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Abstract

In-situ measurements of ice crystal size distributions in tropical upper tropo-
sphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA
campaign over West Africa in August 2006. The cloud properties were measured with
a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe5

(CIP) operated aboard the Russian high altitude research aircraft M-55 “Geophysica”
with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size
distributions were obtained from the measurements in the vicinity of Mesoscale Con-
vective Systems (MCS). Two or three modal lognormal size distributions were fitted to
the average size distributions for different potential temperature bins. The measure-10

ments showed proportionate more large ice particles compared to former measure-
ments above maritime regions. With the help of trace gas measurements of NO, NOy,
CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were
identified. These events were observed at altitudes of 11.0 km to 14.2 km correspond-
ing to potential temperature levels of 346 K to 356 K. In a young outflow (developing15

MCS) ice crystal number concentrations of up to 8.3 cm−3 and rimed ice particles with
maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of
0.05 g m−3 was observed and an effective radius of about 90 µm. In contrast the aged
outflow events were more diluted and showed a maximum number concentration of
0.03 cm−3, an ice water content of 2.3×10−4 g m−3, an effective radius of about 18 µm,20

while the largest particles had a maximum dimension of 61 µm.
Close to the tropopause subvisual cirrus were encountered four times at altitudes of

15 km to 16.4 km. The mean ice particle number concentration of these encounters
was 0.01 cm−3 with maximum particle sizes of 130 µm, and the mean ice water content
was about 1.4×10−4 g m−3. All known in-situ measurements of subvisual tropopause25

cirrus are compared and an exponential fit on the size distributions is established in
order to give a parameterisation for modelling.
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A comparison of aerosol to ice crystal number concentrations, in order to obtain
an estimate on how many ice particles result from activation of the present aerosol,
yielded low activation ratios for the subvisual cirrus cases of roughly one cloud particle
per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high
ratio of one cloud particle per 300 aerosol particles.5

1 Introduction

Tropical convective clouds and Mesoscale Convective Systems (MCS) are key ele-
ments of the hydrological cycle, the exchange of air masses between troposphere and
stratosphere (Pommereau, 2010), the global circulation (Houze, 2004; Schumacher
et al., 2004), and with this, key elements of the global climate. As large, organised,10

multi-cell systems of cumulonimbus (Cb) clouds the MCS (i.e., Mesoscale Convective
Complexes (MCC) or squall lines) belong to the most intense thunderstorms world-
wide (Fritsch and Forbes, 2001; Zipser et al., 2006). The area which is covered by
MCS cold cloud shields can reach 1 000 000 km2 while in the global mean they mostly
exhibit sizes between 200 000 and 400 000 km2 (Laing and Fritsch, 1997). Their precip-15

itation regions can have dimensions larger than 1000 km in one direction and produce
most of the tropical rainfall. The uppermost parts of MCSs consist of large anvils and
surrounding cold cloud shields as cirrus decks which can produce detached fields of
upper tropospheric cirrus and subvisual cirrus (Houze, 2004; Thomas et al., 2002).
Both kinds of ice clouds influence the Earth’s radiative budget (Ackerman et al., 1988;20

Davis et al., 2010, and references therein). Also MCSs vertically redistribute latent heat
and provide fast pathways for upward transport of air from the boundary layer to the
upper troposphere/lower stratosphere (UT/LS). Of particular interest in this context are
the West African MCSs which occur during the monsoon wet season in the months of
July and August with an average frequency near 86 per season (Barnes, 2001; Protat25

et al., 2010).

748

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Based on observations in 1986 and 1987 West African MCSs are found to have an
average lifetime of 11.5 h, form in the evening near 21:00 local time (LT), reach their
maximum extent around 02:00 LT, and dissipate in the mornings near 08:30 LT (Barnes,
2001). Between pressure altitude levels from 700 hPa to 100 hPa West African MCSs
have significantly higher buoyancy than those over the Maritime Continent (i.e. South-5

east Asia) or the Bay of Bengal. The reasons are inherent in the different vertical free
atmosphere temperature profiles: These are dry adiabatic over West Africa and moist
adiabatic over the Maritime Continent (Cetrone and Houze, 2009). As consequence
convection might be deeper over West Africa and the resulting strong updraughts pro-
duce stronger precipitation events with larger hydrometeors. This is suggested by anal-10

ysis of radar data from the Tropical Rainfall Measuring Mission (TRMM) satellite by
Cetrone and Houze (2009). Another consequence is that MCSs frequently extend to
altitudes above ≈14 km and penetrate the bottom layer of the Tropical Transition Layer
(TTL; as defined by Park et al., 2007). The MCS outflows typically occur at altitudes be-
tween 12 km and 16 km and detrain trace gases and aerosols or ozone precursor gases15

(Homan et al., 2010; Fierli et al., 2010) into the TTL. Such processes significantly influ-
ence the aerosol and water content of the TTL (Fueglistaler et al., 2009), as well as the
chemical composition of the air within the UT/LS (Huntrieser et al., 2009; Barret et al.,
2010). For example, overshooting Cb can penetrate into the stratosphere (Khaykin
et al., 2009) and directly deposit ice crystals, aerosols and trace gases (De Reus et al.,20

2009; Corti et al., 2008). Mesoscale model simulations together with in situ obser-
vations of various trace gases lead to the conclusion that detrainment residues from
deep convection of MCS can be found at altitudes as high as 17 km (Fierli et al., 2010).
Within the TTL air masses carried aloft from the boundary layer by local deep con-
vection encounters air transported into the region from long distances. Domain filling25

trajectory analyses of air mass origins for the West African TTL of August 2006 indicate
that roughly 39% of the air masses below 370 K were influenced by lower tropospheric
air from Asia, India, and oceanic regions (Law et al., 2010). Those air masses might
concomitantly be influenced by local convection over West Africa. In the lower TTL
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here, Law et al. (2010) estimated that about 50% of the air masses were affected by
local convection. Mixing within the TTL occurs because the residence time of air here
can be of the order of weeks (Plöger et al., 2010; Krüger et al., 2009). For the case of
the 2006 West African monsoon wet season in situ CO2 measurements showed that
convective outflow imported boundary layer air into the TTL between 350 K and 370 K5

potential temperature levels (Homan et al., 2010) while simultaneous presence of more
aged air was demonstrated by means of ozone data. Lightning produces NOx and thus,
enhanced levels of NO and NOy (Schumann and Huntrieser, 2007; Huntrieser et al.,
2009) can be detected inside the MCS outflows. Similarly, trace gases like CO and
CO2 from biomass burning and boundary layer air can be used to identify outflows.10

Occasionally, a fraction of the SO2 entering a Cb from the boundary layer also reaches
the outflow region (Barth et al., 2007, 2001). The high radiation levels lead to enhanced
OH radical production and fast oxidation of the SO2 to H2SO4 which can trigger new
particle formation events inside outflow air (Weigel et al., 2011) and even inside clouds
(Lee et al., 2004). Thus, the Cb outflows constitute a source for ultrafine particles and it15

has been speculated that this affects the chemical particle composition in the lower TTL
(Borrmann et al., 2010; Weigel et al., 2011). Therefore, besides ground based, remote
sensing and satellite data, in-situ measurements within MCS outflows and the involved
MCS cloud parts are important for the characterisation of the TTL air. The same is
true for the tropical cirrus. This is of relevance since parts of the TTL air ultimately20

are lifted into the stratosphere and globally distributed. However, direct investigations
on the microphysical properties of the MCS upper cloud parts are difficult and rare in
general and in particular over West Africa.

Subvisual cirrus (SVC) clouds within the TTL have been frequently detected by
satellite platforms (e.g., Winker and Trepte, 1998; Wang et al., 1996; Sassen et al.,25

2009) and occasionally probed by in-situ measurements (e.g., McFarquhar et al., 2000;
Thomas et al., 2002; Lawson et al., 2008; Davis et al., 2010; Froyd et al., 2010). Al-
though optically thin these clouds are believed to influence the radiative transfer be-
cause of their large horizontal extent (McFarquhar et al., 2000; Davis et al., 2010).
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Furthermore, they play a major role in the context of freeze-drying air ascending in the
tropics towards the stratosphere (Jensen et al., 1996, 2001; Luo et al., 2003a; Peter
et al., 2003).

The formation of large horizontal sheets of SVCs disconnected and far away from
convective clouds in clear sky (like observed by Winker and Trepte, 1998) probably is5

a result of deposition freezing. Furthermore, it is dependent on the properties of the nu-
cleating aerosol because these clouds originate from synoptic scale slow uplift (Jensen
et al., 1996). The exact mechanisms leading to nucleation and cloud formation in the
TTL still are unknown (Froyd et al., 2009). For example Froyd et al. (2010) concluded
from air-borne mass spectrometric composition measurements of ice residues in Mid-10

dle American SVCs that most residuals were internal mixtures of neutralised sulphate
and some organics. Mineral dust or other heterogeneous nuclei were not major com-
ponents. Other field and laboratory studies, however, show the importance of metals
(Cziczo et al., 2009, and references therein), mineral dust (DeMott et al., 2003; Zimmer-
mann et al., 2008; Kulkarni and Dobbie, 2010), and organics (Murray et al., 2010) for15

ice formation. Model calculations by Kärcher (2002) demonstrated that homogeneous
freezing of supercooled aerosols could occur at temperatures near 215 K at vertical
updraughts of 1 cm s−1 to 2 cm s−1 and result in ice particle number concentrations of
up to 0.1 cm−3. Another conclusion of Kärcher (2002) (and also from Kärcher, 2004) is
that heterogeneous freezing from ice nuclei at concentrations below 0.1 cm−3 could ini-20

tiate and control SVC formation at temperatures below the threshold for homogeneous
freezing even if the homogeneous freezing nuclei are available at higher concentrations
than deposition freezing nuclei. Jensen et al. (2008) performed model simulations on
the question how ice crystals as large as 100 µm can form at the tropopause. Based
on these simulations water vapour mixing ratios of at least 2 µmol/mol and steady ver-25

tical speeds of 2 cm s−1 are needed to levitate such particles in the TTL. The model
calculations also indicate that homogeneous freezing would result in ice particle con-
centrations which are too high to obtain closure between the large crystal sizes and
the given water vapour abundance. Thus, they conclude that heterogeneous freezing
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occurred for the analysed cases on effective deposition freezing nuclei at low super-
saturations with respect to ice. Also, the importance of fluctuations in temperature and
vertical wind velocities for the formation and maintenance of subvisual or opaque cirrus
has been pointed out by Jensen et al. (2001, 2010) and for mid latitude cirrus by Haag
and Kärcher (2004).5

