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Abstract

This study investigates the influence of the galactic cosmic rays (GCRs) on the at-
mospheric composition, temperature and dynamics by means of the 3-D Chemistry
Climate Model (CCM) SOCOL v2.0. Ionization rates were parameterized according
to CRAC:CRII (Cosmic Ray induced Cascade: Application for Cosmic Ray Induced5

Ionization), a detailed state-of-the-art model describing the effects of GCRs in the en-
tire altitude range of the CCM from 0–80 km. We find statistically significant effects
of GCRs on tropospheric and stratospheric NOx, HOx, ozone, temperature and zonal
wind, whereas NOx, HOx and ozone are annually averaged and the temperature and
the zonal wind are monthly averaged. In the Southern Hemisphere, the model suggests10

the GCR-induced NOx increase to exceed 10% in the tropopause region (peaking with
20% at the pole), whereas HOx is showing a decrease of about 3% caused by en-
hanced conversion into HNO3. As a consequence, ozone is increasing by up to 3% in
the relatively unpolluted southern troposphere, where its production is sensitive to ad-
ditional NOx from GCRs. Conversely, in the northern polar lower stratosphere, GCRs15

are found to decrease O3 by up to 3%, caused by the additional heterogeneous chlo-
rine activation via ClONO2+HCl following GCR-induced production of ClONO2. There
is an apparent GCR-induced acceleration of the zonal wind of up to 5 m/s in the North-
ern Hemisphere below 40 km in February, and a deceleration at higher altitudes with
peak values of 3 m/s around 70 km altitude. The model also indentifies GCR-induced20

changes in the surface air, with warming in the eastern part of Europe and in Russia (up
to 2.25 K for March values) and cooling in Siberia and Greenland (by almost 2 K). We
show that these surface temperature changes develop even when the GCR-induced
ionization is taken into account only above 18 km, suggesting that the stratospheri-
cally driven strengthening of the polar night jet extends all the way down to the Earth’s25

surface.
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1 Introduction

Galactic cosmic rays (GCRs) are energetic particles (mostly protons and α-particles)
which originate from outside of the solar system. While their flux outside the solar sys-
tem can be regarded as roughly isotropic and time independent, at least on the time
scales studied here (Usoskin et al., 2004), the intensity of GCRs near the Earth varies5

as a result of the modulation inside the heliosphere, i.e. the spatial region of about 200
Earth–Sun distances controlled by the solar wind and the solar magnetic field. Varia-
tions of the cosmic ray flux depend also on particle energy: the flux of less energetic
(<1 GeV) particles varies by an order of magnitude modulated by the solar cycle, while
energetic GCRs (above 100 GeV) are hardly modulated (Bazilevskaya et al., 2008).10

When galactic cosmic rays enter the Earth’s atmosphere they collide with the ambi-
ent atmospheric gas molecules, thereby ionizing them. In this process they may pro-
duce secondary particles, which can be sufficiently energetic to contribute themselves
to further ionization of the neutral gases. This leads to the development of an ionization
cascade (or shower). The intensity and penetration depth of the cascade depends on15

the energy of the primary cosmic particles. Cascades of particles with several hundred
MeV of kinetic energy may reach the ground. However, due to their charge cosmic
ray particles are additionally deflected by the geomagnetic field. Almost all particles
can penetrate into the polar region, where the magnetic field lines are perpendicular to
the ground, whereas only the rare most highly energetic particles with energies above20

15 GeV are able to penetrate the lower atmosphere near the equator.
Early models of the cosmic ray induced ionization (CRII) were (semi)empirical (e.g.,

