Supplemental Online Material for:

The 2005 Study of Organic Aerosols in Riverside (SOAR):

Overview, Instrumental Intercomparisons, and Fine Particle

Composition

Kenneth S. Docherty^{1,2,@,*}, Allison C. Aiken^{1,2,#}, J. Alex. Huffman^{1,2,%}, Ingrid M. Ulbrich^{1,2}, Peter F. DeCarlo^{1,3,^}, Donna Sueper^{1,2,4}, Douglas R. Worsnop⁴, David C. Snyder^{5, *}, Brett D. Grover⁶, Delbert J. Eatough⁶, Allen H. Goldstein⁷, Paul J. Ziemann⁸, and Jose L. Jimenez^{1,2,*}

13 **Figure S1.** Time series (left) and diurnal averages (right) of meteorological

- 14 conditions (RH, temperature, wind speed and direction), gas-phase species (O₃,
- 15 O_x, CO, and NO_x), and elemental carbon during SOAR-2. Note that CO
- 16 concentrations (in panels E1 and E2) have been offset vertically to account for a
- 17 CO background of approx. 100 ppb.

Figure S2. Comparison of TEOM measurements as reported, and after adding estimated NH₄NO₃ concentrations. TEOM_{50C} measurements are plotted against TEOM_{FDMS} in Fig. S2A while TEOM_{50C} supplemented by calculated NH₄NO₃ mass are plotted against TEOM_{FDMS} measurements in Fig. S2B along with the results of linear regression and correlation coefficients in both cases. Open symbols represent period P1 (7/18-8/1/2005) while filled symbols represent P2 (8/2-8/13/2005) measurements.

Figure S3. Comparison of NR-PM₁ and PM_{2.5} NO₃ and SO₄ concentrations
throughout the duration of SOAR-1. NR-PM₁ NO₃ and SO₄ concentrations
obtained from the AMS are plotted against corresponding PM_{2.5} concentrations in
panels A and C, respectively, along with results of linear regression and
correlation coefficients (*r*²). Average diurnal profiles for both NR-PM₁ and PM_{2.5}
NO₃ and SO₄ measurements are also shown in panels B and D, respectively.

measured by Sunset1 and Sunset2 and Sunset2+SVOC.

Figure S5. Scatter plot of f_{44} vs. O/C derived from HR-AMS high-resolution data

42 during SOAR-1. Results in linear regression of SOAR-1 data are shown along

43 with similar results from Aiken et al. (2008) for comparison.

Group	Institution	Measurement	SOAR-1	SOAR-2	Publications including results from SOAR	Funding Sources
Arey	University of California-Riverside	PM _{2.5} filter sampling				
Eatough	Brigham Young University	monitor, TEOM _{FDMS} , TEOM _{50C} , PC-BOSS, IC-NO ₃ , IC-SO ₄	•		Eatough et al. 2008; Grover et al. 2008; Eatough et al. 2009; Grover et al. 2009; Docherty et al., this paper	NSF ATM-0407695
Fitz	University of California-Riverside	PM _{2.5} filter sampling	•			US EPA R831087
Goldstein	University of California-Berkeley	Thermal desorption aerosol GC/MS (TAG), GC/MS for VOC analysis CO, Ozone, meteorological measurements	•	•	Gentner et al. 2009; Kreisberg et al. 2009; Williams et al. 2010a; Gentner et al. 2010; Willaims et al 2010b; Docherty et al. 2008; Docherty et al., this paper	US EPA RD-83096401-0 CARB 03-324
Hannigan	University of Colorado-Boulder	PM _{2.5} filter sampling	-			
Hering	Aerosol Dynamics, Inc.	Thermal desorption aerosol GC/MS (TAG), CPC bank including nano-water CPC	•		lida et al. 2008; Kreisberg et al. 2009; Williams et al. 2010a; Williams et al. 2010b	US DOE DE-GF-02-05ER63997 NSF ATM-0506674 CARB 04-03
Hopke	Clarkson University	PM _{2.5} filter sampling	•		Reemtsma et al. 2006	US EPA STAR R827354, RD832415
Jimenez	University of Colorado-Boulder	HR-ToF-AMS, C-ToF-AMS, Thermal denuder, SMPS, Cloud condensation nuclei counter, Grimm OPC Aerosol particle mass analyzer (APM)	-	-	DeCarlo et al. 2006; Zhang et al. 2007; Docherty et al. 2008; Cubison et al. 2008; Jimenez et al. 2009; Huffman et al. 2009a; Huffman et al. 2009b; Heald et al. 2010; Ng et al. 2010; Ervens et al. 2010; Farmer et al. 2010; Docherty et al., this paper	US EPA STAR RD-83216101-0, R831080 NSF ATM-0449815 NSF/UCAR S05-39607 NOAA NA080AR4310565
Paulson	University of California - Los Angele	Filter sampling, HPLC-flourosence peroxide analysis	•		Wang et al. 2010	CARB 04-319
Prather	University of California-San Diego	Aerosol Time-of-Flight Mass Spectrometer (ATOFMS), Ultrafine ATOFMS, Aircraft ATOFMS, SMPS Aerosol particle sizer (APS)	•	•	Spencer et al. 2007; Denkenberger et al. 2007; Shields et al. 2008; Moffet et al. 2008; Pratt et al. 2009a; Pratt et al. 2009b	NSF ATM-0321362, ATM-05011803, ATM-0528227 CARB 04-336 US EPA PM Center R827354
Schauer	University of Wisconsin-Madison	Standard Sunset semi-continuous EC/OC analyzer, 7-channel aethelometer, Hg speciation sampler, PM ₂₅ filter sampling	•		Snyder et al. 2007; Snyder et al. 2008; Stone et al. 2009a; Stone et al. 2009b; Docherty et al. 2008; Sheelsey et al. 2010 Docherty et al., this paper	US EPA STAR R831080, RD-83216101-0, R-82979 NSF ATM-0449815
Seinfeld	California Institute of Technology	C-ToF-AMS, PILS-IC at Caltech (Pasadena)	•		Docherty et al. 2008	
Sioutas	University of Southern California	Ultrafine aerosol concentrator Aerosol particle mass analyzer (APM)	•		Geller et al. 2006; DeCarlo et al. 2006	US EPA STAR 53-4507-0482, 53-4507-7721
Thiemens	University of California-San Diego	Sulfate and nitrate isotope analysis	•			
Weber	Georgia Institute of Technology	PILS-WSOC, PILS-OC	•		Peltier et al. 2007; Docherty et al. 2008	CARB 98-316, EPA STAR RD-83216101-0
Worsnop	Aerodyne Research Inc.	HR-ToF-AMS, C-ToF-AMS with soft ionization	•			US DOE DE-FG02-04ER83890
Ziemann	University of California-Riverside	spectrometer NO _x analyzer	•	•	Docherty et al., this paper	