A stabilisation mechanism for the maintenance of SVC consisting of small particles
(<20 µm) at the tropical tropopause over long times and large horizontal areas has
been suggested by Luo et al. (2003b). According to their hypothesis a slightly super-
saturated layer of air lies directly above a slightly subsaturated layer. Both layers are
adjacent and below the tropopause in a region where air slowly rises through them10

driven by large scale ascent (e.g., induced by the Hadley cell). Ice particles in the
size range of 10 µm partially evaporate in the subsaturated layer, shrink in size, and
ascend carried by the flow into the supersaturated zone aloft. There, they grow again,
attain too much mass and fall back down into the subsaturated layer below where they
start evaporating again. The according model calculations by Luo et al. (2003b) were15

based on the measurements of Thomas et al. (2002) from APE-THESEO campaign
(Stefanutti et al., 2004) over the Seychelles in 1999. The model showed that such
a scenario yields a consistent picture in terms of the small particle sizes and number
densities observed there, if the vertical wind speeds are in the range of a few mm/s.
This model, however, fails for the large SVC particles observed by Lawson et al. (2008)20

and Davis et al. (2010), and the data presented in this paper from West Africa.
In the vicinity of individual MCS the occurrence of SVC has been observed for ex-

ample by Thomas et al. (2002). Here, and in particular under the inhomogeneous con-
ditions as prevailing in large fields of MCSs during the West African Monsoon period,
a combination of mechanisms may be responsible for cirrus formation and mainte-25

nance. Ice particles could result from homogeneous freezing inside the cumulonimbus
clouds and detrain in Cb outflows. External versus internal mixtures of heterogeneous
ice nuclei may play a role (also for homogeneous freezing) as the influence of size
dependent freezing thresholds does (Spichtinger and Cziczo, 2010). The possibility
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of gravity wave induced shear off of thin cirrus sheets from large Cb anvils exists like
Wang (2003) demonstrated for mid latitude Cb. Since such ice cloud sheets would
occur below or at the bottom of the TTL additional lofting would be necessary. As
discussed in Corti et al. (2006) for tropical troposphere-stratosphere exchange such
upwelling may occur here, too, by cirrus cloud-radiation interaction in the vicinity of5

recent deep convection.
From this brief discussion it becomes clear that many open questions remain in the

context of tropical SVC and MCSs in particular over the African continent.
Here, we present in-situ measurements of the tropical UT/LS from the SCOUT-

AMMA campaign (Cairo et al., 2010b) in Burkina Faso during August 2006:10

– Observations and resulting parameterisations for MCS anvil ice particle size dis-
tributions as function of potential temperature,

– Case studies of the microphysical properties in young and aged West African
MCS outflows at the bottom of the TTL,

– Evidence for homogeneous new particle formation inside the anvil outflows,15

– New data for upper tropospheric West African SVC cloud particle size distributions
and a resulting parameterisation,

– Measurements of the fraction of ice cloud particle concentrations to interstitial
aerosol particle number densities inside SVC, MCS anvils, and outflows.

2 Atmospheric context of the SCOUT-AMMA field campaign20

The SCOUT-AMMA field campaign was based in Ouagadougou, Burkina Faso (at
12.2◦ N, 1.50◦ W), and took place from 31 July until 16 August 2006, at the begin-
ning of a westerly Quasi-Biennial Oscillation (QBO) phase and within the West African
monsoon wet season (Cairo et al., 2010b). Here, we briefly describe the atmospheric
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situation from a trace gas measurement perspective. Homan et al. (2010) used CO,
CO2, and other trace substances to show that convection transported air from the
boundary layer into the TTL which significantly influenced the trace gas composition of
the air between 350 K and 370 K potential temperature, i.e. the outflow region. Based
on domain filling trajectory ensembles from West Africa Law et al. (2010) showed that5

most air masses were already residing in the TLL during the 10 days prior to the mea-
surements. Up to 39% of the air masses in the mid-TTL below 370 K were influenced by
lower tropospheric air originating from Asia and India. Fierli et al. (2010) demonstrated
for the 2006 monsoon season that detrainment effects from deep convection of MCSs
are seen at 17 km altitude and possibly higher. Residues from biomass burning were10

detected on the M-55 “Geophysica” flight from 13 August 2006 in the TTL. These were
traced back to biomass burning events in Central Africa (Real et al., 2010). Khaykin
et al. (2009) provide evidence for overshooting convection over West Africa and for
hydration within the TTL and lower tropical stratosphere due to evaporation of ice crys-
tals. Finally, isentropic mixing of extratropical stratospheric air and transport across15

the subtropical tropopause can play a role for the composition of the air in the upper
troposphere and TTL (Homan et al., 2010).

3 Instrumentation for cloud particle, submicron aerosol particle and
trace gas measurements

3.1 Cloud particle size distributions and ice water content20

A combination of measurements by a modified Particle Measuring Systems (PMS) For-
ward Scattering Spectrometer Probe (FSSP-100) with Droplet Measurement Technolo-
gies (DMT) high speed electronics (SPP-100) and a DMT Cloud Imaging Probe (CIP)
was used to derive cloud particle size distributions. These probes cover a size range
of 2.7 µm<Dp <31 µm (FSSP-100) and 25 µm<Dp <1600 µm with a 25 µm resolution25

(CIP). The characteristics of the instruments are described in detail in De Reus et al.
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(2009, and references therein). While the time resolution of FSSP-100 measurements
was set to 2 s, the CIP detects single cloud particles with a maximum sample rate of
8 MHz. Nevertheless, in order to combine with the FSSP-100 data also two second
averages have been calculated for the CIP data. The uncertainties of the number con-
centration measurements of both probes are mainly determined by the uncertainties5

in the sample volumes, which were estimated to be 20% (Baumgardner et al., 1992).
Additional uncertainty due to counting statistics has to be taken into account especially
in conditions with low particle number concentrations.

In order to derive particle sizes from the CIP images a set of corrections needs
to be applied. The underlying types of corrections are summarised in Table 1 (as in10

De Reus et al., 2009, if not specified otherwise) together with a short description and
the corresponding references. The particle diameters derived from CIP measurements
are specified in this paper by using the maximum dimension (Heymsfield et al., 2002).
The Ice Water Content (IWC) was calculated using the scheme of Baker and Lawson
(2006) in order to take into account the shape of the ice particles. The effective radius15

(reff), as a measure for the cloud radiative properties, is defined here as the ratio of
the third to the second moment of a size distribution, in terms of spheres of equivalent
cross-section area (McFarquhar and Heymsfield, 1998).

3.1.1 Shattering of ice particles on the cloud particle probes

A widely discussed problem for in-situ ice particle measurements is the shattering of20

ice crystals on the probe’s arm tips and shrouds or inlets (e.g., Field et al., 2006;
Lawson et al., 2008; Jensen et al., 2009). Since clouds in MCS outflows are likely to
contain large particles and possibly high number concentrations artefacts introduced
by shattering have to be considered. In contrast, the subvisual tropopause cirrus do
not contain large particles (i.e. most particles are smaller than ≈100 µm) such that25

shattering can be considered to have only minor impact or even can be neglected
(Lawson et al., 2008; Jensen et al., 2009). Furthermore, these clouds only have low
number concentrations of particles. Also measurements in young contrails have been
found to not be affected by shattering (Voigt et al., 2010).
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For the cirrus clouds encountered by the M-55 “Geophysica” during the tropical cam-
paigns TROCCINOX (Brazil, 2005; Huntrieser et al., 2007), SCOUT-O3 (Australia,
2005; Brunner et al., 2009; Vaughan et al., 2008), and SCOUT-AMMA intercompar-
isons were performed between the directly measured volume backscatter ratio (from
the MAS instrument, see section below) and the corresponding values calculated from5

the FSSP-100 size distributions by Cairo et al. (2010a). According to their study the
fraction of the size distribution detected by the FSSP-100 (i.e., 2.7 µm to 31 µm) well re-
produces the cirrus optical properties in the visible part of the spectrum extending over
backscattering cross sections of five orders of magnitude. If the FSSP-100 measure-
ments had suffered from significant artificial enhancements by shattered ice particle10

fragments, the backscatter cross sections derived from FSSP-100 size distributions
would differ from the MAS results because in this size range the backscatter ratio sen-
sitively depends on the size distribution. For this reason we believe that shattering
does not play a major role under the circumstances encountered in the cirrus clouds
analysed by Cairo et al. (2010a).15

However, to further cope with shattering artefacts the interarrival time technique, as
proposed by Field et al. (2006), has been applied to the CIP data set. Therefore,
the interarrival time threshold, below which particles are rejected, has been chosen
individually for each flight according to the measurement characteristics and ranged
between 2.6×10−6 s and 5×10−6 s. Unfortunately, the interarrival time method is not20

applicable for FSSP-100 measurements. However, with this technique time periods
can be identified from the CIP data where measurements are affected by shattering.
In case that there is very little or no shattering obvious in the CIP data, shattering is
assumed to be within the instrument uncertainty for FSSP-100 data. In these cases
the size distributions of both instruments show a good agreement for the size range25

