Atmos. Chem. Phys. Discuss., 11, 5757–5784, 2011 www.atmos-chem-phys-discuss.net/11/5757/2011/ doi:10.5194/acpd-11-5757-2011 © Author(s) 2011. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations

D. M. Westervelt¹, R. H. Moore², A. Nenes^{2,3}, and P. J. Adams^{1,4}

¹Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

²School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA

³School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

⁴Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA

Received: 8 February 2011 - Accepted: 9 February 2011 - Published: 16 February 2011

Correspondence to: P. J. Adams (petera@andrew.cmu.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

This work quantifies the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of NaCl. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr⁻¹ is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentra-

tions, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol
 increases by only ~15% in a biologically active region of the Southern Ocean.

1 Introduction

25

Physical processes on the ocean surface result in formation of sea spray aerosol. Sea spray aerosol in conjunction with dimethyl sulfide (DMS) emissions from phytoplankton is thought to dominate oceanic aerosol sources. It is now recognized that the oceans are also a significant source of primary and secondary organic matter (Meskhidze and Nenes, 2006; O'Dowd et al., 2004). Although oceanic phytoplankton emit several types

of volatile organic compounds (VOCs) with isoprene being a major constituent, secondary organic aerosol (SOA) derived from marine sources of isoprene is now thought to comprise less than 10% of the observed total marine organic aerosol (Arnold et al., 2009). Primary marine sources, however, may dominate marine organic aerosol 5 matter (Facchini et al., 2008). Primary marine organic aerosol exists predominantly in the Aitken and accumulation mode with less than 5% of their mass existing at sizes greater than 1 µm (O'Dowd et al., 2004). NMR spectroscopy studies show that the primary marine organic aerosol are almost entirely water insoluble (Vignati et al., 2009; Facchini et al., 2008). Relatively little is known about the specific composition of these primary organic particles. It has been postulated recently that the majority contain 10 organic hydroxyl groups similar to those found in biogenic carbohydrates dissolved in seawater (Russell et al., 2010). Other compositions have been reported as well, with evidence pointing to the presence of a lipid species in the aerosol (Cavalli et al., 2004; Gogou et al., 1998; Tervahattu et al., 2002a, b). Many of these compounds may act as surfactants, agents which lower the surface tension of nucleating cloud droplets

¹⁵ as surfactants, agents which lower the surface tension of nucleating cloud droplets in the atmosphere, thereby facilitating cloud droplet activation (Facchini et al., 1999; Sorjamaa and Laaksonen, 2006).

O'Dowd et al. (2008) developed a source function for primary organic sea spray based on measurements at Mace Head, Ireland. The empirical relationship connects
organic mass fraction in the sea spray aerosol to chlorophyll-a concentrations retrieved by Sea-WiFS (http://oceancolor.gsfc.nasa.gov/SeaWiFS/). Past studies have implemented this and other source functions and modeled primary and secondary marine organic aerosol concentrations and emission fluxes. In one of the first estimates, Roelofs (2008) determined a source of 75 Tg C yr⁻¹ by scaling organic emissions to ocean DMS emissions (Roelofs, 2008). Other work using variations on the O'Dowd correlation have resulted in smaller global emissions estimates. Recently, Vignati et al. (2010) applied an updated version of the O'Dowd et al. (2008) source function into

a chemical transport and aerosol microphysics model and found a submicron emission rate of 8.2 Tg C yr^{-1} . Gantt et al. (2009) estimated a submicron and supermicron

source of 2.9 and 19.4 Tg C yr⁻¹, respectively, again using the O'Dowd et al. (2008) source function and chlorophyll-a concentrations retrieved via remote sensing. Supermicron emissions were estimated by extrapolating the source function, which may bias the total global emissions estimate. In another study, Spracklen et al. (2008) used
⁵ chlorophyll-a concentrations to implement a diferent source function in the GLOMAP aerosol model. That work, which tuned the source function to observed organic carbon observations, found a best fit assuming a primary and secondary source of about 5.5 Tg C yr⁻¹ in the submicron range and 2.5 Tg C yr⁻¹ in the supermicron range. Finally, using the TM4-ECPL chemical transport model with the O'Dowd correlation, Myriokefalitakis et al. (2010) found a submicron primary source of 4 Tg C yr⁻¹ and an SOA source of 1.5 Tg C yr⁻¹.