O’Brien, 1970; Heaps, 1978) or simplified analytical (Vitt and Jackman, 1996; O’Brien,
2005). Nicolet (1975), however, has used data from balloon soundings and ionization
chambers to deduce the production rates of nitric oxide in the auroral region. State-of-25

the-art models (Usoskin et al., 2004; Desorgher et al., 2005; Usoskin and Kovaltsov,
2006) are based on Monte-Carlo simulations of the atmospheric cascade and can pro-
vide 3-D time dependent computations of the CRII.
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Between the surface and 25–30 km CRII is the main source of the atmospheric ion-
ization (Bazilevskaya et al., 2008) with the maximum ionization rate caused by the
Bragg peak in the stopping power around 15 km (Pfotzer maximum), which is clearly
visible in Fig. 1 based on the Usoskin et al. (2010) parameterization (red lines). The
ionization rates calculated by means of the parameterization of Heaps (1978), repre-5

sented by blue lines in Fig. 1, are still used often in modeling work (e.g., Schmidt et al.,
2006). However, this parameterization does not reflect the Pfotzer maximum, because
it does not cover the range from 0–18 km.

The CRII leads to the production of odd nitrogen. For example, fast secondary
electrons (e∗) can dissociate the nitrogen molecule, N2+e∗→2N(2D)+e, and almost10

all of the N atoms in the excited 2D state react with O2, producing nitric oxide,
N(2D)+O2 →NO+O. Vitt and Jackman (1996) estimated CRII to produce 3.0 to
3.7×1033 molecules of odd nitrogen per year in the global stratosphere, which amounts
to about 10% of the NOx production following N2O oxidation. They also mention that
the northern polar/subpolar stratosphere (>50◦ N) is believed to be supplied with NOx15

in equal amounts by GCRs (7.1 to 9.6×1032 molecules/yr) and by N2O oxidation (9.4
to 10.7×1032 molecules/yr). In the deep polar winter stratosphere, when air masses
experience sunlit periods only infrequently and photolysis of HNO3 becomes negligi-
ble, CRII become the only source of NOx, revealing the importance of GCRs in high
latitudes.20

Below the mesopause, where water cluster ions can form, CRII contributes to the
formation of HOx radicals. For example, molecular oxygen ions (O+

2 ) produced by
GCRs can via attachment of molecular oxygen form O+

4 , which reacts with water:
O+

4+H2O→O+
2 ·H2O+O2. This hydrated ion quickly hydrates further to produce OH:

O+
2 ·H2O+H2O→H3O+·OH+O2→H3O++OH+O2 (Aikin, 1994). GCR-driven HOx pro-25

duction competes with the most important source for HOx in the atmosphere, the
photolytically driven oxidation of water vapor (H2O) by excited oxygen atoms, O(1D),
which are themselves produced from ozone photolysis. However, during polar night,
HOx is mainly produced by the GCRs given that no UV radiation is available for O(1D)
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production.
The influence of GCRs on atmospheric chemistry has been studied by Krivolutsky

et al. (2002) with a 1-D photochemical model. They found that ozone at 50◦ geomag-
netic latitude might indeed be sensitive to the additional NOx source. Their 1-D model
predicted maximum GCR-induced increases in NOx of 4.5% around 10 km, enhancing5

tropospheric ozone by 0.6%, whereas above about 18 km ozone decreases with a max-
imum reduction of 0.5% close to 20 km. Above 35 km altitude they found no influence
caused by the GCRs. The evaluation of the impact of GCRs on atmospheric temper-
ature and dynamics, which adds to the chemical changes, cannot be performed with
1-D model and requires the use of a 3-D chemistry-climate model (CCM) that is ca-10

pable of describing the coupling between physicochemical processes and large-scale
dynamics.

Here we study the effect of CRII using the recently developed CRAC:CRII (Cosmic
Ray induced Cascade: Application for Cosmic Ray Induced Ionization) model, and
then use the results of this event-based local model to force the global CCM SOCOL,15

focusing on the impact of CRII-induced NOx and HOx on chemistry, temperature and
dynamics from the ground to 0.01 hPa barometric pressure (altitude of ∼80 km).