(25 µm to 31 µm) where both instruments overlap. When looking at the frequency of
occurrence of shattering, in 41% of the two second measurement time steps (i.e. data
points) where clouds occurred no shattering has been measured by the CIP. For 85%
of the data points with cloud occurrence the fraction of shattered particles is less than
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20%. This lies within the instrumental uncertainty of the CIP. It has to be noted that the
highest contribution to shattering was measured on the flight of 16 August 2006, where
only 8% of the cloud data were not affected by shattering. Data are eliminated from
further analyses in case that there is a high fraction of shattering in the CIP measure-
ments. Size distributions also are excluded from further analyses in cases where the5

CIP and FSSP-100 size distributions do not make up a good match in the overlapping
size range. This is so far the best possible approach until studies become available
which quantify the shattering of the FSSP-100 as function of cloud particle size and
number densities in cirrus clouds, as well as aircraft speed and ambient pressure. For
this reason the results from the FSSP-100 measurements presented here constitute10

an upper limit estimate on the size distributions while the CIP data are fully corrected
for shattering effects according to the current status of technology. De Reus et al.
(2009) compared IWCs derived from in-situ hygrometer (FISH and FLASH) and parti-
cle (CIP and FSSP-100) measurements obtained during SCOUT-O3. Within the (large)
measurement uncertainties the closure of these two very different measurement tech-15

niques was remarkable for the range of encountered IWCs between 10−5 g m−3 and
10−2 g m−3. If shattering had significantly altered the FSSP-100 results, discrepancies
between the IWCs derived from the hygrometer and the particle measurements could
have been expected for part of the covered IWC range. Since the IWCs encountered
during SCOUT-AMMA in West Africa were of the same magnitudes as in SCOUT-O3,20

we believe that shattering did not significantly alter IWCs and hope the same holds for
the FSSP-100 size distributions under these circumstances.

3.2 Submicron aerosol particle number densities, and optical properties

Ambient aerosol number concentrations were measured for particles with size diame-
ters between lower detection limits of 6 nm (N6), 10 nm (N10), 15 nm (N15) and roughly25

1 µm as upper limit by three channels of the COndensation PArticle counting System
(COPAS; Curtius et al., 2005; Weigel et al., 2009; Borrmann et al., 2010). In a fourth
channel the sampled aerosol was heated to 250 ◦C such that only particles containing
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non-volatile residues (with sizes above 10 nm) were detected and counted. The total
accuracy is ±10% and COPAS samples with a frequency of 1 Hz. New particle forma-
tion (NPF) or nucleation events were encountered during some of the flights. These
are associated with particle number densities N6 being much larger than N15 or N10 as
well (Weigel et al., 2011). Part of the M-55 “Geophysica” instrumentation was a Multi-5

wavelength Aerosol Scatterometer (MAS; for details see Cairo et al., 2004; Buontempo
et al., 2006; Cairo et al., 2010b), which is a backscatter sonde for in-situ measurements
of optical air, aerosol, and cloud parameters like volume backscatter ratio and depolar-
isation ratio (at 532 nm and 1064 nm). MAS samples with a time resolution of 5 s and
has a precision of 10%.10

3.3 Gas-phase species: NOy, NO, CO, CO2, O3, and H2O

Air originating from the cloud interior can be identified within MCS outflows by using
trace gas data of CO, CO2, NOy, and NO.

Nitrogen oxide, NO, and reactive nitrogen species, NOy were measured aboard
the M-55 “Geophysica” with the StratospherIc Observation Unit for nitrogen oXides15

(SIOUX) two channel NOy instrument (Voigt et al., 2005, 2007, 2008). During SCOUT-
AMMA on most flights NO and gas phase NOy were measured with two backward
facing inlets of the SIOUX instrument using the chemiluminescence technique. In the
NOy channel gas phase NOy is catalytically reduced to NO with CO in a gold converter
heated to 300 ◦C. Thereafter the chemiluminescence reaction of NO with O3 in the20

infrared is detected with two photomultipliers. The instrumental error is 10%, and the
detection limit for NO and NOy is better than 1 pmol/mol and 5 pmol/mol for a sampling
frequency of 1 Hz.

CO2 mixing ratios were measured in-situ on the M-55 “Geophysica” by a non-
dispersive infrared absorption sensor (LI-COR 6251) that is part of the High Altitude25

Gas Analyzer (HAGAR), which also comprises a 2-channel gas chromatograph (Volk
et al., 2000; Homan et al., 2010). For the CO2 measurements during SCOUT-AMMA
the time resolution was 5 s and the flight-to-flight precision about 0.3 µmol/mol.
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Mainly for the identification of biomass burning events in-situ carbon monoxide mea-
surements were performed by the Cryogenically Operated Laser Diode (COLD; Viciani
et al., 2008) instrument, which has at a lower detection limit of a few nmol/mol, an
accuracy of 6–9% and a precision of 1%.

Ozone mixing ratios were obtained at 1 Hz sampling rate from the Fast OZone ANa-5

lyzer (FOZAN; Yushkov et al., 1999; Ulanovsky et al., 2001) with an accuracy of 10%.
Total water was measured as sum of water condensed in ice particles and gas phase

water with a forward facing inlet by means of a Fast In-situ Stratospheric Hygrometer
(FISH). Its Lyman-α photofragment fluorescence technique is described in Zöger et al.
(1999). Due to the inlet geometry the ice particles are sampled with an enhancement,10

thus, the contribution of ice to the total water has to be corrected afterwards. The meth-
ods underlying the ice particle detection are described in Schiller et al. (2008). The
rearward/downward facing FLuorescent Airborne Stratospheric Hygrometer (FLASH)
(Khaykin et al., 2009; Sitnikov et al., 2007) was used to measure only the gas phase
water such that the ice water content could be determined in conjunction with the FISH15

total water. In combination with concurrent temperature measurements also the satura-
tion with respect to ice could be calculated. The uncertainties of the FISH data are 6%
or 0.2 µmol/mol and the corresponding values for FLASH are 8% and 0.3 µmol/mol
(Krämer et al., 2009).

The ambient temperature was measured using a Thermo Dynamic Complex (TDC)20

with an accuracy of 0.5 K (Shur et al., 2007), while other relevant parameters as posi-
tion and true air speed have been adopted from the aboard navigational system UCSE
(Unit for Connection with the Scientific Equipment; Sokolov and Lepuchov, 1998).

In West Africa the ambient and operational conditions on the ground and during the
flights were extremely challenging for all instruments. For this reason the measured25

parameters are not always available for each flight or the entire flight.
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4 Results and analyses

The data base from the SCOUT-AMMA campaign includes data of a total of nine flights.
The FSSP-100 and CIP were operated simultaneously during five flights: 7, 8, 11, 13,
and 16 August 2006 (transfer flight). During one flight (13 August 2006) only low level
clouds have been probed.5

4.1 Overview of the MCS anvil measurements

During the SCOUT-AMMA flights of the M-55 “Geophysica” anvils of MCS were pene-
trated at altitudes between 345 K and 365 K of potential temperature altitude. The ice
particle size distributions from these encounters are shown in Fig. 1 including some
distributions from SVC in the second and third panels. The measurements were per-10

formed with averaging times of 10–20 s resulting in good counting statistics for the
majority of the cases. In the other cases, as for example encounters of SVC (see
Sect. 4.5) with low number concentrations the averaging time needed to be individually
adapted and ranges up to 200 s. All size distributions are classified in 10–20 K bins of
potential temperature (Tpotential) and are normalised to a total dN/d logDp value of 1 (as15

in De Reus et al., 2009). The thin black lines represent the individual measurements
while the red lines denote the median size distribution of each potential temperature
bin. It can be seen that the maximum particle sizes are decreasing when ascending
into the tropopause region (365 K< Tpotential <385 K). This agrees with the measure-
ments obtained during the SCOUT-O3 campaign in Northern Australia (De Reus et al.,20

2009), of which the medians are shown in blue. In that study also stratospheric clouds,
originating from Cb overshoots, had been probed and are displayed here as thin blue
lines in the uppermost panel (Tpotential >385 K) for comparison. A parameterisation for
tropical cirrus had been derived from ice crystal size distribution measurements dur-
ing the Central Equatorial Pacific Experiment (CEPEX) by McFarquhar and Heymsfield25

(1997). Tropical anvil cirrus had been probed there with ice water contents ranging
from 10−4 to 1 g m−3 and at ambient temperatures between 253 K and 203 K. Adopting
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the CEPEX parameterisation, curves of the normalised particle size distributions were
calculated for the West African and Australian measurements. For this the average
IWCs and ambient temperatures as observed are taken as input for the calculations.
We have to note that the temperatures observed during the SCOUT-AMMA campaign
were lower (i.e., ranging between 195 K and 210 K) than during CEPEX. The results5

of the calculations are shown in the broad pale red lines for SCOUT-AMMA and in the
broad pale blue lines for SCOUT-O3. The size distributions resulting from the parame-
terisations have a similar decrease in maximum particle size with increasing potential
temperature in the troposphere. However, they show a more pronounced mode at di-
ameters of 100–200 µm, which is not present in our observations. Furthermore, the10

CEPEX parameterisation clearly underestimates the concentrations for large particle
sizes in the lowest potential temperature bin. In the 355–365 K bin measurements are
fewer but still particle sizes are larger than those calculated from the parameterisation.
Particularly in the CIP size range, the shape of the size distributions indicates a higher
fraction of large particles than deduced by the CEPEX parameterisation. Since the15

CEPEX parameterisation is a result of measurements from the Maritime Continent
while SCOUT-AMMA took place over West Africa, the discrepancy possibly confirms
the observation by Cetrone and Houze (2009) according to which the continental MCS
tend to produce larger hydrometeors. Why the CEPEX parameterisation fails to repro-
duce the (maritime) measurements of SCOUT-O3 over the Tiwi-Islands near Darwin20

(Australia) remains unanswered, though.
In order to describe the ice particle size distributions from SCOUT-AMMA for each

potential temperature bin (as in Fig. 1) two or three modal lognormal distributions are
fitted to the now not normalised median size distribution n∗(Dp), following

n∗(Dp)=
dN

d logDp
=
∑
i

 Ni√
2π logσi

exp

− (logDp− logDpi )
2

2(logσi )2

. (1)25

Here, Dp is the particle diameter in µm, i the number of modes (two or three), N the
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number concentration (cm−3), Dp the mean modal diameter (µm), and σ the standard

deviation. The n∗(Dp)=dN/d logDp values result in cm−3. The parameters of the fitted
functions are comprehended in Table 2, similar to Table 1 in De Reus et al. (2009) for
the SCOUT-O3 measurements in Northern Australia.

