Supplementary material: Source apportionment of the carbonaceous aerosol in Norway - Quantitative estimates based on ${ }^{14} \mathrm{C}$, thermal optical and organic tracer analysis

K.E. Yttri D. Simpson K. Stenström H. Puxbaum
T. Svendby
ACPD 2011

Table S1: Concentrations of sugars and sugar-alcohols in $\mathrm{PM}_{10}\left(\mathrm{ng} \mathrm{m}^{-3}\right)$

Table S2: Calculated contributions to total carbon ($\mu \mathrm{g} C \mathrm{~m}^{-3}$) from LHS analysis, PM_{10}, Summer. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

	Hur-19June-15July-24h		Osl-19June-15July-24h		Osl-19June-15July-Day		Osl-19June-15July-Night	
	B.E.	Range	B.E.	Range	B.E.	Range	B.E.	
$\mathrm{EC}_{\mathrm{bb}}$	0.04	$(0.00-0.08)$	0.13	$(0.04-0.18)$	0.09	$(0.00-0.14)$	0.17	$(0.04-0.26)$
$\mathrm{EC}_{\mathrm{ff}}$	0.37	$(0.25-0.46)$	0.64	$(0.36-0.86)$	0.65	$(0.38-0.85)$	0.62	$(0.34-0.86)$
$\mathrm{OC}_{\mathrm{bb}}$	0.15	$(0.08-0.17)$	0.53	$(0.32-0.68)$	0.39	$(0.24-0.47)$	0.70	$(0.43-0.86)$
$\mathrm{OC}_{\mathrm{ff}}$	0.29	$(0.17-0.38)$	0.90	$(0.63-1.13)$	0.93	$(0.66-1.18)$	0.91	$(0.60-1.16)$
$\mathrm{OC}_{\mathrm{BSOA}}$	2.33	$(2.00-2.58)$	1.61	$(1.26-1.89)$	1.91	$(1.56-2.17)$	1.27	$(0.95-1.59)$
$\mathrm{OC}_{\mathrm{PBAP}}$	0.99	$(0.71-1.21)$	0.71	$(0.50-0.90)$	0.75	$(0.52-0.99)$	0.63	$(0.43-0.77)$
$\mathrm{OC}_{\mathrm{pbs}}$	0.75	$(0.50-0.92)$	0.34	$(0.23-0.41)$	0.28	$(0.19-0.33)$	0.40	$(0.26-0.47)$
$\mathrm{OC}_{\mathrm{pbc}}$	0.23	$(0.12-0.38)$	0.38	$(0.18-0.59)$	0.47	$(0.24-0.76)$	0.23	$(0.09-0.34)$

Table S3: Calculated contributions to total carbon $\left(\mu g C m^{-3}\right)$ from LHS analysis, PM_{10}, Winter. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

	Hur-1Mar-8March-24h		Osl-1Mar-8March-24h		Osl-1Mar-8March-Day		Osl-1Mar-8March-Night	
	B.E.	Range	B.E.	Range	B.E.	Range	B.E.	Range
$\mathrm{EC}_{\mathrm{bb}}$	0.13	(0.05-0.21)	0.29	(0.11-0.45)	0.30	(0.08-0.50)	0.28	(0.10-0.42)
ECff	0.24	(0.08-0.36)	0.67	(0.30-1.00)	0.74	(0.33-1.08)	0.58	(0.23-0.88)
$\mathrm{OC}_{\mathrm{bb}}$	0.56	(0.43-0.69)	1.22	(0.93-1.48)	1.28	(0.92-1.63)	1.16	(0.94-1.36)
$\mathrm{OC}_{\text {ff }}$	0.42	(0.28-0.56)	1.06	(0.70-1.41)	1.27	(0.88-1.67)	0.88	(0.55-1.20)
$\mathrm{OC}_{\mathrm{bb}}+\mathrm{OC}_{\mathrm{BSOA}}$	0.72	(0.61-0.82)	1.59	(1.37-1.78)	1.76	(1.50-1.96)	1.40	(1.20-1.59)
OCBSOA	0.15	(0.02-0.29)	0.38	(0.04-0.67)	0.48	(0.04-0.92)	0.24	(0.03-0.45)
OCPBAP	0.13	(0.07-0.20)	0.10	(0.04-0.11)	0.10	(0.04-0.12)	0.09	(0.03-0.13)
$\mathrm{OC}_{\mathrm{pbs}}$	0.01	(0.00-0.03)	0.02	(0.00-0.07)	0.03	(0.00-0.08)	0.02	(0.00-0.07)
$\mathrm{OC}_{\mathrm{pbc}}$	0.12	(0.07-0.18)	0.07	(0.00-0.07)	0.06	(0.00-0.08)	0.07	(0.03-0.10)

