Liquid-like Layers on Ice in the Environment: Bridging the Quasi-liquid and Brine Layer Paradigms

SUPPLEMENTARY MATERIAL

Min H. Kuo, Samar G. Moussa, V. Faye McNeill*

Department of Chemical Engineering, Columbia University, New York, New York 10027

*Author to whom correspondence should be addressed: vfm2103@columbia.edu; phone (212)

854-2869; FAX (212) 854-3054

A. Derivation of BL Model (eqs. 1 and 2)

List of symbols

Symbol	Quantity
Т	System temperature
T_m	Bulk melting temperature of ice
Р	System pressure
f_w^{ice}	Fugacity of pure ice
\hat{f}_w^{brine}	Fugacity of water in brine layer
X _w	Mole fraction of water in brine layer
$x_{w,0}$	Mole fraction of water in unfrozen solution
${H}_{\scriptscriptstyle W}^{\scriptscriptstyle ice}$	Enthalpy of ice at T, P
${H}_{\scriptscriptstyle W}^{\scriptscriptstyle ice,0}$	Enthalpy of ice at reference state
$\overline{H}_{\scriptscriptstyle W}^{\scriptscriptstyle brine}$	Partial molar enthalpy of water in brine layer
${H}_{\scriptscriptstyle W}^{{\scriptstyle liq},0}$	Enthalpy of water in unfrozen liquid solution
$\overline{V}_{\scriptscriptstyle W}^{\scriptscriptstyle brine}$	Partial molar volume of water in brine layer
ΔH_w^{fus}	Enthalpy change of fusion
$\Delta \overline{H}_{\scriptscriptstyle W}^{\scriptscriptstyle brine}$	Enthalpy change upon formation of brine layer
ΔV_w^{fus}	Volume change of fusion
$\Delta \overline{V}_{\scriptscriptstyle W}^{\scriptscriptstyle brine}$	Volume change upon formation of brine layer
γ_w	Activity coefficient of water in brine

f_w^{vap}	Fugacity of water in vapor space above ice
ΔH_w^{vap}	Enthalpy change upon vaporization
$\Delta V_{_W}^{_{vap}}$	Volume change upon vaporization
φ	Liquid water fraction
n_w^{brine}	Moles of water in brine layer
n_w	Total number of moles of water
n_s	Number of moles of solute
d	Thickness of liquid layer
V	Volume of ice sample
Α	Surface area of ice sample
$ ho_{_w}$	Density of water
$ ho_{_{ice}}$	Density of ice

At equilibrium (Tester and Modell, 1996),

$$d\ln f_w^{ice} = d\ln \hat{f}_w^{brine} \tag{S1}$$

Expanding,

$$\left(\frac{\partial \ln f_{w}^{ice}}{\partial T}\right)_{P} dT + \left(\frac{\partial \ln f_{w}^{ice}}{\partial P}\right)_{T} dP = \left(\frac{\partial \ln \hat{f}_{w}^{brine}}{\partial T}\right)_{P,x_{w}} dT + \left(\frac{\partial \ln \hat{f}_{w}^{brine}}{\partial P}\right)_{T,x_{w}} dP + \left(\frac{\partial \ln \hat{f}_{w}^{brine}}{\partial x_{w}}\right)_{T,P} dx_{w}$$
(S2)

Substituting for the partial derivatives of fugacity,

$$-\left(\frac{H_{w}^{ice}-H_{w}^{ice,0}}{RT^{2}}\right)dT + \frac{V_{w}^{ice}}{RT}dP = -\left(\frac{\overline{H}_{w}^{brine}-H_{w}^{liq,0}}{RT^{2}}\right)dT + \frac{\overline{V}_{w}^{brine}}{RT}dP + \left(\frac{\partial\ln\hat{f}_{w}^{brine}}{\partial x}\right)_{T,P}dx_{w}$$
(S3)