4.2 Case study 1: young MCS outflow in the West African upper troposphere5

4.2.1 Atmospheric context and gas phase species

During the descent of the flight on 7 August 2006 the M-55 “Geophysica” crossed
a layer of air which can be characterised as young or recent outflow from an MCS.
Trajectory analysis (Fierli et al., 2010) indicate an age of less than three hours. The
EUMETSAT/ESA Meteosat Second Generation satellite image of the MCS constella-10

tion at the time of the measurements is shown in Fig. 2 together with the M-55 “Geo-
physica” flight track, in blue for the concurrent part of the satellite image, in red for the
whole flight. In Fig. 3 the vertical profile measurements are displayed for: temperature
(T ), relative humidity with respect to ice (RHi), O3, NO, NOy, cloud particle concen-
trations (Ncloud), and ice water content (IWC), as well as the N15 and ultrafine particle15

concentrations (denoted as N6–15=N6–N15 in the figures). The thermal tropopause
was located at 370 K and well defined. The presence of slightly elevated cloud particle
number densities and IWC in the fourth panel of Fig. 3 between 365 K and 370 K show
an SVC which was located directly beneath the tropopause. This cirrus Case SVC2 is
further discussed in Sect. 4.5. Below 355 K a layer of air was located which had rela-20

tive humidities between 60% and 140%, and contained an ice cloud with IWCs around
5×10−3 g m−3 and with ice particle number densities of roughly 5 cm−3. Slightly en-
hanced CO mixing ratios have been observed in this cloud band. In the lower part of
the cloud (below 350 K) elevated NO and NOy mixing ratios were detected, even reach-
ing values above 10 nmol/mol. These constitute very high values, indicating that the25

cloud layer is a young outflow from the small (≈60 km in diameter) MCS at the Eastern

762

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

part of the blue flight track line in Fig. 2, which is just developing. (Note: The general
flow direction as seen from subsequent satellite images and trajectory analyses is from
East to West in this location and altitude band.)

4.2.2 Aerosol and cloud measurements

A zoom-in on the flight data time series during the cloud layer crossing is shown in5

Fig. 4 and selected cloud particle size distributions of the time periods which are
shaded in blue are compiled in Fig. 5. These are labelled as above-outflow Cases
“AOF1” and “AOF2”, and outflow Cases “OF1” and “OF2”. Apparently, the cloud layer
vertically extended from 13.2 km to 11.0 km altitude and within this cloud band three
sub-layers can be discerned. The uppermost sub-layer (denoted as “Sub-layer 1” in10

Fig. 4) contained lower cloud particle concentrations in coincidence with a strong in-
cloud New Particle Formation event (NPF). The details of this NPF are analysed in
Weigel et al. (2011) and juxtaposed with other NPFs in the tropical UT/LS from differ-
ent locations. Based on the ice particle data this cloud segment can be considered
as MCS anvil part but the low values for NO and NOy indicate that this is not an15

outflow from the MCS. The second cloud sub-layer (denoted as “Sub-layer 2”) also
was a part of the MCS anvil where the cloud particle number density increased by
almost a factor of 10 and where the nucleation event was “quenched”. Below, from
56 385–56 557 s UTC, the third cloud sub-layer (“Sub-layer 3” in Fig. 4) extended be-
tween 11.9 km and 11.0 km involving high particle number concentrations and very20

high values for NO and NOy. This is the MCS outflow where the detrainment must
have occurred very recently, since the elevated NO and NOy had not been diluted
yet. Also very little of the NO had been oxidised to NOy by the time of the measure-
ment. From the enlarged satellite image and the flight track of the aircraft one can
estimate that the sampling occurred at a maximum distance of roughly 30 km from the25

source region of the NOx. The cloud particle size distributions show that the clouds at
the highest cloud level in “Sub-layer 1” contained no particles larger than 400 µm. As
the aircraft descended, the concentrations and particle sizes increased to 8 cm−3 and
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1.6 mm, respectively. During “AOF2” and in particular during “OF1” it can be assumed
that there also were particles with sizes much above the CIP detection limit. Examples
of some individual cloud particle shadow cast images obtained from the CIP are shown
in Fig. 6. As far as one can tell from visual inspection these mostly seem to be heavily
rimed ice particles or rimed aggregates.5

4.3 Case study 2: aged MCS outflow at 14 km altitude

4.3.1 Atmospheric context

During the flight of 11 August 2006 the M-55 “Geophysica” flew through a region behind
a squall line with horizontal extension of approximately 1000 km (see the cloud band
roughly aligned with the −3◦ W meridian in the satellite image of Fig. 7). The structure10

of this particular MCS is described in Chong (2010) using data by the MIT Doppler
radar. The aircraft crossed the outflow region between 300 km and 400 km behind the
squall line, which is much further away from the MCS core region than in Case study
1. Although NO and NOy measurements are not available from this flight, it can be
assumed that a more aged MCS outflow air mass was probed than on 7 August 2006.15

Trajectory analysis indicate an age of these outflow clouds of about 10 h. Here, we use
CO2 data to identify outflow regions.

4.3.2 Overview of vertical profiles

The vertical profiles of the measured variables are presented in Fig. 8. They include
measurements from ascent, descent, and one dive. Thus, spreads in the single param-20

eters might result from the profiling at different locations. The thermal tropopause was
located near 16.5 km (i.e., 375 K). The relative humidity is presented as ten second run-
ning average since the FLASH measurements were noisy during this flight. Therefore,
the relative humidity as calculated from the FISH total water content (RHienhanced, not
corrected for enhanced ice particle sampling, see Sect. 3.3) is displayed additionally.25
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Cloudy parts show thus a clear enhancement from the gas phase baseline in the rel-
ative humidity. The relative humidities from the FLASH and the FISH baselines show
good agreement. In the second panel the vertical profile of CO2 exhibits a distinctive
minimum between 353 K and 360 K, which indicates the presence of air from lower
altitudes. Most likely this air mass was convectively uplifted from the boundary layer,5

where the vegetation metabolises CO2. The third panel in Fig. 8 shows that patchy
clouds existed at all altitudes above 351 K up to the tropopause with low ice particle
number concentrations (≈10−2 cm−3). In particular, tenuous clouds were present in the
altitude band with the low CO2 mixing ratios. At the same time the remnants of an NPF
event are discernible in the fourth panel which partly occurred inside the outflow cloud10

and partly outside the cloud but still within the outflow. The ultrafine particle concen-
trations (N6–15) attained values as high as 1000 cm−3. Interestingly, the non volatile
fraction (see panel 5) of these newly formed aerosol particles is very low (5%) inside
the outflow while it is much higher (50%–60%) above. This indicates that the newly
formed particles consist mostly of sulfuric acid and water as shown by Weigel et al.15

(2009) and Curtius et al. (2005).

4.3.3 New particle formation event

A closer look on a flight segment from 58 200 s UTC to 58 400 s UTC is presented in
Fig. 9. The blue shaded area designates the crossing of a cloud patch as indicated
by the cloud particle number densities (in brown). The occurrence of an NPF between20

58 200 s UTC and 58 350 s UTC can be inferred from the four coloured, dotted lines
of COPAS data for Naerosol. (1.) The absolute number of particles with sizes above
6 nm (as depicted with the grey dotted line) is unusually high. (2.) The number density
difference N6–15 (yellow dotted line) exceeds 900 particles per cm3 during this flight
segment. This is the case inside the cloud patch but also, and more pronounced, in25

the peak outside of the cloud around 58 325 s UTC. (3.) The other coloured dotted lines
of additional COPAS data show mostly non-zero differences also for N6–10 and N10–15
(green and red dotted lines). The low mixing ratios concurrently measured for CO2
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indicate that both, NPF and cloud event occurred inside an MCS outflow. If the values
for N10–15 are small, only few newly formed 6 nm particles have grown by condensa-
tion or coagulation to sizes above 10 nm and still below 15 nm. Or some of the newly
formed 6 nm particles have already been lost to the surfaces of the preexisting back-
ground particles. This seems not to be the case during the cloud crossing because N65

as well as N10–15 remain constant at ≈1000 cm−3 and ≈400 cm−3, respectively. Be-
fore the cloud encounter and especially at the strong peak after (around 58 325 s UTC)
N10–15 is larger, which indicates that a higher fraction of the freshly nucleated parti-
cles has grown in size beyond 10 nm. For the whole flight segment shown in Fig. 9
we inspected the COPAS internal housekeeping data (e.g., flow rates, stability of tem-10

perature settings etc.) with particular care in order to identify possible instrumental
artefacts. However, COPAS operated well during this flight segment and we conclude
that the M-55 “Geophysica” had indeed encountered an NPF event.