Table S1. Research groups participating in SOAR along with their institution, measurements, and publications.

	P1 (7/	P1 (7/18-8/1)		P2 (8/2-8/14)		P1 (7/18-8/1)		P2 (8/2-8/14)	
	Avg. +	/- S.D.	Avg	⊬- S.D.	ratio ^a +	-/- S.D.	ratio ^a +	H- S.D.	
Measurement	(µg m ⁻³)								
TEOM _{FDMS}	26.36	10.89	31.79	11.4	na	na	na	na	
AMS+EC	18.29	7.98	24.36	10.46	0.69	0.6	0.77	0.56	
TEOM _{50C}	15.87	6.55	13.96	4.88	0.6	0.58	0.44	0.5	

 Table S2.
 Average TEOM_{FDMS}, AMS+EC, and TEOM_{50C} final particle mass concentrations during SOAR-1 periods 1 (P1) and 2 (P2)

^a Ratio of measurement to TEOM_{FDMS} mass (e.g., x/TEOM_{FDMS})

45

	HR-AMS	Sunset 1	Sunset 2	Sunset 2 (+ SVOC)
Average (µgC m ⁻³)	5.61	5 13	5 16	7 60
n	531	652	556	556
Absolute Difference [#]				
HR-AMS				
Sunset 1	1.09			
Sunset 2	1.28	1.04		
Sunset 2 (+ SVOC)	2.36	2.71	2.44	
Relative Difference ^ø				
HR-AMS		0.21	0.25	0.31
Sunset 1	0.19		0.20	0.35
Sunset 2	0.23	0.20		0.32
Sunset 2 (+ SVOC)	0.42	0.53	0.47	
Relative Difference ^c				
HR-AMS		0.21	0.30	0.31
Sunset 1	0.20		0.23	0.34
Sunset 2	0.25	0.22		0.33
Sunset 2 (+ SVOC)	0.53	0.58	0.55	
r ²				
HR-AMS				
Sunset 1	0.53			
Sunset 2	0.36	0.42		
Sunset 2 (+ SVOC)	0.45	0.52	0.84	
Uncentered r ²				
HR-AMS				
Sunset 1	0.73			
Sunset 2	0.53	0.64		
Sunset 2 (+ SVOC)	0.54	0.66	0.98	

Table S3. Statistical comparison of OC measurements by HR-AMS and Sunset instruments

^a Global average of absolute difference between measurements (e.g., avg[abs(row_i-column_i)])

^b Absolute difference normalized by column global average (e.g., avg[abs(row_i-column_i)]/avg(column_i)

^c Average value of individual relative absolute difference (e.g., avg[abs(row_i-column_i)/column_i])