We have also addressed the difference between the state-of-the-art parameterization
of the ionization rate by Usoskin et al. (2010) and the more traditional parameteriza-
tion given by Heaps (1978), which was based on fitting results from sealed ionization20

chambers flown continuously (yearly) on balloons extending to heights of 35 km. The
parameterization by Heaps (1978) was and is widely used in various models (Verronen
et al., 2002; Schmidt et al., 2006; Winkler et al., 2009)

Many studies of atmospheric chemistry and dynamics omit the influence of GCRs
altogether, as was done for example in the first Chemistry-Climate Model Validation Ac-25

tivity (CCMVal) for coupled CCMs (Eyring et al., 2006) and in the most recent CCMVal
report (see the homepage of SPARC: http://www.atmosp.physics.utoronto.ca/SPARC/
ccmval final/index.php). Here, we use the CCM SOCOL, which is one of the CCMs that
participated in the CCMVal activity, to investigate the consequences of this omission.
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The models and experimental setup are described in Sect. 2, the results containing
the GCR effects on several chemical species and the comparison between the param-
eterizations by Usoskin et al. (2010) and Heaps (1978) are presented in Sect. 3. In
Sect. 4 we give a short summary of the results.

2 Description of the model and experimental setup5

Chemistry-climate modeling with SOCOL. The CCM SOCOL represents a combina-
tion of the global circulation model MA-ECHAM4 and the chemistry-transport model
MEZON. MA-ECHAM4 (Manzini et al., 1997) is a spectral model with T30 horizontal
truncation resulting in a grid spacing of about 3.75◦; in the vertical direction the model
has 39 levels in a hybrid sigma-pressure coordinate system spanning the model atmo-10

sphere from the surface to 0.01 hPa.
The chemical-transport part MEZON (Rozanov et al., 1999; Egorova et al., 2003)

has the same vertical and horizontal resolution and treats 41 chemical species of the
oxygen, hydrogen, nitrogen, carbon, chlorine and bromine groups, which are coupled
by 140 gas-phase reactions, 46 photolysis reactions and 16 heterogeneous reactions15

in/on aqueous sulfuric acid aerosols, water ice and nitric acid trihydrate (NAT). The
original version of the CCM SOCOL was described by Egorova et al. (2005).

An extensive evaluation of the CCM SOCOL (Egorova et al., 2005; Eyring et al.,
2006, 2007) revealed model deficiencies in the chemical-transport part and led to the
development of the CCM SOCOL v2.0 (which is applied in this study). The new fea-20

tures of the SOCOLv2.0 are: (i) all species are transported separately; (ii) the mass
fixer correction after each semi-Lagrangian transport step is calculated for the chlorine,
bromine and nitrogen families instead for individual family members, but then applied
to each individual species; (iii) the mass fixer is applied to ozone only over the lati-
tude band 40◦ S–40◦ N to avoid artificial mass loss in the polar areas; (iv) the water25

vapor removal by the highest ice clouds (between 100 hPa and the tropical cold point
tropopause) is explicitly taken into account to prevent an overestimation of stratospheric
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water content; (v) the list of ozone-depleting substances is extended to 15 for the chem-
ical treatment, while for the transport they are still clustered into three tracer groups;
(vi) the heterogeneous chemistry module was updated to include HNO3 uptake by
aqueous sulfuric acid aerosols, a parameterization of the liquid-phase reactive uptake
coefficients and the NAT particle number densities are limited by an upper boundary of5

5×10−4 cm−3 to take account of the fact that observed NAT clouds are often strongly
supersaturated. A comprehensive description and evaluation of the CCM SOCOL v2.0
is presented by Schraner et al. (2008).

Cosmic ray induced ionization modeling. Here we study the effect of CRII using
the recently developed CRAC:CRII model (see Usoskin et al., 2004; Usoskin and10

Kovaltsov, 2006), which has been extended from the stratosphere (Usoskin and Ko-
valtsov, 2006) to the upper atmosphere (Usoskin et al., 2010). The model is based on
a Monte-Carlo simulation of the atmospheric cascade and reproduces the observed
data within 10% accuracy in the troposphere and lower stratosphere (Bazilevskaya
et al., 2008; Usoskin et al., 2009). In the mesosphere the agreement between ob-15

served and simulated ionizations rates are less easily assessed, because the ioniza-
tion by other sources (solar radiation, precipitating soft particles of magnetospheric
origin, etc.) becomes at least as important as by GCRs. The results of the CRAC:CRII
model are parameterized to give ion pair production rate as a function of the altitude
(quantified via the barometric pressure), geomagnetic latitude (quantified via geomag-20

netic cutoff rigidity) and solar activity (quantified via the modulation potential Φ), see
Usoskin et al. (2005). In Fig. 1 we show the ionization rates for several geomagnetic
latitudes as computed by the CRAC:CRII model (red line), compared to the ionization
rates computed by the parameterization of Heaps (1978) (blue line). Solid lines show
the ionization rates during solar minimum, the dashed lines during solar maximum.25