Assuming that aerosol size and composition do not change, higher amounts of aerosol lead to higher cloud condensation nuclei (CCN) concentrations, perturbing climate by brightening clouds, which is known as the first aerosol indirect effect (Twomey,

- 15 1977). While past studies have focused mainly on mass concentrations and global aerosol budgets, this study aims to extend the analysis to determine the impact of primary marine organic matter on global and regional CCN concentrations. Fuentes et al. (2010b) studied hygroscopicty and CCN activity of laboratory prepared seawater samples and found a 5–24% relative increase in the critical supersaturation for CCN
- activation in the organic-enriched samples compared to the artificial inorganic seawater. Like Fuentes et al. (2010b), our analysis explores the CCN impact through the changes in marine aerosol composition and the accompanied decreases in surface tension. We focus on the CCN activity of atmospheric organic sea spray on a global scale using atmospheric modeling. To do this, the combined organic-inorganic source function of accompanied by Q'Douvel et al. (2000) is implemented into a fact and
- ²⁵ function of sea spray developed by O'Dowd et al. (2008) is implemented into a fast and efficient global aerosol microphysics model, GISS-TOMAS.

2 Model description

2.1 GISS GCM II'

The Goddard Institute for Space Studies General Circulation Model II-prime (GISS GCM II') was used for this modelling study. GISS GCM II' solves the three dimensional conservation equations for mass, momentum, energy, and moisture for each model grid cell. Advection of chemical species is calculated in 1-h time steps using a quadratic upstream method (Prather, 1986). The version used in this study has a spatial resolution of 4 degrees latitude by 5 degrees longitude, and a vertical resolution of 9 layers up to 10 mb pressure. Clouds are treated with two separate parameterizations for large scale and convective clouds (Del Genio et al., 1996; Yao and Del Genio, 1999). Large-scale or stratiform clouds are assumed to be present in the simulations if relative humidity in the GCM grid cell exceeds 60%. Convective clouds, which must be parameterized as a sub-grid process, are predicted based on the convective mass flux necessary to counteract the instability at cloud base (Hansen et al., 1983).

15 2.2 TwO-Moment Aerosol Sectional (TOMAS) algorithm

Aerosol microphysical calculations are done by the TwO Moment Aerosol Sectional (TOMAS) algorithm, which runs online in the GISS-GCM II' host model. TOMAS consists of codes to calculate the effects of nucleation, coagulation, condensation/evaporation, cloud processing, size-resolved dry and wet deposition, and emissions on the size distribution of aerosols at 1-h time steps (Adams and Seinfeld, 2002; Pierce et al., 2007). For this study, a faster version of TOMAS was employed to expedite computation time (Lee et al., 2011). In FAST-TOMAS, aerosol size is represented as 15 geometrically spaced size sections from 10 nm to 10 μm in diameter. The size sections, or "bins", are spaced by average mass per particle, starting at 10⁻²¹ kg and increasing by mass quadrupling. Species treated in FAST-TOMAS include sulphate, sea-salt, hydrophilic and hydrophobic organic carbon, externally and internally

mixed elemental carbon, and mineral dust. Size-resolved sulphate and mineral dust are unchanged from past studies involving GISS-TOMAS (Adams and Seinfeld, 2003; Lee and Adams, 2010). This section outlines GISS-TOMAS in its initial form whereas Sect. 2.3 describes changes made to the basic framework required to model the organic sea spray emissions.

