Optimized Method

52

57

62

67

72

77

82

87

92

97

102

107

112

117

122

127

132

137

142

147

152

157

162

167

172

177

182

187

192

197

202

207

212

217

222

227

232

237

242

247

252

257

262

267

272

277

282

287

292

297

302

307

312

317

322

327

332

337

342

347

352

357

362

367

372

377

382

387

392

397

402

407

412

417

422

427

432

437

442

447

452

457

462

467

472

477

482

487

492

497

502

507

512

517

522

527

532

537

542

547

552

557

562

567

572

577

582

587

592

597

602

607

612

617

622

627

632

637

642

647

652

657

662

667

672

677

682

687

692

697

702

707

712

717

722

727

732

737

742

747

752

757

762

767

772

777

782

787

792

797

802

807

812

817

822

827

832

837

842

847

852

857

862

867

872

877

882

887

892

897

902

907

912

917

922

927

932

937

942

947

952

957

962

967

972

977

982

987

992

997

1002

1007

1012

1017

1022

1027

1032

1037

1042

1047

1052

1057

1062

1067

1072

1077

1082

1087

1092

1097

1102

1107

1112

1117

1122

1127

1132

1137

1142

1147

1152

1157

1162

1167

1172

1177

1182

1187

1192

1197

1202

1207

1212

1217

1222

1227

1232

1237

1242

1247

1252

1257

1262

1267

1272

1277

1282

1287

1292

1297

1302

1307

1312

1317

1322

1327

1332

1337

1342

1347

1352

1357

1362

1367

1372

1377

1382

1387

1392

1397

1402

1407

1412

1417

1422

1427

1432

1437

1442

1447

1452

1457

1462

1467

1472

1477

1482

1487

1492

1497

1502

1507

1512

1517

1522

1527

1532

1537

1542

1547

1552

1557

1562

1567

1572

1577

1582

1587

1592

1597

1602

1607

1612

1617

1622

1627

1632

1637

1642

1647

1652

1657

1662

1667

1672

1677

1682

1687

1692

1697

1702

1707

1712

1717

1722

1727

1732

1737

1742

1747

1752

1757

1762

1767

1772

1777

1782

1787

1792

1797

1802

1807

1812

1817

1822

1827

1832

1837

1842

1847

1852

1857

1862

1867

1872

1877

1882

1887

1892

1897

1902

1907

1912

1917

1922

1927

1932

1937

1942

1947

1952

1957

1962

1967

1972

1977

1982

1987

1992

1997

2002

2007

2012

2017

2022

2027

2032

2037

2042

2047

2052

2057

2062

2067

2072

2077

2082

2087

2092

2097

2102

2107

2112

2117

2122

2127

2132

2137

2142

2147

2152

2157

2162

2167

2172

2177

2182

2187

2192

2197

2202

2207

2212

2217

2222

2227

2232

2237

2242

2247

2252

2257

2262

2267

2272

2277

2282

2287

2292

2297

2302

2307

2312

2317

2322

2327

2332

2337

2342

2347

2352

2357

2362

2367

2372

2377

2382

2387

2392

2397

2402

2407

2412

2417

2422

2427

2432

2437

2442

2447

2452

2457

2462

2467

2472

2477

2482

2487

2492

2497

2502

2507

2512

2517

2522

2527

2532

2537

2542

2547

2552

2557

2562

2567

2572

2577

2582

2587

2592

2597

2602

2607

2612

2617

2622

2627

2632

2637

2642

2647

2652

2657

2662

2667

2672

2677

2682

2687

2692

2697

2702

2707

2712

2717

2722

2727

2732

2737

2742

2747

2752

2757

2762

2767

2772

2777

2782

2787

2792

2797

2802

2807

2812

2817

2822

2827

2832

2837

2842

2847

2852

2857

2862

2867

2872

2877

2882

2887

2892

2897

2902

2907

2912

2917

2922

2927

2932

2937

2942

2947

2952

2957

2962

2967

2972

2977

2982

2987

2992

2997

3002

3007

3012

3017

3022

3027

3032

3037

3042

3047

3052

3057

3062

3067

3072

3077

3082

3087

3092

3097

3102

3107

3112

3117

3122

3127