Collecting terms,

$$\left(\frac{\partial \ln \hat{f}_{W}^{brine}}{\partial x_{w}}\right)_{T,P} \frac{dx_{w}}{dT} = -\left(\frac{H_{W}^{ice} - \overline{H}_{W}^{brine}}{RT^{2}}\right) + \frac{V_{W}^{ice} - \overline{V}_{W}^{brine}}{RT} \frac{dP}{dT}$$
(S4)
$$\left(\frac{\partial \ln \hat{f}_{W}^{brine}}{\partial x_{w}}\right)_{T,P} \frac{dx_{w}}{dT} = -\left(\frac{\Delta H_{W}^{fus} - \Delta \overline{H}_{W}^{brine}}{RT^{2}}\right) + \left(\frac{\Delta V_{W}^{fus} - \Delta \overline{V}_{W}^{brine}}{RT}\right) \frac{dP}{dT}$$
(S5)

we know

$$\hat{f}_w^{brine} = \gamma_w f_w x_w \qquad (S6)$$

therefore,

$$\left(\frac{\partial \ln \hat{f}_{W}^{brine}}{\partial x_{W}}\right)_{T,P} = \frac{1}{\gamma_{w} f_{w} x_{w}} \gamma_{w} f_{w} = \frac{1}{x_{w}} \quad (S7)$$

and

$$\frac{1}{x_w}\frac{dx_w}{dT} = \frac{d\ln x_w}{dT} = -\left(\frac{\Delta H_w^{fus} - \Delta \overline{H}_w^{brine}}{RT^2}\right) + \left(\frac{\Delta V_w^{fus} - \Delta \overline{V}_w^{brine}}{RT}\right)\frac{dP}{dT}$$
(S8)

Also,

$$d\ln f_w^{vap} = d\ln \hat{f}_w^{brine} \tag{S9}$$

$$\left(\frac{\partial \ln \hat{f}_{w}^{brine}}{\partial x_{w}}\right)_{T,P} \frac{dx_{w}}{dT} = -\left(\frac{\Delta H_{w}^{vap} - \Delta \overline{H}_{w}^{brine}}{RT^{2}}\right) + \left(\frac{\Delta V_{w}^{vap} - \Delta \overline{V}_{w}^{brine}}{RT}\right) \frac{dP}{dT}$$
(S10)

Equating eqs (S5) and (S10),

$$\frac{dP}{dT} = \left(\frac{\Delta H_w^{vap} - \Delta H_w^{fus}}{T\left(\Delta V_w^{vap} - \Delta V_w^{fus}\right)}\right)$$
(S11)

Substituting eq (S11) into eq (S5),

$$\frac{d\ln x_w}{dT} = -\left(\frac{\Delta H_w^{fus} - \Delta \bar{H}_w^{brine}}{RT^2}\right) + \left(\frac{\Delta V_w^{fus} - \Delta \bar{V}_w^{brine}}{RT}\right) \left(\frac{\Delta H_w^{vap} - \Delta H_w^{fus}}{T\left(\Delta V_w^{vap} - \Delta V_w^{fus}\right)}\right)$$
(S12)

Neglect the partial molar enthalpy and volume of mixing, and simplify.

$$\frac{d\ln x_w}{dT} = \frac{\Delta V_w^{fus} \Delta H_w^{vap} - \Delta H_w^{fus} \Delta V_w^{vap}}{RT^2 \left(\Delta V_w^{vap} - \Delta V_w^{fus}\right)}$$
(S13)

Dividing through on top & bottom by ΔV_w^{vap} and using the fact that $\Delta V_w^{\text{fus}} \ll \Delta V_w^{\text{vap}}$, eq (S13) simplifies to:

$$\frac{d\ln x_w}{dT} = \frac{-\Delta H_w^{fus}}{RT^2}$$
(S14)

Integrating,

$$x_w = x_{w,0} \exp\left[-\frac{\Delta H_w^{fus}}{R} \left(\frac{1}{T} - \frac{1}{T_m}\right)\right]$$
(S15)

In order to calculate layer thickness we first relate x_w to the liquid water fraction, ϕ

$$\varphi = \frac{n_w^{brine}}{n_w} = \frac{dA}{V} \frac{\rho_{ice}}{\rho_w}$$
(S16)

Where *d* is BL thickness, *A* and *V* are dimensions of the sample, and ρ is density.