2.2.1 Sea spray

5

Previously, GISS-TOMAS treated sea spray as consisting solely of sodium chloride. The sea spray size distribution is treated similarly to the study of Pierce and Adams (2006). The emissions parameterization used is based on Clarke et al. (2006), which relates aerosol flux to wind speed at 10 m altitude raised to the power of 3.41 $(U_{10}^{3.41})$. The parameterization makes use of data observed from a coastal field campaign in order to fit the emissions flux size distribution to polynomial functions ranging from 10 nm to 8 µm in diameter (Clarke et al., 2006). As discussed in Pierce and Adams (2006), variability in wind speed predictions in a GCM is a main source of uncertainty in the accuracy of sea-salt emissions parameterizations.

2.2.2 Organic aerosol

Carbonaceous aerosols are configured in a similar manner to Pierce et al. (2007), with fossil fuel and biomass burning emissions specified by the Bond inventory (Bond et al., 2004). Organic aerosol is divided into four sub-categories: externally mixed EC, internally mixed EC, hydrophobic OC, and hydrophilic OC. The contributions of each of the organic categories to CCN activity is represented using the single, lumped, hygroscopicity parameter (κ) of Petters and Kreidenweis (2007). Table 1 shows the values of κ (calculated at 273 K) used in our simulation. Hydrophobic OC is assigned a κ-value of 0.09, while hydrophilic OC species are assigned a κ-value of 0.2 (see Table 1). We assume a constant OM:OC ratio of 1.8 for all emissions and for ambient organic aerosol (El-Zanan et al., 2005; Zhang et al., 2005). Previously in GISS-TOMAS, surface tension

depression effects were not considered and the surface tension of pure water was applied to nucleating cloud droplets. The timescale of conversion of hydrophobic to hydrophilic aerosol was 1.5 days. Conversion from externally mixed to internally mixed EC uses this same timescale.

5 2.2.3 Cloud condensation nuclei formation and scavenging

Cloud condensation nuclei formation in the GISS-TOMAS model mimics the methods described in past model versions (Adams and Seinfeld, 2003; Pierce and Adams, 2006). Convective and stratiform clouds form at fixed supersaturations of 1.0% and 0.2%, respectively. These supersaturations are then used to determine the critical diameter above which particles act as CCN. The activation diameter depends on critical supersaturation (S_c) and composition. A comprehensive form of Köhler theory is employed via look-up tables that take percent composition of sulphate, sea salt, hydrophilic OC, and hydrophobic OC as inputs and yield critical activation diameters at various supersaturations as output (Raymond and Pandis, 2003). When the activation 15 diameter falls within a model size section, we interpolate linearly by using the fraction of activated particles within the section.

Wet deposition includes both in-cloud and below-cloud scavenging. For in-cloud scavenging, particles that activate to form cloud drops are removed if those cloud drops precipitate according to the GCM cloud parameterization. Below-cloud scavenging occurs when particles of any size collide with falling raindrops. A simple first-order removal scheme (Koch et al., 1999) is applied to treat below-cloud scavenging. To account for the size resolution, an updated size-dependent washout rate constant is applied as in previous model versions (Adams and Seinfeld, 2002; Dana and Hales, 1976).

2.3 Treatment of primary marine organic aerosol

2.3.1 Primary marine organic source function

Including organics in marine sea spray required several modifications to the original GISS-TOMAS framework described in the previous sections. A combined organicinorganic sea spray source function was implemented in the form of (O'Dowd et al., 2008):

% OM = 63.015 × [Chl] + 10

5

where chlorophyll concentrations ([Chl]) are in units of mg m⁻³ and organic matter (%OM) is calculated as mass fraction of the sea spray that is organic. The correlation is applied only for chlorophyll concentrations less than 1.5 mg m⁻³. Larger concentrations are assigned a maximum OM fraction of 80%. The source function was applied globally to the existing sea-spray emissions parameterization in the GISS-TOMAS model, described by Clarke et al. (2006) and reviewed in Sect. 2.2.1 (Clarke et al., 2006; Gong, 2003; Martensson et al., 2003; Monahan, 1968, 1986). The total number and mass emissions of sea spray remain the same as previous versions of the model, with each particle containing a percentage OM according to Eq. (1). In other words, organic aerosol mass is enhanced via the O'Dowd source function by the same amount that sea-salt mass is reduced. The combined organic-inorganic source function is applied

only to submicron size ranges, and all of the primary marine organic sea spray emitted is added to the hydrophobic OC size-resolved species in the GISS-TOMAS model.