This parameterization of the ionization rates cannot be directly used in CCM SOCOL,
which has no explicit treatment of ion chemistry and requires the conversion of the
ionization rates into NOx and HOx production rates. Following Porter et al. (1976),
we assumed that 1.25 NOx molecules are produced per ion pair, and 45% of this NOx
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production is assumed to yield ground state atomic nitrogen N(4S), whereas 55% yields
the electronically excited state atomic nitrogen N(2D). While the ground state may lower
the overall NOx concentration via N(4S)+NO→N2+O, N(2D) converts instantaneously
to NO (see Introduction).

The production of HOx has been studied by Solomon and Crutzen (1981) with a 1-D5

time-dependent model of neutral and ion chemistry. They parameterized the number of
odd hydrogen particles produced per ion pair as a function of altitude and ionization for
daytime, polar summer conditions of temperature, air density and solar zenith angle.
We implement their parameterization in the CCM SOCOL to take into account the GCR
induced production of HOx from the ground up to the height of 0.01 hPa barometric10

pressure (altitude of ∼80 km).
For this study, we have carried out three 27-yr long runs of CCM SOCOL v2.0 from

1976 to 2002. The control run has been performed without the influence of the galactic
cosmic rays, while two experiment runs include GCRs using the ionization rates given
by Usoskin et al. (2010) and Heaps (1978). The first two years of the runs have been15

omitted from the analysis to eliminate possible spin up problems of the model. In a final
section we compare the results with runs using the often applied CRII parameterization
of Heaps (1978).

3 Results

Figures 2–5 show the annual mean response of the zonal mean NOx, HOx, HNO3 and20

ozone to the GCRs calculated as a relative deviation of the experiment run from the
reference run. The figures are limited to the range from 1000 hPa to 1 hPa even though
the model reaches up to 0.01 hPa, because there is little influence of the GCRs above
1 hPa.
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Chemical species

NOx. The galactic cosmic rays produce substantial amounts of NOx during all seasons
(not shown). In the annual mean the simulated NOx increase affects most of the tro-
posphere, exceeding 20% or 10 pptv in the region extending from the south pole to 60◦

N around 8–12 km altitude (see Fig. 2, significant changes at 95% level are marked5

by hatching). There is also a significant impact on the tropical and subtropical middle
stratosphere. The reason for smaller effects on the upper stratosphere lies in the verti-
cal distribution of the ionization rates shown in Fig. 1: the ionization rate is the highest
between 15 and 20 km, rendering the production of odd nitrogen by GCRs highest. The
difference in significance between the southern to northern hemispheric troposphere10

is explained by the fact that more NOx is produced anthropogenically in the Northern
Hemisphere (NH) than in the Southern Hemisphere (SH), making the GCR-induced
signal most relevant in the remote regions in the SH.

The annual mean NOx production by GCRs in the southern hemispheric polar region
(up to 5 pptv NOx in January south of 70◦ S) is comparable to or even more important15

than the natural production through lightning (up to 2 pptv NOx in January south of
70◦ S, Penner et al., 1998).