	Conce	Mass fraction of AMS+EC			
Species	Avg. (μ g m ⁻³)	S.D. (µg m ⁻³)	(%)		
7/18-8/13-2005					
OA	9.12	3.59	44.40		
EC	0.89	0.74	4.33		
NH ₄	2.48	1.38	12.07		
NO3	4.42	4.55	21.52		
SO4	3.55	1.09	17.28		
CI	0.09	0.08	0.44		
AMS+EC	20.54	9.42			
7/18-8/1/2005 (P1)					
OA	8.90	3.53	48.66		
EC	0.99	0.81	5.41		
NH ₄	2.03	1.01	11.10		
NO3	2.93	3.03	16.02		
SO4	3.37	1.02	18.43		
CI	0.07	0.07	0.38		
AMS+EC	18.29	7.98			
8/2-8/13/2005 (P2)					
OA	9.50	3.67	44.48		
EC	0.70	0.56	3.28		
NH ₄	3.25	1.56	15.22		
NO3	6.94	5.47	32.49		
SO4	3.85	1.15	18.02		
CI	0.11	0.09	0.51		
AMS+EC	21.36	10.46			

Table S4. Average concentration of NR-PM $_1$ components and composition of AMS+EC

49 50

|

51 **References**

52 53 Eatough, D. J., and Farber, R.: Apportioning Visibility Degradation to Sources of 54 PM2.5 Using Positive Matrix Factorization, J. Air Waste Manage. Assoc., 59, 55 1092-1110, 10.3155/1047-3289.59.9.1092, 2009. 56 57 Ervens, B., Cubison, M. J., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. 58 L., Quinn, P. K., Bates, T. S., Wang, J., Zhang, Q., Coe, H., Flynn, M., and Allan, 59 J. D.: CCN predictions using simplified assumptions of organic aerosol 60 composition and mixing state: a synthesis from six different locations, Atmos. 61 Chem. Phys., 10, 4795-4807, 10.5194/acp-10-4795-2010, 2010. 62 63 Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer 64 to organonitrates and organosulfates and implications for atmospheric chemistry. 65 66 Proc. Natl. Acad. Sci. U. S. A., 107, 6670-6675, 10.1073/pnas.0912340107, 67 2010. 68 69 Geller, M., Biswas, S., and Sioutas, C.: Determination of particle effective density 70 in urban environments with a differential mobility analyzer and aerosol particle 71 mass analyzer, Aerosol Sci. Technol., 40, 709-723, 72 10.1080/02786820600803925, 2006. 73 74 Gentner, D. R., Harley, R. A., Miller, A. M., and Goldstein, A. H.: Diurnal and 75 Seasonal Variability of Gasoline-Related Volatile Organic Compound Emissions in Riverside, California, Environ. Sci. Technol., 43, 4247-4252, 76 77 10.1021/es9006228, 2009. 78 79 Gentner, D. R., Miller, A. M., and Goldstein, A. H.: Seasonal Variability in 80 Anthropogenic Halocarbon Emissions, Environ. Sci. Technol., 44, 5377-5382, 81 10.1021/es1005362, 2010. 82 83 Huffman, J. A., Docherty, K. S., Mohr, C., Cubison, M. J., Ulbrich, I. M., Ziemann, 84 P. J., Onasch, T. B., and Jimenez, J. L.: Chemically-Resolved Volatility 85 Measurements of Organic Aerosol from Different Sources, Environ. Sci. 86 Technol., 43, 5351-5357, 10.1021/es803539d, 2009b. 87 88 Pratt, K. A., Hatch, L. E., and Prather, K. A.: Seasonal Volatility Dependence of 89 Ambient Particle Phase Amines, Environ. Sci. Technol., 43, 5276-5281, 90 10.1021/es803189n, 2009a. 91 Pratt, K. A., Mayer, J. E., Holecek, J. C., Moffet, R. C., Sanchez, R. O., Rebotier, 92 T. P., Furutani, H., Gonin, M., Fuhrer, K., Su, Y. X., Guazzotti, S., and Prather, K. 93 94 A.: Development and Characterization of an Aircraft Aerosol Time-of-Flight Mass 95 Spectrometer, Anal. Chem., 81, 1792-1800, 10.1021/ac801942r, 2009b.

- 97 Sheesley, R. J., Deminter, J. T., Meiritz, M., Snyder, D. C., and Schauer, J. J.:
- 98 Temporal trends in motor vehicle and secondary organic tracers using in situ
- 99 methylation thermal desorption GCMS, Environ. Sci. Technol., 44, 9398-9404,
- 100 10.1012/es102301t, 2010
- 101
- 102 Shields, L. G., Qin, X. Y., Toner, S. M., and Prather, K. A.: Detection of ambient
- ultrafine aerosols by single particle techniques during the SOAR 2005 campaign,
 Aerosol Sci. Technol., 42, 674-684, 10.1080/02786820802227378, 2008.
- 105
- 106 Snyder, D. C., Dallmann, T. R., Schauer, J. J., Holloway, T., Kleeman, M. J.,
- 107 Geller, M. D., and Sioutas, C.: Direct observation of the break-up of a nocturnal 108 inversion layer using elemental mercury as a tracer, Geophys. Res. Lett., 35, 5, 109 L17812, 10.1029/2008gl034840, 2008.
- 110
- 111 Williams, B. J., Goldstein, A. H., Kreisberg, N. M., Hering, S. V.: In situ
- 112 measurements of gas/particle-phase transitions for atmospheric semivolatile
- 113 organic compounds, Proc. Natl. Acad. Sci. U. S. A., 107, 15, 6676-6681, 2010.