4.3.4 Entrainment and isobaric mixing as possible mechanism for the NPF peak

From the abscissa for the covered flight distance in Fig. 9 it can be seen that the15

horizontal scale of the NPF peak between 58 310 s UTC and 58 350 s UTC was quite
small (roughly 6 km). Also its vertical extent is only 300 m. During these forty seconds
flight time the CO2 had increased towards the typical UT/LS background levels. The
data summarised in Table 3 provide evidence that two adjacent layers of very different
properties were stacked upon each other here. The times of the begin and end of the20

NPF peak were chosen for comparison of the different parameters. The upper layer
was dry (with RHi<38%) and accomodated a non-volatile fine particle fraction of 50%,
while the lower layer contained more water vapour (RHi of 80%) and only 6% (or less) of
the fine aerosol particles were non-volatile. Since the lower layer constituted the aged
MCS outflow air the values listed in the table indicate that entrainment and mixing might25

have been proceeding concurrently creating a supersaturated environment for binary
sulphuric acid-water solution droplets and initiating the peak in the NPF. The possibility
of such processes was pointed out by Khosrawi and Konopka (2003).

766

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.3.5 Cloud particle observations within the aged MCS outflow

The particle size distribution of the cloud crossing is shown in Fig. 10 in the lower left
panel. Obviously, the cloud particles were much smaller and fewer than those in the
young outflow of Case Study 1 (see Fig. 5). As the relative humidities during this event
were below 100% the cloud patch of this outflow was dissipating. The other cloud5

particle size distributions given in Fig. 10 in the upper panels are from similar cloud
crossings of the same MCS in different outflow locations which were somewhat closer
to the squall line. In addition the lower right panel displays further measurements of
size distributions (blue lines) from above and below the outflow. Again, in general only
small ice particles were detected in very low number concentrations. However, the10

cloud particles outside of the outflow zones were somewhat larger than inside.

4.4 Case study 3: cross section through MCS anvil of 7 km thickness

On the ascent on 16 August 2006 the anvil of an MCS of roughly 400 km in diameter
has been probed (see Fig. 11). The clouds have been observed up to an altitude of
15.1 km which corresponds to 363 K potential temperature. The distance to the core15

region of the MCS was estimated from the satellite image to about 300 km. No tracer
measurements are available for the lowest 7.8 km of the cloud. However, the level of
main MCS outflow is expected at higher altitudes. Here, measurements of of CO2, NO,
and NOy are available and are presented in the vertical profiles of Fig. 12. Based on the
temperature and ozone measurements the cold point tropopause was found at 15.4 km20

altitude and 366 K potential temperature. Since FLASH data were not available for this
flight, the FISH total water content was used to calculate RHienhanced, as for the flight on
11 August. Cloudy parts show thus a clear enhancement from the gas phase baseline
in the relative humidity. In the altitude band between 348 K and 362 K NO and NOy
mixing ratios are elevated as well as CO2 mixing ratios are reduced which provides25

evidence for having encountered a convective outflow region. This is supported by tra-
jectories which indicate an outflow age of around five hours. Remarkably, the O3 shows
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a small maximum in the altitude band between 342 K and 348 K. Since no correlation to
NO or NOy can be found here, these enhanced ozone mixing ratios did not result from
the recent outflow event and concurrent photochemical production but could be due to
downwind production of O3 from lightning NOx emissions produced by an MCS upwind
or due to uplift of soil NOx emissions which are more elevated over the Northern Sahel5

region (Barret et al., 2010). A closer look on the cloud crossing in the time series of
the ascent in Fig. 13 reveals that the cloud can be divided into three parts. The first
part reaches from the ground to 4.8 km altitude. Here, only particles smaller than 20 µm
were observed by the FSSP-100 while the CIP showed no counts (see the size distribu-
tion in the upper left in Fig. 14). These could be remnants of evaporating precipitation,10

haze droplets or large aerosol particles. The latter could either be resuspended from
the ground by the gust fronts or grown to size by water uptake. Also the Colour Index
(CI), defined from the MAS backscattering measurements at 1064 nm and 532 nm (as
in Liu and Mishchenko, 2001), gives high values in this layer, indicating scattering pre-
dominantly from larger aerosol particles. The second cloud layer extended from 5.7 km15

to 10.6 km (between the two local minima of the cloud particle number concentration
in Fig. 13). The abrupt change in CI indicates the presence of a different type of cloud
particles which are much larger as indicated by the low CI values. At the lower part of
this layer the CIP imaged very large ice cloud particles as snow flakes and aggregates.
A few examples are shown in Fig. 15. Tracer measurements are not available during20

the first part of the layer crossing. Towards the end of the encounter CO2 mixing ratios
were rather high and NO mixing ratios low which implies that there was no outflow. The
third cloud layer between 10.6 km to 15.1 km altitude contained outflow signatures in
the tracer data. As evident from the size distribution in the lower left of Fig. 14 again
only small particles were detected by the FSSP-100 at the end of this layer. Further25

size distributions of selected time periods, as shaded in blue in Fig. 13, are displayed
in Fig. 14. Two of the size distributions were measured below the outflow in the second
cloud part (“BOF1” and “BOF2”) and three inside the outflow (“OF3” to “OF5”) region.
In general, the outflow size distributions show similar values for the number densities,
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only the maximum particle sizes decrease slightly with altitude. In comparison to the
young outflow event on 7 August the size distributions from 16 August show similar but
somewhat lower concentrations and sizes. However, a clear difference to the aged out-
flow events of 11 August is obvious. Considering the satellite picture and the distance
to the MCS core region, the event of 16 August was a recent outflow. The difference5

between the NO and NOy mixing ratios is larger than for the young outflow of 7 August
which indicates that parts of the NO had already been oxidised. A conclusion could be
that the outflow air of 16 August had undergone longer chemical processing than on 7
August.

4.5 In-situ measurements of subvisual cirrus over West Africa10

Only few in-situ measurements of cloud particle size distributions inside subvisual cir-
rus (SVC) are reported in the literature. Those measurements originate from the tropi-
cal West Pacific in 1973 (Heymsfield, 1986; McFarquhar et al., 2000); the Indian Ocean
during APE-THESEO in 1999 (Luo et al., 2003a,b; Peter et al., 2003; Thomas et al.,
2002); the Meso American Pacific during CRAVE, 2006, (Lawson et al., 2008); and15

from the equatorial Eastern Pacific during TC4 in 2007 (Davis et al., 2010). The mea-
surements presented here are the first data obtained over West Africa. These extend
the known data set of tropical SVC and also contribute continental measurements
while the other observations were from maritime regions. During the research flights of
SCOUT-AMMA four subvisual cirrus clouds were encountered close to the tropopause20

and within the TTL over West Africa. The detailed size distributions compiled from
these events (denoted as SVC1 to SVC4) are displayed in Fig. 16 with the measured
microphysical parameters summarised in Table 4. None of the observed ice particles
is larger than 130 µm in diameter and during none of these events the CIP detected
any shattering. Therefore, it is unlikely that the FSSP-100 measurements inside these25

SVC are noticeable affected by shattering. The CIP measurements can not distinguish
particle shapes because too few pixels are shaded in the 25 µm-resolution. However,
Lawson et al. (2008) analysed the shapes of the tropical SVC particles and found that
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they are quasi-spherical and hexagonal. Under these circumstances (i.e., the absence
of highly aspherical small ice crystals) particles smaller than roughly 16 µm can be re-
liably sized by the FSSP-100 (Borrmann et al., 2000). For the particles above 25 µm
the CIP image analyses were applied as described above. Thus, between 16 µm and
25 µm some uncertainty remains with respect to the sizing of the potentially aspherical5

particles by scattered light measurements of the FSSP-100. This may be the reason
for the “spike” occasionally found in the fourth size bin in Fig. 16.

The duration of the cloud encounters (i.e. averaging time for the size distributions)
ranged between 52 s and 143 s, the clouds were observed in altitudes between 15 km
and 16.4 km, and at potential temperatures between 363 K and 373 K. The local cold10

point tropopause on these days was located at about 16.3 km altitude on 7 August
2006 and at about 16.5 km altitude on 8 and 11 August 2006. Thus, three of the
subvisual clouds were observed a few hundred meters below the tropopause while
one case (SVC2 on 7 August 2006) was encountered directly at tropopause altitude.
The lowest temperature inside the SVCs was observed during the encounter of SVC115

(192 K) which also had the lowest number concentration and IWC. The warmest cloud
was SVC3 with temperatures of 198 K and here, the highest number concentrations
and largest IWC were detected. Although the difference between these temperatures
is not large, the corresponding saturation vapour pressures with respect to ice differ
by a factor of 2.7 which influences the capability of the clouds for freeze-drying the air20

ascending through them. (For comparison, the temperatures observed for the SVC by
Lawson et al. (2008) were between 183 K and 198 K, by Davis et al. (2010) between
193 K and 198 K, and by Thomas et al. (2002) between 192 K and 197 K.)

In order to relate the West African measurements to the overall picture of available
SVC size distribution data, a summarising graph is presented here in the left panel25

of Fig. 17 which extends the original figure shown in Davis et al. (2010). The events
observed during SCOUT-AMMA, represented by the thin coloured lines, generally fit
well into the previous data from other regions (thick grey lines) and all size distributions
show that there are no particles larger than 200 µm inside SVCs.