3132

3137

3142

3147

3152

3157

3162

3167

3172

3177

3182

3187

3192

3197

3202

3207

3212

3217

3222

3227

3232

3237

3242

3247

3252

3257

3262

3267

3272

3277

3282

3287

3292

3297

3302

3307

3312

3317

3322

3327

3332

3337

3342

3347

3352

3357

3362

3367

3372

3377

3382

3387

3392

3397

3402

3407

3412

3417

3422

3427

3432

3437

3442

3447

3452

3457

3462

3467

3472

3477

3482

3487

3492

3497

3502

3507

3512

3517

3522

3527

3532

3537

3542

3547

3552

3557

3562

3567

3572

3577

3582

3587

3592

3597

3602

3607

3612

3617

3622

3627

3632

3637

3642

3647

3652

3657

3662

3667

3672

3677

3682

3687

3692

3697

3702

3707

3712

3717

3722

3727

3732

3737

3742

3747

3752

3757

3762

3767

3772

3777

3782

3787

3792

3797

3802

3807

3812

3817

3822

3827

3832

3837

3842

3847

3852

3857

3862

3867

3872

3877

3882

3887

3892

3897

3902

3907

3912

3917

3922

3927

3932

3937

3942

3947

3952

3957

3962

3967

3972

3977

3982

3987

3992

3997

4002

4007

4012

4017

4022

4027

4032

4037

4042

4047

4052

4057

4062

4067

4072

4077

4082

4087

4092

4097

4102

4107

4112

4117

4122

4127

4132

4137

4142

4147

4152

4157

4162

4167

4172

4177

4182

4187

4192

4197

4202

4207

4212

4217

4222

4227

4232

4237

4242

4247

4252

4257

4262

4267

4272

4277

4282

4287

4292

4297

4302

4307

4312

4317

4322

4327

4332

4337

4342

4347

4352

4357

4362

4367

4372

4377

4382

4387

4392

4397

4402

4407

4412

4417

4422

4427

4432

4437

4442

4447

4452

4457

4462

4467

4472

4477

4482

4487

4492

4497

4502

4507

4512

4517

4522

4527

4532

4537

4542

4547

4552

4557

4562

4567

4572

4577

4582

4587

4592

4597

4602

4607

4612

4617

4622

4627

4632

4637

4642

4647

4652

4657

4662

4667

4672

4677

4682

4687

4692

4697

4702

4707

4712

4717

4722

4727

4732

4737

4742

4747

4752

4757

4762

4767

4772

4777

4782

4787

4792

4797

4802

4807

4812

4817

4822

4827

4832

4837

4842

4847

4852

4857

4862

4867

4872

4877

4882

4887

4892

4897

4902

4907

4912

4917

4922

4927

4932

4937

4942

4947

4952

495

for Airborne Peroxyacetyl Nitrate (PAN) Measurements, *J. Atmos. Chem.*, 22, 303–317, 1995.

Shepson, P. B., Hastie, D. R., So, K. W., and Schiff, H. I.: Relationships between PAN, PPN and O₃ at Urban and Rural Sites in Ontario, *Atmospheric Environment Part a-General Topics*, 26, 1259–1270, 1992.

Singh, H. B. and Hanst, P. L.: Peroxyacetyl Nitrate (PAN) in the Unpolluted Atmosphere – an Important Reservoir for Nitrogen-Oxides, *Geophys. Res. Lett.*, 8, 941–944, 1981.

Singh, H. B. and Salas, L. J.: Measurements of Peroxyacetyl Nitrate (PAN) and Peroxypropionyl Nitrate (Ppn) at Selected Urban, Rural and Remote Sites, *Atmos. Environ.*, 23, 231–238, 1989.

Singh, H. B., Herlth, D., Ohara, D., Zahnle, K., Bradshaw, J. D., Sandholm, S. T., Talbot, R., Crutzen, P. J., and Kanakidou, M.: Relationship of Peroxyacetyl Nitrate to Active and Total Odd Nitrogen at Northern High-Latitudes – Influence of Reservoir Species on NO_x and O₃, *J. Geophys. Res.-Atmos.*, 97, 16523–16530, 1992a.

Singh, H. B., Ohara, D., Herlth, D., Bradshaw, J. D., Sandholm, S. T., Gregory, G. L., Sachse, G. W., Blake, D. R., PCrutzen, . J., and Kanakidou, M. A.: Atmospheric Measurements of Peroxyacetyl Nitrate and Other Organic Nitrates at High-Latitudes – Possible Sources and Sinks, *J. Geophys. Res.-Atmos.*, 97, 16511–16522, 1992b.