HOx and HNO3. Figure 3 represents the response of annual mean zonal mean HOx
to GCRs. The HOx increase due to GCR-induced production is largely compensated or
overcompensated by NOx production followed by HOx deactivation. Thus, there is no20

statistically significant HOx increase except in the upper tropical stratosphere, rather
a broad area of significant GCR-induced HOx reduction in the tropical/mid-latitude
UTLS. The inner hatched areas, representing 95% statistical significance, show a de-
crease of about 3% or 0.1 pptv over the southern hemispheric mid-latitudes at an alti-
tude of ∼20 km. The outer hatched areas, representing 80% significance, show a de-25

crease of up to 3%. This broad area of HOx decrease coincides with a region of the
highest NOx enhancements and can be explained by the more intensive removal of
OH via OH+NO2+M→HNO3+M, resulting in a significant HNO3 increase of about 8%
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(Fig. 4).
Ozone. Significant increase of NOx in the southern hemispheric troposphere leads

to the statistically significant ozone enhancement. As mentioned above ozone pho-
tochemistry in the southern hemispheric troposphere is in large parts NOx-limited,
so that the CRII relaxes this limitation leading to up to 3% or 1 ppbv ozone increase5

(see Fig. 5). Conversely, in the northern polar lowermost stratosphere a significant
ozone decrease of more than 3% is caused by the additional production of ClONO2 via
ClO+NO2+M→ClONO2+M, which in a second step reacts in heterogeneous reactions
on polar stratospheric cloud particles or cold sulfate aerosols to enhance chlorine ac-

tivation, ClONO2+HClhet→Cl2+HNO3 (with subsequent photolysis Cl2+hv→Cl+Cl). As10

a secondary effect, higher HNO3 concentrations in the polar winter stratosphere lead to
enhanced polar stratospheric cloud occurrences, and hence to faster heterogeneous
chemical processing. The ozone decrease by the activated chlorine is negligible in the
southern hemispheric polar region because the background concentration of chlorine
is too high.15

The latitudinal average of our results for O3 and NOx resemble the results of simple
1-D model calculations published by Krivolutsky et al. (2002). For ozone they modeled
a maximum increase in the troposphere at a height of approximately 10 km and a max-
imum decrease at about 20 km. For NO and NO2, their peak is visible at 10 km. In their
work the influence of the GCRs vanishes above 35 km. The hemispheric asymmetries20

discussed above could, of course, not be retrieved in their 1-D calculation. Also, be-
cause Krivolutsky et al. (2002) did not discuss HOx in their paper, it is not possible to
make a quantitative comparison with our results.

Temperatures and winds

The effects of GCRs on monthly mean ozone, temperatures and winds are noticeable25

year-round. However, significance is highest for winter/spring, hence results are dis-
played for this season in Fig. 6. The upper panel in Fig. 6 shows the monthly mean
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zonal mean changes for ozone during February. The significant area and the percent-
age of decrease are similar to the annual mean results shown in Fig. 5. A decrease
of up to 5% or more than 60 ppbv is visible in the NH polar region between 20 and
almost 30 km. The influence of the GCRs on the SH is strongest in the troposphere,
but remains statistically insignificant on the 95% level. As discussed above, the reason5

for the ozone depletion in the NH polar region is the additional GCR-induced chlorine
activation.

Temperature profile. The center panel of Fig. 6 shows zonal mean response of the
temperature in February. There is a cooling in the NH lowermost stratosphere (below
20 km altitude), resulting from the radiative cooling caused by the ozone loss. This10

cooling is facing a warming at low altitudes at about 40◦ N. These two effects lead to
an increase in the latitudinal temperature gradient in the lowermost stratosphere. In
addition, there is a significant warming between 40 and 50 km in the NH polar region
due to an intensification of the polar vortex which leads in turn to the increase of air
descent and adiabatic warming of the upper stratosphere.15

Zonal wind profile. The influence of GCRs on the monthly mean zonal wind for
February shows a significant increase of up to 5 m/s in the NH polar region, peaking
in the lower stratosphere and extending all the way to the ground (see lower panel in
Fig. 6). The acceleration is caused by the cooling of the polar lower stratosphere due to
the GCR-induced polar ozone depletion, opposed to the warming of the northern mid-20

latitude lowermost stratosphere. These changes increase the meridional temperature
gradient, leading to acceleration of the zonal wind in agreement with the thermal wind
balance. Intensification of the polar vortex leads in turn to the increase of air descent
and adiabatic warming of the upper stratosphere, in turn causing deceleration of the
zonal wind (Limpasuvan et al., 2005).25

Comparison of the Heaps and CRII parameterizations. As mentioned above, a major
difference between the Heaps parameterization and Usoskin’s model-based approach
is that the ionization rate calculated with the Heaps parameterization is applicable only
at altitudes above 18 km, whereas the ionization rates derived by Usoskin extend to
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the ground. As described above, a proper description of the ionization rate in the
upper troposphere and lower stratosphere is required for a correct simulation in of
atmospheric composition, in particular of free tropospheric ozone.