Table S4: Calculated contributions to total carbon $\left(\mu g C m^{-3}\right)$ from LHS analysis, PM_{1}, Summer. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

	Hur-19June-15July-24h		Osl-19June-15July-24h		Osl-19June-15July-Day		Osl-19June-15July-Night	
	B.E.	Range	B.E.	Range	B.E.	Range	B.E.	Range
$\mathrm{EC}_{\mathrm{bb}}$	0.04	(0.00-0.06)	0.11	(0.03-0.18)	0.08	(0.03-0.12)	0.15	(0.03-0.23)
ECff	0.33	(0.20-0.43)	0.43	(0.24-0.59)	0.34	(0.18-0.45)	0.50	(0.26-0.70)
$\mathrm{OC}_{\mathrm{bb}}$	0.15	(0.09-0.17)	0.48	(0.33-0.59)	0.36	(0.24-0.42)	0.60	(0.44-0.76)
$\mathrm{OC}_{\mathrm{ff}}$	0.34	(0.20-0.46)	0.79	(0.59-0.98)	0.89	(0.72-1.02)	0.70	(0.47-0.90)
$\mathrm{OC}_{\text {BSOA }}$	1.96	(1.89-2.01)	1.12	(0.98-1.27)	1.30	(1.17-1.42)	0.95	(0.76-1.14)
OCPBAP	0.05	(0.03-0.09)	0.02	(0.00-0.06)	0.04	(0.00-0.06)	0.01	(0.00-0.06)
$\mathrm{OC}_{\mathrm{pbs}}$	0.03	(0.00-0.06)	0.01	(0.00-0.06)	0.01	(0.00-0.06)	0.01	(0.00-0.06)
$\mathrm{OC}_{\mathrm{pbc}}$	0.02	(0.00-0.06)	0.01	(0.00-0.06)	0.02	(0.00-0.06)	0.01	(0.00-0.06)

Table S5: Calculated contributions to total carbon $\left(\mu g C^{-3}\right)$ from LHS analysis, PM_{1}, Winter. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

	Hur-1Mar-8March-24h							
	B.E.	Range	B.E.	Range	Osl-1Mar-8March-Day		Osl-1Mar-8March-Night	
	B.E.	Range	B.E.	Range				
$\mathrm{EC}_{\mathrm{bb}}$	0.14	$(0.05-0.22)$	0.26	$(0.09-0.41)$	0.25	$(0.09-0.38)$	0.30	$(0.11-0.45)$
$\mathrm{EC}_{\mathrm{ff}}$	0.21	$(0.06-0.33)$	0.51	$(0.21-0.77)$	0.56	$(0.22-0.85)$	0.44	$(0.17-0.67)$
$\mathrm{OC}_{\mathrm{bb}}$	0.61	$(0.46-0.75)$	1.10	$(0.86-1.30)$	1.05	$(0.79-1.29)$	1.16	$(0.92-1.37)$
$\mathrm{OC}_{\mathrm{ff}}$	0.41	$(0.27-0.54)$	0.80	$(0.50-1.10)$	0.96	$(0.66-1.26)$	0.66	$(0.39-0.92)$
$\mathrm{OC}_{\mathrm{BSOA}}$	0.17	$(0.02-0.32)$	0.27	$(0.03-0.47)$	0.29	$(0.03-0.53)$	0.23	$(0.03-0.42)$
$\mathrm{OC}_{\mathrm{PBAP}}$	0.05	$(0.03-0.06)$	0.02	$(0.00-0.06)$	0.04	$(0.00-0.06)$	0.01	$(0.00-0.06)$
$\mathrm{OC}_{\mathrm{pbs}}$	0.02	$(0.00-0.03)$	0.01	$(0.00-0.06)$	0.02	$(0.00-0.06)$	0.01	$(0.00-0.06)$
$\mathrm{OC}_{\mathrm{pbc}}$	0.03	$(0.02-0.05)$	0.01	$(0.00-0.06)$	0.03	$(0.00-0.06)$	0.01	$(0.00-0.06)$