Steinbacher, M., C. Zellweger, B. Schwarzenbach, S. Bugmann, B. Buchmann, C. Ordonez, A. S. H. Prevot and C. Hueglin: Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques, *J. Geophys. Res.-Atmos.*, D1130, doi:10.1029/2006JD007971, 2007.

Stephens, E. R.: Analysis of an Important Air Pollutant – Peroxyacetyl Nitrate, *J. Chemi. Educat.*, 50, 351–354, 1973.

Sun, E. J. and Huang, M. H.: Detection of Peroxyacetyl Nitrate at Phytotoxic Level and Its Effects on Vegetation in Taiwan, *Atmos. Environ.*, 29, 2899–2904, 1995.

Talukdar, R. K., Burkholder, J. B., Schmolter, A. M., Roberts, J. M., Wilson, R. R., and Ravishankara, A. R.: Investigation of the Loss Processes for Peroxyacetyl Nitrate in the Atmosphere – Uv Photolysis and Reaction with Oh, *J. Geophys. Res.-Atmos.*, 100, 14163–14173, 1995.

Taylor, O. C.: Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant, *J. Air Pollut. Control Assoc.*, 19, 347–35, 1969.

Teklemariam, T. A. and Sparks, J. P.: Gaseous fluxes of peroxyacetyl nitrate (PAN) into plant leaves, *Plant Cell and Environ.*, 27, 1149–1158, 2004.

Temple, P. J. and Taylor, O. C.: Worldwide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury, *Atmos. Environ.*, 17, 1583–1587, 1983.

Tsanibazaca, E., Glavas, S. and Gusten, H.: Peroxyacetyl Nitrate (PAN) Concentrations in Athens, Greece, *Atmos. Environ.*, 22, 2283–2286, 1988.

Tuazon, E. C., Carter, W. P. L., and Atkinson, R.: Thermal Decomposition of Peroxyacetyl Nitrate and Reactions of Acetyl Peroxy Radicals with NO and NO₂ over the Temperature Range 283–313 K, *J.Phys. Chem.*, 95, 2434–2437, 1991.

Wang, B. and Zhang, J.: Monitoring and Analysis of PAN and PPN in the Air of Beijing During the Summer of 2005, *Environ. Sci.*, 28, 1611–1616, 2007.

WHO: WHO Air Quality Guideline for Europe, WHO Regional Office in Europe, Copenhagen, 123–124, 1987.

Williams, E. L. and Grosjean, D.: Southern California Air-Quality Study – Peroxyacetyl Nitrate, *Atmospheric Environment Part a-General Topics*, 24, 2369–2377, 1990.

Williams, E. L. and Grosjean, D.: Peroxypropionyl Nitrate at a Southern California Mountain Forest Site, *Environ. Sci. Technol.*, 25, 653–659, 1991.

Williams, J., Roberts, J. M., Fehsenfeld, F. C., Bertman, S. B., Buhr, M. P., Goldan, P. D., Hubler, G., Kuster, W. C., Ryerson, T. B., Trainer, M., and Young, V.: Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN, *Geophys. Res. Lett.*, 24, 1099–1102, 1998.

Winer, A. M., Peters, J. W., Smith, J. P., and Pitts, J. N.: Response of commercial chemiluminescent nitric oxide-nitrogen dioxide analyzers to other nitrogen-containing compounds, *Environ. Sci. Technol.*, 8, 1118–1121, 1974.

Xu, J., Zhang, Y. H., Fu, J. S., Zheng, S. Q., and Wang, W.: Process analysis of typical summertime ozone episodes over the Beijing area, *Sci. Total Environ.*, 399, 147–157, 2008.

Zhang, J. B. and Tang, X. Y.: , Atmospheric PAN measurements and the formation of PAN in various systems, *Environ. Chem.*, 1, 30–39, 1994.

Zhang, J. M., Wang, T., Ding, A. J., Zhou, X. H., LXue, . K., Poon, C. N., Wu, W. S., Gao, J., Zuo, H. C., Chen, J. M., Zhang, X. C., and Fan, S. J.: Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China, *Atmos. Environ.*, 43, 228–237, 2009.

leaves, *Plant Cell and Environ.*, 27, 1149–1158, 2004.

Temple, P. J. and Taylor, O. C.: Worldwide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury, *Atmos. Environ.*, 17, 1583–1587, 1983.

Tsanibazaca, E., Glavas, S. and Gusten, H.: Peroxyacetyl Nitrate (PAN) Concentrations in Athens, Greece, *Atmos. Environ.*, 22, 2283–2286, 1988.

