Supplementary material: Source apportionment of the carbonaceous aerosol in Norway – Quantitative estimates based on ¹⁴C, thermal optical and organic tracer analysis

K.E. Yttri D. Simpson K. Stenström H. Puxbaum T. Svendby

ACPD 2011

PM_{10}	A 1. : + 1	M	The last	T.,: t 1	Electric to 1	G	Emerter	Classes	D'h
	Arabitol	Mannitol	Trehalose	Inositol	Erytritol	Sucrose	Fructose	Glucose	Ribose
Summer									
Oslo day	20 ± 10	24 ± 8	10 ± 3	2.0 ± 0.6	3.3 ± 2.5	5.7 ± 3.0	4.7 ± 1.4	20 ± 7	1.5 ± 0.5
Oslo night	20 ± 9	26 ± 6	11 ± 5	1.6 ± 0.6	1.9 ± 1.9	3.6 ± 1.9	3.4 ± 1.4	17 ± 8	2.4 ± 1.1
Oslo 24 hour	20 ± 9	25 ± 8	10 ± 4	1.8 ± 0.7	2.5 ± 2.3	4.6 ± 2.7	4.0 ± 1.5	19 ± 8	1.9 ± 0.9
Hurdal day	25 ± 7	28 ± 10	18 ± 7	2.3 ± 0.9	3.2 ± 1.6	24 ± 22	5.2 ± 1.4	32 ± 18	0.6 ± 0.7
Hurdal night	40 ± 14	64 ± 21	32 ± 12	1.8 ± 0.7	8.2 ± 6.6	2.0 ± 0.6	4.5 ± 1.3	25 ± 9	2.8 ± 1.6
Hurdal 24 hour	32 ± 13	45 ± 24	25 ± 12	2.0 ± 0.6	5.6 ± 5.3	13 ± 19	4.9 ± 1.4	29 ± 15	1.7 ± 1.6
Winter									
Oslo day	2.7 ± 1.1	3.2 ± 0.8	6.0 ± 2.9	1.0 ± 0.7	n.d.	2.8 ± 1.1	3.5 ± 2.2	7.0 ± 2.4	1.4 ± 0.4
Oslo night	2.7 ± 1.0	2.6 ± 1.9	3.7 ± 2.1	0.6 ± 0.6	n.d.	2.8 ± 1.0	2.3 ± 1.0	6.1 ± 1.9	0.9 ± 0.4
Oslo 24 hour	2.7 ± 1.0	2.9 ± 1.4	4.9 ± 2.7	0.8 ± 0.6	n.d.	2.8 ± 1.0	2.9 ± 1.7	6.6 ± 2.1	1.2 ± 0.5
Hurdal day	0.77 ± 0.48	0.78 ± 0.42	1.73 ± 0.92	n.d.	n.d.	1.52 ± 0.97	1.02 ± 0.79	1.70 ± 0.99	0.25 ± 0.05
Hurdal night	0.71 ± 0.45	0.53 ± 0.38	1.11 ± 0.52	n.d.	n.d.	0.89 ± 0.64	0.53 ± 0.21	1.26 ± 0.50	0.60 ± 0.44
Hurdal 24 hour	0.74 ± 0.45	0.65 ± 0.40	1.42 ± 0.79	n.d.	n.d.	1.20 ± 0.85	0.78 ± 0.61	1.48 ± 0.79	0.43 ± 0.35

Table S1: Concentrations of sugars and sugar-alcohols in $\rm PM_{10}~(ng~m^{-3})$

 \mathbf{N}

Table S2: Calculated contributions to total carbon ($\mu g \ C \ m^{-3}$) from LHS analysis, PM₁₀, Summer. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

	Hur-19June-15July-24h		Osl-19Ju	Osl-19June-15July-24h		ne-15July-Day	Osl-19June-15July-Night		
	B.E.	Range	B.E.	Range	B.E.	Range	B.E.	Range	
EC _{bb}	0.04	(0.00-0.08)	0.13	(0.04 - 0.18)	0.09	(0.00-0.14)	0.17	(0.04 - 0.26)	
EC_{ff}	0.37	(0.25 - 0.46)	0.64	(0.36 - 0.86)	0.65	(0.38 - 0.85)	0.62	(0.34 - 0.86)	
OC_{bb}	0.15	(0.08-0.17)	0.53	(0.32 - 0.68)	0.39	(0.24 - 0.47)	0.70	(0.43 - 0.86)	
$O\tilde{C}_{ff}$	0.29	(0.17 - 0.38)	0.90	(0.63 - 1.13)	0.93	(0.66-1.18)	0.91	(0.60 - 1.16)	
OC _{BSOA}	2.33	(2.00 - 2.58)	1.61	(1.26 - 1.89)	1.91	(1.56 - 2.17)	1.27	(0.95 - 1.59)	
OC _{PBAP}	0.99	(0.71 - 1.21)	0.71	(0.50 - 0.90)	0.75	(0.52 - 0.99)	0.63	(0.43 - 0.77)	
OC_{pbs}	0.75	(0.50 - 0.92)	0.34	(0.23 - 0.41)	0.28	(0.19 - 0.33)	0.40	(0.26 - 0.47)	
OC _{pbc}	0.23	(0.12 - 0.38)	0.38	(0.18 - 0.59)	0.47	(0.24 - 0.76)	0.23	(0.09 - 0.34)	