The importance of the accuracy of the GCR parameterizations for ozone is illus-
trated in Fig. 7. The left panel represents the annual mean effect of GCRs on the zonal5

average ozone at 70◦–90◦ N given in percent averaged from 1978 to 2002. It reveals
that the Heaps parameterization (Heaps, blue line; Usoskin, red line) clearly underes-
timates the ozone decrease due to the additional NOx that is produced in the UTLS
region, because it neglects the ionization below 18 km altitude. Conversely, the right
panel of Fig. 7 shows the importance of the Usoskin scheme for correctly describing10

the GCR-induced ozone production in the southern hemispheric troposphere.
The upper panel in Fig. 8 shows the monthly mean zonal mean effect of the GCRs on

ozone at 70◦–90◦ N for November and December given in percent whereas the lower
panel depicts the changes for February and March. The larger and significant decrease
in November at about 30 km with Heaps parameterization is caused through the fact15

that the ionization rate is larger in the middle stratosphere (see Fig. 1) and that the PCS
chemistry is not important yet. This changes in February and March: the lower panel
in Fig. 8 shows that the parameterization with Usoskin below altitudes of 20 km shows
a larger impact on ozone than the Heaps parameterization which stops at 18 km.

Finally, we investigate the influence of the two GCR parameterizations on the surface20

air temperature (SAT) and its connection with the Arctic Oscillation. The upper panels
of Fig. 9 show the March monthly mean and the annually averaged changes in SAT for
ionization rates calculated by Usoskin et al. (2010), and the lower panels show the Jan-
uary monthly mean and the annually averaged changes but using the parameterization
by Heaps (1978). The general patterns and intensities for both parameterization are25

in good agreement: both show a warming over the eastern part of Europe and Russia
and a cooling in the high Arctic.

Additionally, we see that the effects of the galactic cosmic rays result in an alternat-
ing warming/cooling pattern resembling the typical response of the SAT caused by an
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intensification of the polar vortex known as positive phase of Arctic Oscillation (Thomp-
son and Wallace, 1998), termed AO+. A resulting interesting question is whether this
response is primarily due to GCR-induced stratospheric changes or due to the pene-
tration of the GCRs into the troposphere.

The presence of the AO+-like warming-cooling pattern also for the Heaps parame-5

terization, which ignores GCR-effects below 18 km, corroborates the interpretation of
Thompson and Wallace (1998), namely “that under certain conditions, dynamical pro-
cesses at stratospheric levels can affect the strength of the polar vortex all the way
down to the earth’s surface. . . ”.

4 Summary10

Based on the 3-D CCM SOCOL v2.0 and on CRAC:CRII (the “Cosmic Ray induced
Cascade: Application for Cosmic Ray Induced Ionization”) model, we present in this
paper a modeling study of the influence of the galactic cosmic rays on atmospheric
composition, winds and temperature from 0.01 hPa or approximately 80 km down to
the ground.15

Our calculations indicate that GCR-induced ionization leads to the following mod-
ifications in atmospheric composition, winds (U), atmospheric temperatures (T ) and
surface air temperatures (SAT). Only results with 95% level of statistical significance
are given:

Southern hemispheric troposphere, pristine conditions:20

– NOx: increases by more than 20% in the polar region,

– HOx: decreases of ∼3% in the mid-latitude upper troposphere,

– HNO3: increases by more than 10% between the South Pole and subtropics,

– O3: increases by up to ∼3% throughout the troposphere to 20 km between the
South Pole to 20◦ N,25
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– SAT: small patches of (significant) warming up to 0.5 K in Antarctica.