Tuazon, E. C., Carter, W. P. L., and Atkinson, R.: Thermal Decomposition of Peroxyacetyl Nitrate and Reactions of Acetyl Peroxy Radicals with NO and NO₂ over the Temperature Range 283–313 K, *J.Phys. Chem.*, 95, 2434–2437, 1991.

Wang, B. and Zhang, J.: Monitoring and Analysis of PAN and PPN in the Air of Beijing During the Summer of 2005, *Environ. Sci.*, 28, 1611–1616, 2007.

WHO: WHO Air Quality Guideline for Europe, WHO Regional Office in Europe, Copenhagen, 123–124, 1987.

Williams, E. L. and Grosjean, D.: Southern California Air-Quality Study – Peroxyacetyl Nitrate, *Atmospheric Environment Part a-General Topics*, 24, 2369–2377, 1990.

Williams, E. L. and Grosjean, D.: Peroxypropionyl Nitrate at a Southern California Mountain Forest Site, *Environ. Sci. Technol.*, 25, 653–659, 1991.

Williams, J., Roberts, J. M., Fehsenfeld, F. C., Bertman, S. B., Buhr, M. P., Goldan, P. D., Hubler, G., Kuster, W. C., Ryerson, T. B., Trainer, M., and Young, V.: Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN, *Geophys. Res. Lett.*, 24, 1099–1102, 1998.

Winer, A. M., Peters, J. W., Smith, J. P., and Pitts, J. N.: Response of commercial chemiluminescent nitric oxide-nitrogen dioxide analyzers to other nitrogen-containing compounds, *Environ. Sci. Technol.*, 8, 1118–1121, 1974.

Xu, J., Zhang, Y. H., Fu, J. S., Zheng, S. Q., and Wang, W.: Process analysis of typical summertime ozone episodes over the Beijing area, *Sci. Total Environ.*, 399, 147–157, 2008.

Zhang, J. B. and Tang, X. Y.: , Atmospheric PAN measurements and the formation of PAN in various systems, *Environ. Chem.*, 1, 30–39, 1994.

Zhang, J. M., Wang, T., Ding, A. J., Zhou, X. H., LXue, . K., Poon, C. N., Wu, W. S., Gao, J., Zuo, H. C., Chen, J. M., Zhang, X. C., and Fan, S. J.: Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China, *Atmos. Environ.*, 43, 228–237, 2009.

Table 1. Comparison of PAN and PPN levels measured in this study with those measured in other regions (ppbv).

Site	Type	Date	PAN ppbv (max/aver.)	PPN ppbv (max/aver.)	Reference
PKU, Beijing, China	urban	15–27 August 2006	11.22/1.41	1.95/0.24	This study
	urban	Several days in May and June 1990	6.8	–	Zhang and Tang (1994)
Seoul Metropolitan area, Korea	urban	May to July, 2004 and 2005	10.4/0.8	–	Lee et al. (2008)
Taipei, China	urban	July 1992–April 1993	27	–	Sun and Huang (1995)
Houston, Texas	urban	2000	14	–	Roberts et al. (2002)
Athens, Greece	urban	2001	6.6	–	Glavas and Moschonas (2001)
Santiago, Chile	urban	September 2002	3.9/2.8	–	Rubio et al. (2005)
		October 2002	3.8/1.8	–	
		December 2002	9.8/5.3	–	
		January 2003	22/6.4	–	
Riverside, California	urban	Lack data	50	~6	Darley et al. (1963)
		1 August–31 December 1967	58	–	Taylor (1969)
		August 1968	28/5.9	–	
		August 1976	20/3.0	–	
		August 1980	22/5.6	–	
Los Angeles, California	urban	9–21 April 1979	2.7/0.72	–	Temple and Taylor (1983)
Porto Alegre, Brazil	urban	May 1996–March 1997	6.67	–	Singh and Hanst (1981)
Mexico City, Mexico	urban	February–March 1997	34	–	Grosjean et al. (2002)
Azusa, California	urban	28 August–11 September 1993	1.46/0.47	–	Gaffney et al. (1999)
		1 July–16 October 1997	4.8/0.880	0.72/0.25	Grosjean et al. (1996, 2001)
Simi Valley, California	urban	July 18–October 16, 1997	3.0/0.608	0.28/0.13	Aneja et al. (1999)
Yufa, Beijing, China	suburban	3–12 September 2006	2.50/0.60	0.41/0.09	This work
Lanzhou, China	suburban	23 June–17 July 2006	9.13/0.76	–	Zhang et al. (2009)
La Vergne Tennessee	suburban	June–July 1995	2.14/0.48	0.32/0.005	Nouaime et al. (1998)
La Porte Airport, Houston, Texas	suburban	August–September 2000	6.5	–	Roberts et al. (2003)
Cornelia Fort Air Park, Tennessee	suburban	14 June–14 July	2.51/0.674	0.43/<0.005	Roberts et al. (2002)
Mt. Wailguan, China	Background	22 July–16 August 2006	1.4/0.44	–	Zhang et al. (2009)
Chebogue Point, Nova Scotia, North Atlantic	Background	August–September 1993	0.325/0.049	0.089/0.009	Roberts et al. (1998b)
Charleston, South Carolina	marine	12 July–10 August 2002	2.79/0.36	0.387/<0.004	Roberts et al. (2007)