770

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In the West African SVCs the measured ice crystal number concentrations range
between 2×10−3 cm−3 and 2.4×10−2 cm−3, the IWCs range from 3×10−6 g m−3 to
3.8×10−4 g m−3, and the effective radii from 2.3 µm to 20.9 µm. These values are com-
parable to those obtained from the measurements in the maritime area of Costa Rica
during the CRAVE campaign. For example the effective radii reported there lie between5

2.44 µm and 16.7 µm and the IWCs vary from 1.2×10−5 g m−3 to 50×10−5 g m−3. The
largest sizes found over maritime Middle America were 165 µm. However, in compari-
son to the measurements obtained over the West Pacific and during CRAVE the West
African observations exhibit concentrations which are more than an order of magnitude
lower for particles below 10 µm. At the same time, the events SVC2 and SVC3 show10

higher concentrations for particles with sizes larger than 50 µm with respect to CRAVE
and TC4. Possibly due to the contribution of these large particles the two West African
events at the same time have higher IWCs (i.e., of 1.5×10−4 g m−3 to 3.8×10−4 g m−3

compared to 5.5×10−5 g m−3 in CRAVE and 5.6×10−6 g m−3 in TC4).
Despite such differences in details the size distributions n∗(Dp) for tropical SVC from15

the literature are similar enough to calculate a parameterisation. The result of an ex-
ponential least squares fit according to

n∗(Dp)=
dN

d logDp
=A ·exp

(
−

Dp

κ ·Dp0

)
(2)

is shown in the right panel of Fig. 17. The dN/d logDp values result in cm−3, if Dp

is supplied in µm. The coefficient A is 0.044422±0.0123 cm−3, κ=13.98±6.08, and20

Dp0
=1 µm is used to eliminate the unit. As the one-sigma deviation lines in Fig. 17

demonstrate, this simple parameterisation seems to represent the tropical subvisual
cirrus cloud size distributions quite well. Also the chi-square is calculated and results in
χ2 =0.0367. Thus, the fit might be useful for large and mesoscale modelling purposes,
where the microphysical processes are not resolved and as long as not more data are25

available in order to formulate a parameterisation in terms of microphysical properties
or processes.
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The size distributions from Fig. 16 exhibit a significant fraction of larger particles with
sizes above 50 µm. This is of significance in the context of the stabilisation mecha-
nism suggested by Luo et al. (2003b), who assumed smaller sized particles. Under the
given thermodynamic conditions such large particles (50–200 µm) have terminal set-
tling velocities ranging between roughly 10 mm s−1 and 1000 mm s−1. Thus, as noted5

by Lawson et al. (2008), the prevailing vertical wind speeds are by far too small to lift
these particles and therefore, extended SVCs containing such large particles can not
be maintained by this mechanism.

Due to the lack of concurrent LIDAR observations for the measurements in West-
Africa the horizontal extent of these SVCs is not known (unlike e.g. for the APE-10

THESEO case where the cloud sheet covered roughly 250 km). This implies that
either the clouds were more localised with transient atmospheric conditions allowing
for their existence, or the vertical wind velocities in the field of the propagating MCS
were locally high enough to support larger ice particles. The subvisual clouds during
SCOUT-AMMA were observed in a region influenced by strong convection and thus,15

might have formed as remnants of convective anvils. However, the tracer measure-
ments obtained at the same time did not show any convective signatures. Either the
time past the convection was long enough such that the air had mixed with surrounding
air diminishing the convective signature, or the SVC had formed in-situ. Both mech-
anisms are recognised in the literature (e.g., McFarquhar et al., 2000; Pfister et al.,20

2001; Massie et al., 2002).

4.6 Interstitial aerosol number densities in SVC and MCS

In order to obtain an estimate of how many cloud particles result from activation of the
present aerosol, it is instructive to plot the COPAS measurements as proxy for the avail-
able aerosol particle number densities versus the concurrently measured cloud particle25

number concentration. Since the number of cloud particles (partly also detected by CO-
PAS) is much smaller than the submicron aerosol number densities, the contribution
of the cloud particles to N6, N10, N15 can be considered as small or negligible. This

772

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

especially holds for the encountered upper tropospheric clouds because the ice parti-
cles are for the most part much larger than 1 µm which roughly is the upper particle size
which the COPAS inlet is able to aspirate with proper efficiency. In Fig. 18 the results
from the SVCs and the MCS outflows from West Africa (SCOUT-AMMA) are juxtaposed
with data from the Hector MCS in Northern Australia (SCOUT-O3; see De Reus et al.,5

2009). Although the data base is small, the three different cloud environments can be
clearly discerned. For the SVCs (which are described in Sect. 4.5) we found roughly
one cloud ice particle per 30 000 detected aerosol particles. This is in agreement with
the results from Jensen et al. (2010) who derived from model calculations that only
very few aerosol particles can serve as ice nuclei for the activation of cloud particles10

in SVC. For the MCS outflow cases one cloud particle occurs per ≈1000 aerosol par-
ticles with some observations as high as one of 300. This difference between these
numbers of the two cloud types may be indicative of the respective roles which de-
position freezing and homogeneous freezing play for cloud formation. It also can be
assumed that in the outflow cases all the mechanisms of ice multiplication (collisional15

multiplication, Hallet Mossop mechanism, splintering, and riming) play a major role.
These are absent in SVC which formed ice particles (not larger than 200 µm) mostly
by deposition nucleation. The values for the single MCS cluster Hector span the range
between one over 30 000 and one over 300 with a clustering of points near the 1/3000
ratio line. As the light blue symbols indicate, NPF events could be identified for a few20

cases of the Hector MCS and also during SCOUT-AMMA. Since the figure only shows
the concentration N15 the absolute numbers are relatively small. The values for N6 as
concurrently measured by COPAS were between 2000 and 3000 cm−3. Here the differ-
ence between N6 and N15 is large enough for identification as an NPF event. (For the
two green squares and the four dark blue triangles with number densities N15 above25

1000 cm−3 in Fig. 18 no N6 data are available or the N6–N15 difference was too small
for an NPF event.) Based on the few measured points one could speculate that NPF
events preferably occur under circumstances where only a few cloud ice particles are
present.
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These data are only an indirect estimate of the degree of cloud activation for these
clouds. As pointed out by De Reus et al. (2009) the original activation ratio may differ
from these measurements because there are sinks for particles such as scavenging
by deposition on ice particles, washout by supercooled droplets, mixing with the local
ambient air, and entrainment of cloud free air. As shown in Sect. 4.1 in-cloud NPF may5

be a source for ultrafine aerosol (Weigel et al., 2011). Although the very low ratios for
the SVC cases indicate that deposition freezing might have formed these, a variety of
processes which are not directly related to heterogeneous aerosol ice activation (e.g.,
homogeneous droplet freezing) may have been involved at varying intensities during
the cloud lifetime in particular for the MCS outflows and Hector. For mid-latitude cirrus10

Seifert et al. (2004) found a positive correlation between the number concentrations of
interstitial aerosols and ice crystals as long as the interstitial particle number densities
were below 100 cm−3 and at higher aerosol concentrations a negative correlation was
measured.

Despite such considerations the measurements in Fig. 18 provide data as bound-15

aries for modelling purposes which may help to estimate the contributions of the differ-
ent microphysical processes.

5 Summary and conclusions

In-situ observations of cloud ice particle properties have been obtained in the vicinity of
MCS and within the tropical UT/LS at the time of the West African Monsoon during the20

SCOUT-AMMA campaign in Ouagadougou, Burkina Faso, in 2006. These data provide
a contribution to the very sparse data set of in-situ measurements of MCS outflows and
tropical SVC above an important continental area.

The observed ice crystal size distributions, were classified by means of poten-
tial temperature into altitude bins and compared to former measurements from the25

SCOUT-O3 campaign and the CEPEX parameterisation calculated for the SCOUT-
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AMMA measurements. All show a decrease in maximum particle size when ascend-
ing to the tropopause region. However, the SCOUT-AMMA observations show clearly
larger particles than observed during SCOUT-O3 and derived from CEPEX parame-
terisation as well as a higher fraction of large particles. Possibly this is due to the fact
that these size distributions were obtained above a continental area in contrast to the5

former measurements above maritime regions. This would agree with the suggestion
by Cetrone and Houze (2009) who deduce that due to the dry adiabatic temperature
profiles above West Africa the convection there might be deeper and produces stronger
precipitation with larger hydrometeors than compared to the Maritime Continent. Also
Hall and Peyrille (2006) point out that due to the capping Saharan Air Layer (SAL) it10

is more usual that deep convection occurs in large scale energetic systems in West
Africa. Two or three modal lognormal size distributions have been fitted to the West
African measurements for each potential temperature bin in oder to provide a mathe-
matical description of the continental MCS size distributions.

Trace gas observations and satellite images were used to identify MCS outflow15

events and to estimate the age of those events. For the latter, also trajectory anal-
ysis have been performed. Clouds within young outflow events were sampled on the
flights of 7 and 16 August 2006, the former resulting from a newly developing sys-
tem and the latter from a mature system. The particle images show heavily rimed
ice particles or rimed aggregates with sizes even extending beyond 1.6 mm (i.e. the20

upper detection limit of the CIP). Ice crystal number concentrations of up to 8.3 cm−3

and IWCs of up to 0.05 g m−3 were observed, the effective radius was about 90 µm.
In contrast to this, clouds within the aged outflow events of the 11 August 2006 re-
veal much smaller values. Here, maximum concentrations of 0.03 cm−3, IWCs of up to
2.3×10−4 g m−3, and an effective radius of about 18 µm have been found with particles25

reaching a maximum dimension of 61 µm. The size distributions of all outflow events
show a change with age which is displayed in Fig. 19. It can clearly be seen that the
ice particles become smaller and fewer with increasing age. The snap-shots of con-
secutive CIP particle images, as shown on top of the figure, underpin the change in
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size with age. Furthermore, the outflow altitude increases with age. This is supported
by Houze (1989) who describes the upward transport of older convective cells within
an MCS. These are advected rearward over a layer of dense, subsiding inflow.