	Hur-1Mar-8March-24h		Osl-1Ma	Osl-1Mar-8March-24h		Osl-1Mar-8March-Day		-8March-Night
	B.E.	Range	B.E.	Range	B.E.	Range	B.E.	Range
EC _{bb}	0.13	(0.05 - 0.21)	0.29	(0.11 - 0.45)	0.30	(0.08 - 0.50)	0.28	(0.10 - 0.42)
EC_{ff}	0.24	(0.08 - 0.36)	0.67	(0.30 - 1.00)	0.74	(0.33 - 1.08)	0.58	(0.23 - 0.88)
OC_{bb}^{n}	0.56	(0.43 - 0.69)	1.22	(0.93 - 1.48)	1.28	(0.92 - 1.63)	1.16	(0.94 - 1.36)
OC_{ff}	0.42	(0.28 - 0.56)	1.06	(0.70 - 1.41)	1.27	(0.88 - 1.67)	0.88	(0.55 - 1.20)
$OC_{bb} + OC_{BSOA}$	0.72	(0.61 - 0.82)	1.59	(1.37 - 1.78)	1.76	(1.50 - 1.96)	1.40	(1.20 - 1.59)
OC _{BSOA}	0.15	(0.02 - 0.29)	0.38	(0.04 - 0.67)	0.48	(0.04 - 0.92)	0.24	(0.03 - 0.45)
OC _{PBAP}	0.13	(0.07 - 0.20)	0.10	(0.04 - 0.11)	0.10	(0.04 - 0.12)	0.09	(0.03 - 0.13)
OC_{pbs}	0.01	(0.00 - 0.03)	0.02	(0.00 - 0.07)	0.03	(0.00 - 0.08)	0.02	(0.00 - 0.07)
OC_{pbc}^{Pbb}	0.12	(0.07 - 0.18)	0.07	(0.00 - 0.07)	0.06	(0.00 - 0.08)	0.07	(0.03 - 0.10)

Table S3: Calculated contributions to total carbon ($\mu g \ C \ m^{-3}$) from LHS analysis, PM₁₀, Winter. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

4

	Hur-19June-15July-24h		Osl-19Ju	ne-15July-24h	Osl-19Ju	ne-15July-Day	Osl-19June-15July-Night	
	B.E.	Range	B.E.	Range	B.E.	Range	B.E.	Range
EC _{bb}	0.04	(0.00-0.06)	0.11	(0.03-0.18)	0.08	(0.03-0.12)	0.15	(0.03 - 0.23)
EC_{ff}	0.33	(0.20 - 0.43)	0.43	(0.24 - 0.59)	0.34	(0.18 - 0.45)	0.50	(0.26 - 0.70)
OC_{bb}	0.15	(0.09 - 0.17)	0.48	(0.33 - 0.59)	0.36	(0.24 - 0.42)	0.60	(0.44 - 0.76)
OC_{ff}	0.34	(0.20 - 0.46)	0.79	(0.59 - 0.98)	0.89	(0.72 - 1.02)	0.70	(0.47 - 0.90)
OC _{BSOA}	1.96	(1.89 - 2.01)	1.12	(0.98 - 1.27)	1.30	(1.17 - 1.42)	0.95	(0.76 - 1.14)
OC _{PBAP}	0.05	(0.03 - 0.09)	0.02	(0.00 - 0.06)	0.04	(0.00 - 0.06)	0.01	(0.00 - 0.06)
OC_{pbs}	0.03	(0.00 - 0.06)	0.01	(0.00 - 0.06)	0.01	(0.00 - 0.06)	0.01	(0.00 - 0.06)
OC_{pbc}^{PSS}	0.02	(0.00 - 0.06)	0.01	(0.00 - 0.06)	0.02	(0.00 - 0.06)	0.01	(0.00 - 0.06)

Table S4: Calculated contributions to total carbon ($\mu g \ C \ m^{-3}$) from LHS analysis, PM₁, Summer. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

	Hur-1Mar-8March-24h		Osl-1Mar-8March-24h		Osl-1Mar-8March-Day		Osl-1Mar-8March-Night	
	B.E.	Range	B.E.	Range	B.E.	Range	B.E.	Range
EC _{bb}	0.14	(0.05-0.22)	0.26	(0.09 - 0.41)	0.25	(0.09-0.38)	0.30	(0.11 - 0.45)
EC_{ff}	0.21	(0.06 - 0.33)	0.51	(0.21 - 0.77)	0.56	(0.22 - 0.85)	0.44	(0.17 - 0.67)
OC_{bb}	0.61	(0.46 - 0.75)	1.10	(0.86 - 1.30)	1.05	(0.79 - 1.29)	1.16	(0.92 - 1.37)
$OC_{\rm ff}$	0.41	(0.27 - 0.54)	0.80	(0.50 - 1.10)	0.96	(0.66 - 1.26)	0.66	(0.39 - 0.92)
OC _{BSOA}	0.17	(0.02 - 0.32)	0.27	(0.03 - 0.47)	0.29	(0.03 - 0.53)	0.23	(0.03 - 0.42)
OC_{PBAP}	0.05	(0.03 - 0.06)	0.02	(0.00 - 0.06)	0.04	(0.00 - 0.06)	0.01	(0.00 - 0.06)
OC_{pbs}	0.02	(0.00 - 0.03)	0.01	(0.00 - 0.06)	0.02	(0.00 - 0.06)	0.01	(0.00 - 0.06)
OC_{pbc}	0.03	(0.02 - 0.05)	0.01	(0.00 - 0.06)	0.03	(0.00 - 0.06)	0.01	(0.00 - 0.06)

Table S5: Calculated contributions to total carbon ($\mu g \ C \ m^{-3}$) from LHS analysis, PM₁, Winter. B.E. is best estimate (50th percentile), range is 10th-90th percentiles of LHS results.

6