Table 2. Statistical data for PAN, PPN, and O₃.

Site	PAN (ppbv)			PPN (ppbv)			Ozone (ppbv)		
	Average	Median	Daily max. range	Average	Median	Daily max. range	Average	Median	Daily max. range
PKU	1.34 (n = 3740)	0.91	1.21–11.22	0.24 (n = 3239)	0.15	0.16–1.95	34.59 (n = 3400)	22.9	39.2–140.4
Yufa	0.60 (n = 2673)	0.50	0.68–2.51	0.10 (n = 2462)	0.08	0.13–0.41	31.43 (n = 2234)	28.6	39.1–114.8

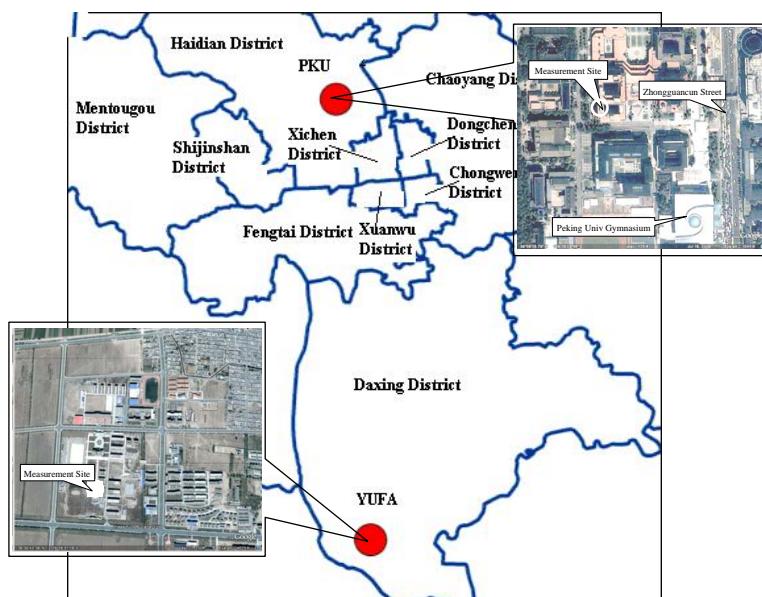
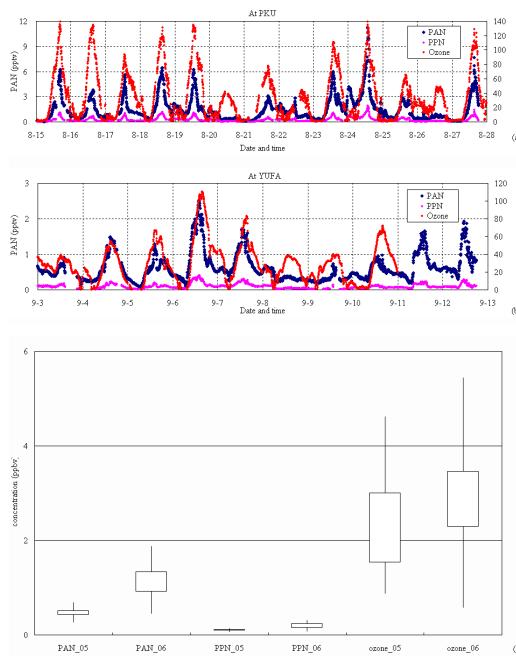
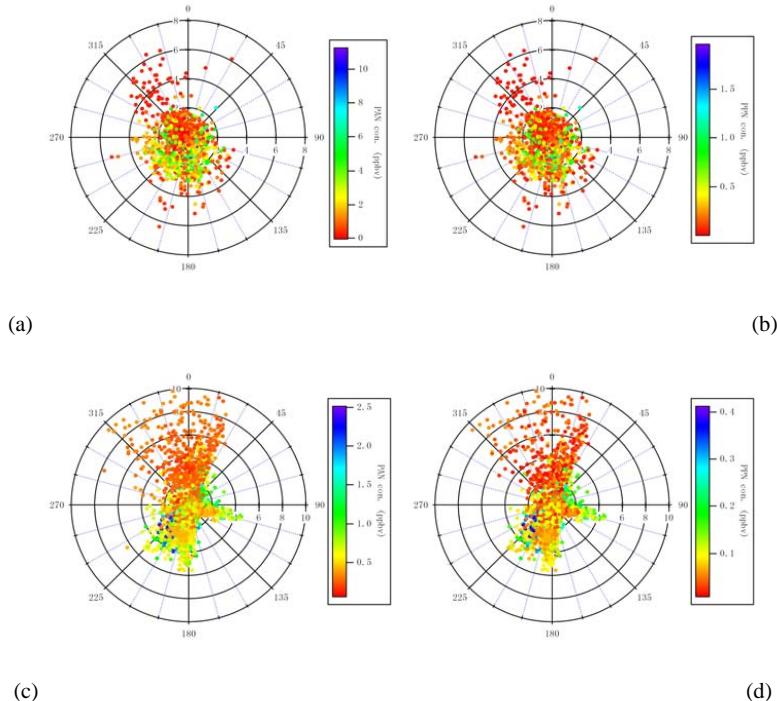