Northern hemispheric troposphere, anthropogenically preconditioned:

– HNO3: marginally significant increases in the mid-latitude upper troposphere,

– O3: marginally significant decreases in the polar upper troposphere,

– U : enhancements of the polar night jet by up to 5 m/s at the tropopause with5

perturbations reaching all the way to the ground,

– SAT: warming by up to 2.25 K in the eastern part of Europe and Russia and de-
creases by almost 2 K over Greenland.

Southern hemispheric stratosphere:

– NOx: increases by up to 4% in the tropical middle stratosphere,10

– HOx: decreases by up to 3% caused by OH+NO2 producing HNO3 in the low
latitude lower stratosphere,

– HNO3: largely mirroring the HOx changes, with increases by 4% in the low latitude
lower stratosphere,

Northern hemispheric stratosphere:15

– NOx: increases by up to 4% in the tropical middle stratosphere,

– HOx and HNO3: similar to Southern Hemisphere,

– O3: strong loss in the polar lower stratosphere with annual mean mixing ratios
decreasing by 3% due to additional chlorine activation (specifically in February
decreases up to 5%, corresponding to a loss of >60 ppbv),20

– T : cooling by up to −1.5 K in the lower polar stratosphere, opposed to a slight
warming (<+0.5 K) in the tropical lower stratosphere and a moderate warming
(<+1.5 K) in the upper polar stratosphere,
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– U : enhancements of the polar night jet by up to 5 m/s resulting from the enhanced
meridional temperature gradient in the lower stratosphere, and a decrease by
3 m/s in the mesosphere.

We conclude that for NOx-limited regions it is important to have a parameterization
for the GCRs that extents to the surface, otherwise important consequences for tropo-5

spheric ozone (Fig. 5) and for the oxidation capacity of the troposphere (Fig. 3) will be
neglected. Conversely, Galactic cosmic rays appear to affect winds and temperatures
in the middle and lower atmosphere in a manner that is governed by the ionization
processes in the middle atmosphere alone, i.e. a detailed description of the ionization
processes in the troposphere appears to be less important. The comparison between10

the often applied parameterization of ionization rates derived by Heaps (1978) and the
state-of-the-art modeling work by Usoskin et al. (2010), which agree largely above but
differ below 18 km, reveals that changes in the surface air temperature are to first or-
der independent of the choice of parameterization. This suggests that the changes in
tropospheric meteorology depend on changes in the stratosphere, i.e. that the acceler-15

ation of the polar night jet reaches all the way down to the Earth’s surface. This consti-
tutes an example of stratosphere-troposphere coupling. Conversely, tropospheric NOx
and ozone depend strongly on a correct description of the GCRs down to the lowest
parts of the troposphere. The simulations with the 3-D chemistry-climate model SO-
COL show that the influence of the GCRs should not be neglected in investigations of20

the tropospheric and stratospheric chemistry and dynamics.
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Fig. 1. Red lines: ionization rates (number of ion pairs produced per air mass and time unit)
for several geomagnetic latitudes as computed by the CRAC:CRII model (Usoskin et al., 2010).
Blue lines: ionization rate computed by Heaps (1978). Solid lines: ionization rate during so-
lar maximum. Dashed lines: ionization rate during solar minimum. Note different scales on
abscissas in dependence on geomagnetic latitude.
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Fig. 2. Annual mean effect of GCRs on zonal mean NOx, ([NOx]GCR−[NOx]control)/[NOx]control,
in percent ([NOx]=[NO]+[NO2]). Results are averaged from 1978–2002 (after allowing for a 2-
yr model spin-up) with appropriate accounting for solar minimum and maximum periods. Solid
contours indicate positive, dotted contours negative changes. Hatched areas (enclosed by solid
contours) indicate changes with at least 95% statistical significance.
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Fig. 3. Annual mean effect of GCRs on zonal mean HOx, ([HOx]GCR−[HOx]control)/[HOx]control,
in percent ([HOx]=[H]+[OH]+[HO2]). Results are averaged from 1978–2002 (after allowing for
a 2-yr model spin-up) with appropriate accounting for solar minimum and maximum periods.
Hatched areas (enclosed by solid contours) indicate statistically significant changes with at
least 95% (inner contours) or 80% (outer contours).
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Fig. 4. Annual mean effect of GCRs on zonal mean HNO3, ([HNO3]GCR−[HNO3]control)/
[HNO3]control, in percent. Results are averaged from 1978–2002 (after allowing for a 2-yr model
spin-up) with appropriate accounting for solar minimum and maximum periods. Hatched areas
(enclosed by thick solid contours) indicate changes with at least 95% statistical significance.