Besides the measurements connected to MCS outflows four encounters of subvisual
tropopause cirrus have occurred at altitudes between 15–16.4 km, which corresponds5

to a distance to the tropopause of 0–600 m. These observations extend the existing
data set of tropical SVC and constitute the first continental SVC measurements. The
largest particles had sizes of up to 130 µm, while the number concentrations ranged
from 2×10−3 cm−3 to 24×10−3 cm−3, IWCs from 0.3×10−5 g m−3 to 38×10−5 g m−3,
and the effective radii varied between 2.3 µm and 20.9 µm. The size distributions of the10

SVC events are compared to all so far known SVC size distributions and an exponential
fit on all of these is calculated. We provide this parameterisation of SVC for modelling
studies which is important since they play an important role in the Earth’s radiation
budget.

Differences in the aerosol depolarisation ratio and Colour Index observed by MAS15

between the measurements inside the MCS outflow clouds and the SVC were found:
The aerosol depolarisation ratio showed medium to high values (40–100%) in the out-
flow events, and medium values (40–70%) in the SVC encounters. Similarly, the Color
Index was small within the outflow, and slightly increased with altitude and in the SVCs.
These observations suggest large depolarising particles in the MCS outflows. By con-20

trast, the SVC seems to have more of smaller particles that possibly have a different
morphology than those inside the outflows. The CIP shadow images obtained within
the outflows show irregularly shaped ice crystals like aggregates, while for the SVC
measurements the images were too small to distinguish a particular shape. However,
shapes of SVC ice particles have been reported by Lawson et al. (2008) and Davis et al.25

(2010), both using a Cloud Particle Imager (CPI), who found primarily quasi-spherical
particles and some plate-like hexagonal particels (Lawson et al., 2008). Columnar and
trigonal particle shapes have been observed with a replicator (McFarquhar et al., 2000;
Heymsfield, 1986). Thus, the outflow particles observed during SCOUT-AMMA show
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more complex shapes than the former SVC particle observations, which is in good
qualitative agreement with the MAS observations.

Two cases of New Particle Formation events were encountered on 7 and 11 August
inside of ice clouds close to or in an MCS outflow. While during the event of 11 August
the ice particle number concentrations were low, the case of 7 August showed that the5

NPF event is quenched when ice particle numbers increase. This agrees with obser-
vations by Weigel et al. (2011). The NPF event on 11 August showed an interesting
feature when approaching the air mass boundary between outflow air and upper tropo-
spheric background air. Here, the NPF peaks with a very high amount of newly formed
particles, possibly due to entrainment and isobaric mixing of those two air masses.10

By comparing total aerosol number concentrations to ice particle concentrations es-
timations of the interstitial aerosol and the activation ratio is given. The separation of
deep convective events, SVC events, and NPF events yields a significant difference in
the activation ratios. While for the deep convective cases (MCS outflow and convective
overshooting as observed during the SCOUT-O3 campaign, see De Reus et al., 2009)15

one cloud particle occurs roughly per 1000 aerosol particles, in some cases even per
300 aerosol particles, the SVC show just one or even less cloud particles per 30 000
aerosol particles. This is in agreement to Jensen et al. (2010) who state that only few
aerosol particles will act as very efficient ice nuclei in the formation of SVC. NPF events
seem to prefer circumstances where only few cloud particles are present.20

We would like to emphasise that high quality in-situ measurements in the tropical
UT/LS are difficult to obtain since specialised high altitude research aircraft and instru-
mentation are required in this challenging environment. Thus, also the data set of such
observations is small and to provide useful parameterisations of either MCS outflow
clouds or SVC including microphysical parameters more measurements are needed.25
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Krüger, K., Tegtmeier, S., and Rex, M.: Variability of residence time in the Tropical
Tropopause Layer during Northern Hemisphere winter, Atmos. Chem. Phys., 9, 6717–6725,5

doi:10.5194/acp-9-6717-2009, 2009. 750
Kulkarni, G. and Dobbie, S.: Ice nucleation properties of mineral dust particles: determination

of onset RHi , IN active fraction, nucleation time-lag, and the effect of active sites on contact
angles, Atmos. Chem. Phys., 10, 95–105, doi:10.5194/acp-10-95-2010, 2010. 751

Laing, A. G. and Fritsch, J. M.: The global population of mesoscale convective complexes, Q. J.10

Roy. Meteor. Soc., 123, 389–405, 1997. 748
Law, K. S., Fierli, F., Cairo, F., Schlager, H., Borrmann, S., Streibel, M., Real, E., Kunkel,

D., Schiller, C., Ravegnani, F., Ulanovsky, A., D’Amato, F., Viciani, S., and Volk, C. M.: Air
mass origins influencing TTL chemical composition over West Africa during 2006 summer
monsoon, Atmos. Chem. Phys., 10, 10753–10770, doi:10.5194/acp-10-10753-2010, 2010.15

749, 750, 754
Lawson, R. P., Pilson, B., Baker, B., Mo, Q., Jensen, E., Pfister, L., and Bui, P.: Aircraft mea-

surements of microphysical properties of subvisible cirrus in the tropical tropopause layer,
Atmos. Chem. Phys., 8, 1609–1620, doi:10.5194/acp-8-1609-2008, 2008. 750, 752, 755,
769, 770, 772, 77620

Lee, S. H., Wilson, J. C., Baumgardner, D., Herman, R. L., Weinstock, E. M., LaFleur, B. G.,
Kok, G., Anderson, B., Lawson, P., Baker, B., Strawa, A., Pittman, J. V., Reeves, J. M.,
and Bui, T. P.: New particle formation observed in the tropical/subtropical cirrus clouds, J.
Geophys. Res.-Atmos., 109, D20209, doi:10.1029/2004JD005033, 2004. 750

Liu, L. and Mishchenko, M. I.: Constraints on PSC particle microphysics derived from lidar25

observations, J. Quant. Spectrosc. Ra., 70, 817–831, 2001. 768
Luo, B. P., Peter, T., Fueglistaler, S., Wernli, H., Wirth, M., Kiemle, C., Flentje, H., Yushkov, V. A.,

Khattatov, V., Rudakov, V., Thomas, A., Borrmann, S., Toci, G., Mazzinghi, P., Beuermann, J.,
Schiller, C., Cairo, F., Di Donfrancesco, G., Adriani, A., Volk, C. M., Strom, J., Noone, K.,
Mitev, V., MacKenzie, R. A., Carslaw, K. S., Trautmann, T., Santacesaria, V., and Ste-30

fanutti, L.: Dehydration potential of ultrathin clouds at the tropical tropopause, Geophys.
Res. Lett., 30, 1557, 2003a. 751, 769

Luo, B. P., Peter, Th., Wernli, H., Fueglistaler, S., Wirth, M., Kiemle, C., Flentje, H., Yushkov,

784

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

V. A., Khattatov, V., Rudakov, V., Thomas, A., Borrmann, S., Toci, G., Mazzinghi, P., Beuer-
mann, J., Schiller, C., Cairo, F., Di Don-Francesco, G., Adriani, A., Volk, C. M., Strom, J.,
Noone, K., Mitev, V., MacKenzie, R. A., Carslaw, K. S., Trautmann, T., Santacesaria, V., and
Stefanutti, L.: Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms,
Atmos. Chem. Phys., 3, 1093–1100, doi:10.5194/acp-3-1093-2003, 2003. 752, 769, 7725

Massie, S., Gettelman, A., Randel, W., and Baumgardner, D.: Distribution of tropical cirrus
in relation to convection, J. Geophys. Res.-Atmos., 107, 4591, doi:10.1029/2001JD001293,
2002. 772

McFarquhar, G. M. and Heymsfield, A. J.: Parameterization of tropical cirrus ice crystal size
distributions and implications for radiative transfer: results from CEPEX, J. Atmos. Sci., 54,10

2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2, 1997. 760, 794
McFarquhar, G. M. and Heymsfield, A. J.: The definition and significance of an effective radius

for ice clouds, J. Atmos. Sci., 55, 2039–2052, 1998. 755
McFarquhar, G. M., Heymsfield, A. J., Spinhirne, J., and Hart, B.: Thin and subvisual

tropopause tropical cirrus: observations and radiative impacts, J. Atmos. Sci., 57, 1841–15

1853, 2000. 750, 769, 772, 776
Murray, B. J., Wilson, T. W., Dobbie, S., Cui, Z., Al-Jumur, S. M. R. K., Möhler, O., Schnaiter, M.,
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Protat, A., Delanoë, J., Plana-Fattori, A., May, P. T., and O’Connor, E. J.: The statisti-

cal properties of tropical ice clouds generated by the West African and Australian mon-
soons, from ground-based radar-lidar observations, Q. J. Roy. Meteor. Soc., 136, 345–363,
doi:10.1002/qj.490, 2010. 74810

Real, E., Orlandi, E., Law, K. S., Fierli, F., Josset, D., Cairo, F., Schlager, H., Borrmann, S.,
Kunkel, D., Volk, C. M., McQuaid, J. B., Stewart, D. J., Lee, J., Lewis, A. C., Hopkins, J.
R., Ravegnani, F., Ulanovski, A., and Liousse, C.: Cross-hemispheric transport of Central
African biomass burning pollutants: implications for downwind ozone production, Atmos.
Chem. Phys., 10, 3027–3046, doi:10.5194/acp-10-3027-2010, 2010. 75415

Sassen, K., Wang, Z., and Liu, D.: Cirrus clouds and deep convection in the tropics: insights
from CALIPSO and CloudSat, J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916,
2009. 750
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rmann, S., and Mitev, V.: In-situ observations and modeling of small nitric acid-containing ice