Notes: At PKU, measured PAN was always above the detection limit, but the minimum PPN was sometimes lower than the detection limit (5 ppbv). At Yufa, the minimum level of PAN was 0.07 ppbv, and for PPN, the minimum was lower than the detection limit.

Table 3. Summary of data for TDPAN and TDPAN/SUM.

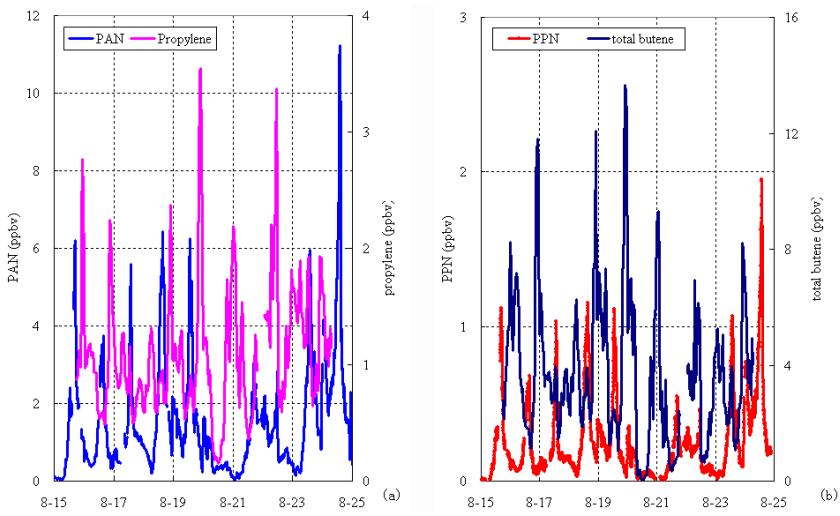

Thermal decomposition	Site							
	PKU			Yufa				
	PAN: $n = 1575$; PPN: $n = 1476$, (10 min resolution)	Max (ppbv)	Min	Average	PAN: $n = 2096$; PPN: $n = 1899$, (5 min resolution)	Max (ppbv)	Min	Average
TDPAN (ppbv)	1.37	<5 pptv	0.13		0.58	1 pptv	0.08	
TDPPN (ppbv)	0.31	<5 pptv	0.03		0.04	—	4 pptv	
TDPAN/PAN _{ambient}	34.1%	—	9.1%		29.2%	0.2%	9.2%	
TDPPN/PPN _{ambient}	42.2%	0.1%	10.8%		15.24%	—	3.5%	

Notes: PAN and PPN data were synchronized with the time resolution of meteorological data and conventional gases at each site (PKU: 10 min; Yufa: 5 min) for thermal loss calculation, resulting in different sampling sizes between the two sites. When calculating thermal loss, 10 min data were used for both sites.