From the definition of x_w , we get

$$x_{w,0} = \frac{n_w}{n_w + n_s} \qquad x_w = \frac{n_w^{brine}}{n_w^{brine} + n_s} \qquad (S17)$$

Rearranging and substituting, we get

$$d = \frac{V}{A} \frac{\rho_w}{\rho_{ice}} \left(\frac{x_w}{x_{w,0}} \frac{(1-x_{w,0})}{(1-x_w)} \right)$$
(S18)

B. Derivation of Semi-Empirical Models for the QLL

Table 1: The semi-empirical models ($d_{QLL,In}$, $d_{QLL,-1/2}$, $d_{QLL,-1/3}$) presented in section 3 of the manuscript obtained based on the fit parameter data.

	ln((T _m - T)/T _m))			$(T_m - T)^{-1/2}$			(T _m - T) ^{-1/3}		
	Slope	Intercept	R^2	Slope	Intercept	R^2	Slope	Intercept	R^2
Dosch	16.371	-51.919	0.8218	66.855	-19.83	0.9341	80.95	-36.155	0.9037
Doppenschmidt	10.262	-17.72	0.8208	45.757	0.0502	0.8572	53.9	10.051	0.8521
Mazzega	1.1	-2.4711	1	0.8906	0.9297	0.6744	2.2058	0.1019	0.8231
Bluhm	0.8423	-2.1323	0.9165	3.7415	-0.6945	0.9547	4.4728	-1.5471	0.9596
Pittenger	0.3151	-0.8009	0.8919	1.2272	-0.1601	0.9819	1.512	-0.4723	0.9613
Sadtchenko	2.4478	-8.231	0.9786	2.7037	0.8935	0.974	5.3146	-1.3638	0.9931
R ² -weighted avg	4.866871	-12.9671		20.40124	-3.31141		24.01679	-4.97332	

REFERENCES

- Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z., and Salmeron, M.: The Premelting of Ice Studied With Photoelectron Spectroscopy, J. Phys.: Cond. Matter, 14 (8), L227-L233, 2002.
- Doppenschmidt, A. and Butt, H.-J.: Measuring the Thickness of the Liquid-like Layer on Ice Surfaces with Atomic Force Microscopy, *Langmuir*, *16* (16), 6709-6714, 2000.
- Dosch, H., Lied, A., and Bilgram, J. H.: Disruption of the Hydrogen-bonding Network at the Surface of Ih Ice Near Surface Premelting, *Surf. Sci.*, *366* (1), 43-50, 1996.
- Mazzega, E., Pennino, U. D., Loria, A., and Mantovani, S.: Volta Effect and Liquid-Like Layer at Ice Surface, J. Chem. Phys., 64 (3), 1028-1031, 1976.

- Pittenger, B., Fain, S. C., Cochran, M. J., Donev, J. M. K., Robertson, B. E., Szuchmacher, A., and Overney, R. M.: Premelting at Ice-Solid Interfaces Studied via Velocity-Dependent Indentation with Force Microscope Tips, *Phys. Rev. B*, *6313* (13), 134102, 2001.
- Sadtchenko, V. and Ewing, G. E.: Interfacial Melting of Thin Ice Films: An Infrared Study, J. Chem. Phys., 116 (11), 4686-4697, 2002.
- Tester, J.W. and Modell, M. <u>Thermodynamics and its Applications</u>, 3rd Ed. Prentice Hall, Upper Saddle River, N.J. (1996)