Lumping primary marine organic emissions into the hydrophobic OC model tracer assigns a κ value of 0.09 for those emissions (Table 1), which implies an average organic molar mass of around 0.280 kg mol⁻¹, assuming an organic density of 1400 kg m⁻³. While this is done to avoid the computational burden of adding another model species,

²⁵ some studies have suggested that primary marine organics consist of larger macromolecules, which have lower hygroscopicities. Moore et al. (2008) inferred an average organic molar mass of 4.3 kg mol⁻¹ (corresponding to $\kappa = 0.006$) from CCN activation

(1)

experiments of an estuarine seawater extract enriched in dissolved organics, but noted that a small amount of low-molecular-weight species may be preferentially lost during the enrichment process, so this κ -value may represent the lower limit of marine dissolved organic matter. Svenningsson et al. (2006) used aquatic Suwannee River fulvic

- ⁵ acid (SRFA) to simulate the contribution of a polyacidic marine organic aerosol component and report an average molar mass of 0.732 kg mol⁻¹ and density of 1500 kg m⁻³, which translates into a κ -value of 0.04. Despite this simplifying assumption, we note that the overall κ of the internally-mixed marine aerosol is fairly insensitive to our choice of κ for primary marine organic emissions because of the relatively high mass fraction
- and κ -value of sodium chloride. Recalling that κ of a mixture is a volume-weighted average of κ of its individual components (Petters and Kreidenweis, 2007), the effect of primary marine organic emissions is to replace ~15% of the NaCl ($\kappa = 0.98$) in sea spray with $\kappa = 0.006$. Since our approach uses $\kappa = 0.09$ for primary marine organic emissions instead of $\kappa = 0.006$, it captures 92% of the change in the κ of the mixed particle.

2.3.2 Chemical aging rates

We consider three different rates of chemical conversion from hydrophobic to hydrophilic organic aerosol. Each of these rates corresponds to a unique pair of simulations, as is described in Sect. 2.4 and outlined in Table 2. The results shown in
this paper are solely for a chemical conversion timescale of 4.5 days. This is consistent with chemical aging rates observed for marine aerosol by Maria et al. (2004), which reported an oxidation rate of 17% organic carbon per day. Other rates explored and simulated, representing upper and lower bounds on aging rates, are described in Sect. 2.4. Results from the other aging cases are not shown here since they do not differ greatly from the base case aging timescale of 4.5 days.

2.3.3 Surfactant effects

Surfactants in the organic fraction may decrease activating cloud droplet surface tension thereby facilitating CCN activation (Facchini et al., 1999). These effects were considered in some of the simulations performed here. Data taken from seawater samples off the coast of Georgia, United States, show a nonlinear decreasing trend in surface tension with increasing water-soluble organic carbon concentration (Moore et al., 2008). The relation between surface tension and carbon concentration follows the Szyskowski-Langmuir fit (Langmuir, 1917):

 $\sigma = \sigma_{\rm w} - \alpha T \ln(1 + \beta C)$

5

¹⁰ where σ_w represents the surface tension of pure water, *T* is temperature, *C* is carbon concentration in the activating droplet (mass per volume), and α and β are fitting parameters. The data used here from Moore et al. (2008) is representative of natural marine dissolved organic matter (DOM) and agrees with inferred surface tension depression calculated from Köhler theory. Other fits, such as one presented in Cavalli ¹⁵ et al. (2004), yield stronger surface tension depression values but are not considered here.