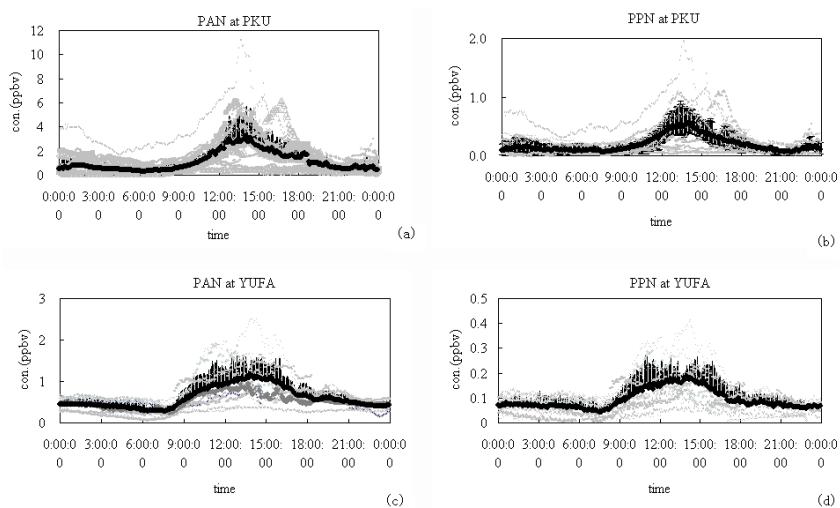
8197


Fig. 1. Geographical locations of the sampling sites in Beijing.

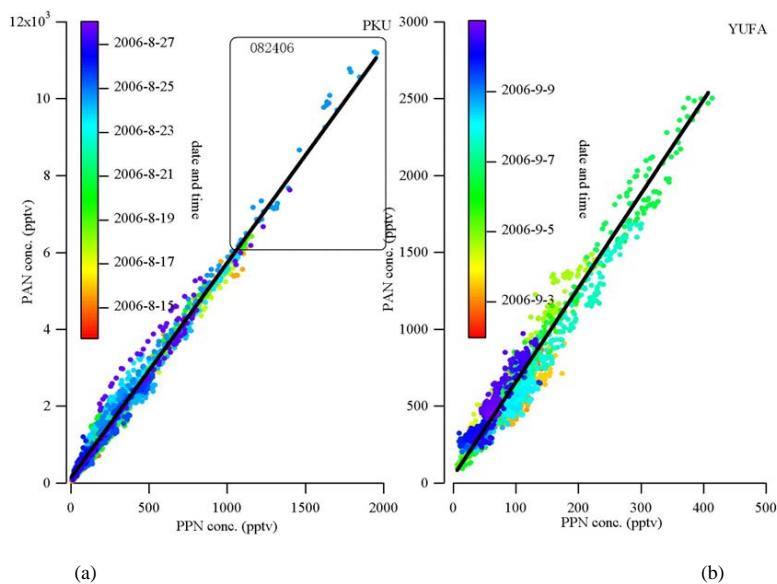
8198


Fig. 2. Time series and inter-annual comparisons of PAN, PPN, and ozone. In order to display all information (c), only one-tenth of the O_3 mixing ratios were plotted. Measurements of PAN and PPN were also taken in the summer of 2005 between 15 and 29 August. Details can be obtained from Wang and Zhang (2007). In (c), the higher vertical bar represents the 3rd quartile, and the lower vertical bar represents the 1st quartile. The upper edge of the box indicates the average, and the lower edge of box indicates the median.

8199


Fig. 3. Wind roses for PAN and PPN pollution Notes: At Yufa, the meteorological data was taken up to 10 September; therefore the values of PAN and PPN plotted in (c) and (d) were also consistent with the wind data input.