787

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

crystals, Atmos. Chem. Phys., 7, 3373–3383, doi:10.5194/acp-7-3373-2007, 2007. 758
Voigt, C., Schlager, H., Roiger, A., Stenke, A., de Reus, M., Borrmann, S., Jensen, E.,

Schiller, C., Konopka, P., and Sitnikov, N.: Detection of reactive nitrogen containing parti-
cles in the tropopause region evidence for a tropical nitric acid trihydrate (NAT) belt, Atmos.
Chem. Phys., 8, 7421–7430, doi:10.5194/acp-8-7421-2008, 2008. 7585
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and Borrmann, S.: Experimental characterization of the COndensation PArticle count-
ing System for high altitude aircraft-borne application, Atmos. Meas. Tech., 2, 243–258,
doi:10.5194/amt-2-243-2009, 2009. 757, 765

Weigel, R., Borrmann, S., Kazil, J., Stohl, A., Curtius, J., Minikin, A., Kunkel, D., de Reus, M.,
Frey, W., Lovejoy, E. R., Volk, C.-M., Cairo, F., and Law, K. S.: New particle formation in the30

tropical upper troposphere: in-situ measurements from South America and West Africa and
the role of ion-induced nucleation, Atmos. Chem. Phys. Discuss., in preparation, 2011. 750,
758, 763, 774, 777

788

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Winker, D. M. and Trepte, C. R.: Laminar cirrus observed near the tropical tropopause by LITE,
Geophys. Res. Lett., 25, 3351–3354, 1998. 750, 751

Yushkov, V., Oulanovsky, A., Lechenuk, N., Roudakov, I., Arshinov, K., Tikhonov, F., Ste-
fanutti, L., Ravegnani, F., Bonafe, U., and Georgiadis, T.: A Chemiluminescent Analyzer for
Stratospheric Measurements of the Ozone Concentration (FOZAN), J. Atmos. Ocean. Tech.,5

16, 1345–1350, doi:10.1175/1520-0426(1999)016<1345:ACAFSM>2.0.CO;2, 1999. 759
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Table 1. Applied correction mechanisms for the CIP particle image analysis with the respective
references.

reason for correction description of solution reference

first slice reconstruction of lost first slice due to ac-
quisition start-up time

De Reus et al. (2009)

area ratio rejection of streakers and multiple particles
in one image frame due to an area ratio
below 0.1

De Reus et al. (2009)

out of focus size and sample volume correction for out
of focus particles that show a Poisson spot

Korolev (2007)

empty images reconstruction as one pixel image De Reus et al. (2009)

shattering rejection of particles with interarrival time
below a specific threshold which is chosen
for each flight individually

Field et al. (2006)

partial images reconstruction of images that touch an
end diode (especially young outflow clouds
contain large particles), reconstructed par-
ticles that exceed a size of 3000 µm (≈
twice the array width) are rejected (no com-
plete rejection as in De Reus et al., 2009)

Heymsfield and Parrish (1978)
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Table 2. Parameters as defined in Eq. (1) for the two/three modal lognormal size distributions
fitted to the median size distribution for each temperature bin as shown in Fig. 1.

Tpotential (K) N (cm−3) Dp (µm) σ Mode #

365–375 0.0036 6.6 1.5 1
0.0017 15.3 1.23 2

355–365 0.013 9.5 1.7 1
0.0025 40 1.4 2

345–355 0.25 9 1.7 1
0.06 30 1.6 2
0.018 170 1.6 3
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Table 3. Measurement details substantiating the air mass change before and after the NPF
peak in Fig. 9 between 58 310 s UTC and 58 350 s UTC on 11 August 2006.

MCS UT
outflow background

Time (s UTC) 58 310 58 350
Altitude (km) 14.4 14.7
Pressure (hPa) 133 127.2
T (K) 201 200.5
Tpotential (K) 358 362
RHi (%) 80 38
fnon volatile (%) 5.9 46
CO2 (µmol/mol) 375 380
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Table 4. Summary of the microphysical parameters of the four West African SVC cases in
August 2006. The parameters include effective radius (reff), number concentrations for cloud
particles (Ncloud, larger 2.7 µm) and aerosol particles (Naerosol, larger 15 nm), aerosol volume
backscatter coefficient (Ba), and aerosol depolarization ratio (Da)

SVC1 SVC2 SVC3 SVC4

reff (µm) 2.3 20.9 20.4 5.8
IWC (g m−3) 0.3×10−5 15×10−5 38×10−5 1.7×10−5

Ncloud (cm−3) 2×10−3 9×10−3 24×10−3 7×10−3

Naerosol (cm−3) 408 479 776 302
RHi (%) 130 86 n.a. 94
T (K) 192 195 198 195
Ba (m−1 sr−1) 6.6×10−8 1.3×10−7 1.7×10−7 1.1×10−7

Da (%) 28 45 77 63
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Fig. 1. Normalised ice particle size distributions of the cloud encounters during SCOUT-AMMA
(black lines) in West Africa (2006): These M-55 “Geophysica” in-situ measurements are sepa-
rated into four potential temperature bins with the median for each bin in bright red. The shaded
pale red curves result from the CEPEX parameterisation after McFarquhar and Heymsfield
(1997). For comparison M-55 “Geophysica” data from the Hector MCS in Northern Australia
(during the 2005 SCOUT-O3 campaign) are shown with medians in bright blue and a corre-
sponding CEPEX parameterisation in shaded pale blue (from De Reus et al., 2009).
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Fig. 2. Meteosat Second Generation (MSG) satellite image of Mesoscale Convective Systems
(MCS) on 7 August 2006. The flight track of the M-55 “Geophysica” is indicated by the red/blue
line. The blue part shows the flight segment of the time period for which the satellite image is
valid and approximately where the measurements of Fig. 3 were performed.
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Fig. 3. Vertical profiles recorded by the instruments aboard M-55 “Geophysica” during its de-
scent into Ouagadougou, Burkina Faso, on 7 August 2006.
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and outflow during descent on 7 August 2006 at the times and for the cases indicated in Fig. 4.
The lowest panel summarises the ice particle size distributions of the four upper panels.
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Fig. 6. Examples of cloud particle shadow-cast images collected by the CIP when crossing the
MCS anvil and outflow while descending on 7 August 2006.
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Fig. 7. MSG satellite image of the MCS on 11 August 2006 with the flight track of the M-55
“Geophysica” as indicated in blue/red.
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Fig. 11. MSG satellite image of the MCS on 16 August 2006 with the flight track of the M-55
“Geophysica” as indicated in blue/red.
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Fig. 12. Vertical profiles recorded by the M-55 “Geophysica” during its ascent from Oua-
gadougou, Burkina Faso, on 16 August 2006.
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shading indicates time periods which were selected for deriving the ice particle size distributions
from Fig. 14. (See text for details.)
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Fig. 14. Selected size distributions from the ascent on 16 August 2006 along with altitude and
tracer mixing ratio information. The blue size distributions are compiled from measurements
below the outflow (BOF1 and BOF2) and the black ones inside the outflow. The lower right
panel summarises the ice particle size distributions from below and inside the outflow for com-
parison. The particle size distributions of the lowest and highest cloud parts are measured by
the FSSP-100 only.

807

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 15. Examples of CIP shadow images as observed at roughly 6 km altitude during the 16
August flight.
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Fig. 16. Detailed subvisual cirrus (SVC) ice particle size distributions (combined FSSP-100
and CIP in-situ data) from 7, 8, and 11 August 2006 over West Africa. The horizontal extent
(from flight time intervals), potential temperature levels, and altitudes of the cloud events SVC1
to SVC4 were as indicated in the boxes. The local cold point tropopause height was 16.3 km
on 7 August 2006 and 16.5 km on the other days. The error bars result from uncertainties in
the sampling volumes and counting statistics.

809

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/745/2011/acpd-11-745-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 745–812, 2011

Tropical ice clouds:
MCS outflow, anvil,

and subvisual cirrus

W. Frey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

dN
/d

lo
gD

p 
(c

m
-3

)

2 3 4 5 6
10

2 3 4 5 6
100

2 3

Dp (µm)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

dN
/d

lo
gD

p 
(c

m
-3

)

2 3 4 5 6
10

2 3 4 5 6
100

2 3

Dp (µm)

SCOUT-AMMA:other campaigns:
 SVC 1  CRAVE (2006)
 SVC 2  APE-THESEO (1999)
 SVC 3  W. Pacific (1973)
 SVC 4  TC4 (2007)

 measured size distributions
 exponential fit 
 standard deviation

Fig. 17. Left panel (adapted from Davis et al., 2010): Overview of in-situ measurements for
tropical SVC. The observations obtained during the indicated previous field experiments are
shown in broad grey lines. The coloured lines depict the individual cloud encounters from
SCOUT-AMMA in West Africa. Right panel: A parameterisation derived as exponential fit from
all size distributions in the left panel with one sigma deviations. See Eq. (2) for the parameteri-
sation and coefficients.
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Fig. 18. Interstitial aerosol and cloud particle in-situ measurements of tropical cloud encounters
in West-Africa (2006) and Northern Australia (2005). The ordinate shows the aerosol particle
number concentration (measured by COPAS as proxy for the interstitial aerosol) covering size
diameters between 15 nm and roughly 1 µm. The abscissa gives the simultaneously detected
cloud particle number densities for sizes above 2 µm as measured by the CIP and FSSP-100
probes. The events are from the Australian Hector MCS (squares), the West African MCS
outflows (blue triangles), and the West African SVCs (red triangles). Furthermore, NPF events
are indicated in light blue. The lines indicate activation ratios in terms of the numbers of cloud
particles and the available aerosol particles.
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Fig. 19. Summary of outflow size distributions of the three flights on 7, 11, and 16 August 2006.
Additionally, examples of consecutive CIP particle images for each outflow age are displayed
on top starting with the youngest case.
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