674

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/653/2011/acpd-11-653-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/653/2011/acpd-11-653-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 653–679, 2011

Influence of galactic
cosmic rays

M. Calisto et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. Annual mean effect of GCRs on zonal mean ozone, ([O3]GCR−[O3]control)/[O3]control, given
in percent. Results are averaged from 1978–2002 (after allowing for a 2-yr model spin-up) with
appropriate accounting for solar minimum and maximum periods. Hatched areas (enclosed by
thick solid contours) indicate changes with at least 95% statistical significance.
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Fig. 6. Monthly mean zonal mean effects of GCRs on ozone (O3), temperature (T ) and zonal
wind (U) for the month of February. Red colors: increases; blue colors: decreases. Upper
panel: effect on O3 given in percent. Contour levels: −5, −2, −1, −0.5, −0.1, 0, 0.1, 0.5, 1, 2,
5%. Center panel: effect on T given in Kelvin. Contour levels: −5, −3, −2, −1, −0.5, −0.1, 0,
0.1, 0.5, 1, 2, 3, 5 K. Lower panel: effect on U given in m/s. Contour levels: −5, −3, −2, −1,
−0.5, −0.1, 0, 0.1, 0.5, 1, 2, 3, 5 m/s. Hatched areas (marked by thick black contours) show
95% statistical significance.

676

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/653/2011/acpd-11-653-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/653/2011/acpd-11-653-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 653–679, 2011

Influence of galactic
cosmic rays

M. Calisto et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. GCR-induced effects on ozone, ([O3]GCR−[O3]control)/[O3]control, given in percent. Left
panels shows the annual mean averaged for 70◦–90◦ N and for 50◦ S (right). Red line: param-
eterization by Usoskin et al. (2010). Blue line: parameterization by Heaps (1976). Results are
averaged from 1978–2002 (all seasons, after allowing for a 2-yr model spin-up).
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Fig. 8. GCR-induced effects on ozone, ([O3]GCR−[O3]control)/[O3]control, given in percent, for 70◦–
90◦ N. Upper panel: November and December; lower panel: February and March. Red lines:
parameterization by Usoskin et al. (2010). Blue lines: parameterization by Heaps (1976). Thick
solid lines: altitudes where the changes in ozone are significant at 95% level for the respective
parameterization. Results are averaged from 1978–2002.
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 553 

  554 

Fig. 9: Effect of GCRs on SAT, [SAT]GCR-[SAT]control, given in Kelvin for January monthly mean (left) and annual mean 555 
(right). Upper panels: using ionization rate modeled by Usoskin et al. (2010). Lower panels: using parameterization by 556 
Heaps (1978). Results are averaged from 1978-2002 (after allowing for a 2-year model spin-up). Reddish colors: positive 557 
changes. Bluish colors: negative changes. Hatched areas (enclosed by thick solid contours) indicate changes with at least 558 
95 % statistical significance. 559 
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Fig. 9. Effect of GCRs on SAT, [SAT]GCR−[SAT]control, given in Kelvin for January monthly mean
(left) and annual mean (right). Upper panels: using ionization rate modeled by Usoskin et al.
(2010). Lower panels: using parameterization by Heaps (1978). Results are averaged from
1978–2002 (after allowing for a 2-yr model spin-up). Reddish colors: positive changes. Bluish
colors: negative changes. Hatched areas (enclosed by thick solid contours) indicate changes
with at least 95% statistical significance.
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