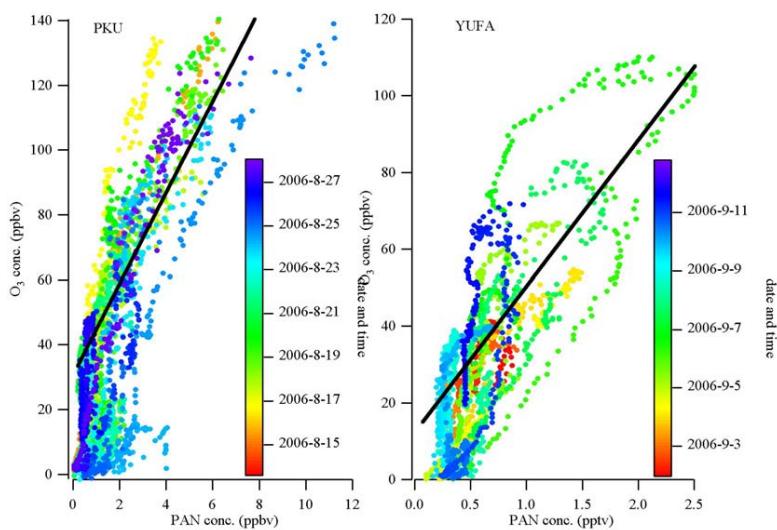
8200


Fig. 4. PAN and PPN with their major VOC precursors at PKU Site. Butane includes n-butane, trans-2-butene, 1-butene, and cis-2-butene.

8201

Fig. 5. Diurnal variations in PAN and PPN. Bold black lines show the median at the same time on all measurement days. Upper and lower error bars are 3rd quartile and 1st quartile, respectively.

8202



(a)

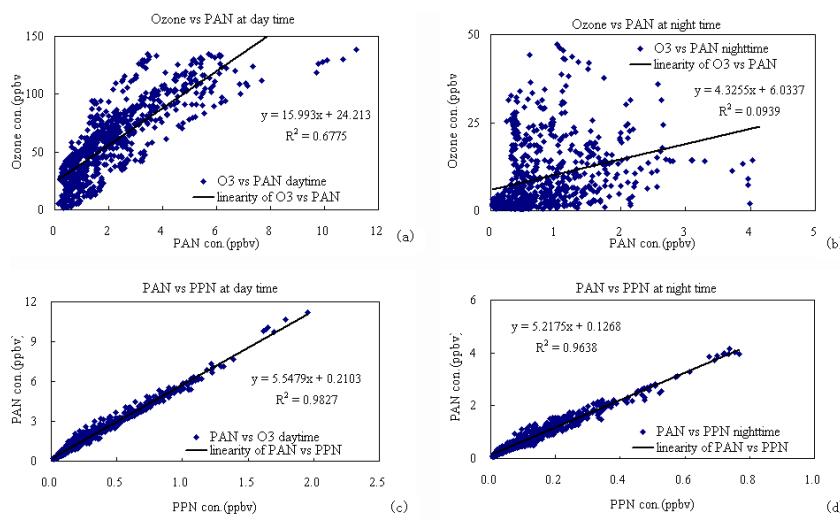
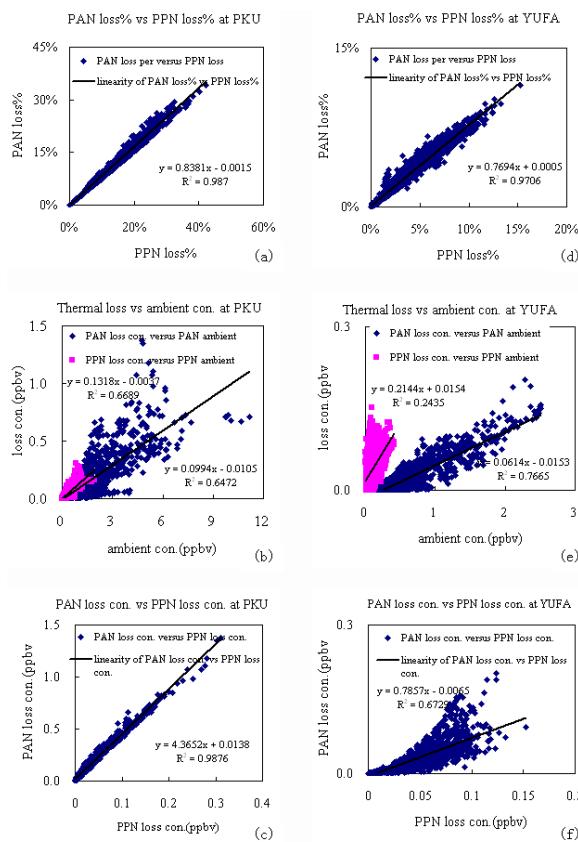

(b)

Fig. 6. Correlation between PAN and PPN.

8203


Fig. 7. Correlation between PAN and ozone.

8204

Fig. 8. Correlations among PAN, PPN, and O₃.

8205

Fig. 9. Thermal decomposition of PAN and PPN.

8206