Surface tension is a parameter in the Kelvin term of Köhler theory (exponential term in Eq. 3), which determines the supersaturation (*S*) required for a particle to activate into a cloud nucleus as a function of particle wet diameter (D_{wet}). Other variables in the Kelvin term (temperature *T* in Kelvin, universal gas constant *R*, molecular weight of water M_w , and density of water ρ_w) remain unchanged. The reduced surface tension of the activating droplet weakens the Kelvin effect and results in lower critical supersaturations (S_c , the maximum of Eq. 3). The surfactants augment the CCN activity of the aerosol, leading to higher CCN concentrations at a given supersaturation. The competing Raoult effect is presented here in terms of the hygroscopicity parameter (κ),

(2)

particle wet diameter (D_{wet}), and particle dry diameter (D_{drv}).

$$S = \frac{D_{\text{wet}} - D_{\text{dry}}}{D_{\text{wet}}^3 - D_{\text{dry}}^3(1 - \kappa)} \exp\left(\frac{4M_{\text{w}}\sigma}{RT\rho_{\text{w}}D_{\text{wet}}}\right)$$

In order to apply the effect of surfactants to the GISS-TOMAS model, we modified the activation and wet deposition calculations to accept a variable surface tension instead
 of a fixed value (previously the surface tension of water). Surface tension in the model is now a function of composition and critical diameter, the latter of which is used to find the volume of water in the activating cloud droplets. In Eq. (2), carbon mass concentration is determined from the hydrophobic plus hydrophilic organic carbon per water volume in the droplet at the point of activation. Total (hydrophobic plus hydrophilic) organic aerosol mass was chosen in order to capture a maximum surface tension depression effect as well as for consistency with the measurements taken by Moore et al (2008).

2.4 Description of simulations

Twelve simulations were carried out (Table 2) for twelve months each plus three months of spin-up. F-ORG and F-BASE refer to two simulations using the same "fast" aging timescale (1.5 days) but differ in that F-ORG contains a primary marine organic source function whereas F-BASE does not. Similarly, N-ORG and N-BASE refer to two simulations in which there is no chemical aging and the entirety of the primary marine organic aerosol exists as hydrophobic organic carbon. Results in this study represent differencing between S-ORG and S-BASE, allowing for isolation of the marine organic aerosols under the "slow" aging lifetime of 4.5 days. F σ -, S σ -, and N σ -ORG and BASE refer to the same simulations described above with the exception that organic aerosol is considered to be surface active, allowing for guantification of surfactant effects.

(3)

3 Results

3.1 Global aerosol budgets

Table 3 shows annually averaged global aerosol emission rates and burdens from the GISS-TOMAS model simulations. The main difference between the slow aging case presented here (S-ORG/BASE) and the other two cases (F-ORG/BASE and N-5 ORG/BASE) is the magnitude of the aging term, so they are not shown. The third column labelled "Difference" shows values representative of only marine organic aerosol influence. As seen in the table, the total primary marine organic emission source is 17.7 Tg C yr⁻¹. For comparison, this is approximately 13% of the global monoterpene emission flux reported by Guenther et al. (1995). As expected, sea-salt emissions de-10 crease by the same amount that organic emissions increase. Globally averaged emission rates and burden of organic aerosol are higher by 30% and 16%, respectively, for the organic-enrichment simulations (S-ORG) compared to the base case (S-BASE). The main sources of hydrophilic OC are chemical aging and emission, whereas chemical aging serves as a sink for hydrophobic OC. Wet and dry deposition are the major 15

sinks for sea salt and both types of OC.

3.2 Surface mass concentration

Figure 1 shows the sea salt mass concentrations and total organic aerosol mass concentrations for the Northern Hemisphere summer (JJA) and winter (DJF) months. Max-

- imum concentrations of sea salt (panels a and b) are shown for the S-BASE simulation and are predicted to occur in the mid-to-upper latitudes in both the Northern and Southern Hemispheres. For marine organic aerosol (panels c and d), Fig. 1 represents the difference between concentrations with (S-ORG) and without (S-BASE) the primary marine organic source function. In the winter months during periods of high biological activity in the Southern Ocean, concentrations of organic aerosol reach a maximum of
- $25 \text{ activity in the Southern Ocean, concentrations of organic aerosol reach a maximum of 2 <math>\mu$ g m⁻³. For the summer months, similar maximum concentrations of primary marine

organic aerosol are reached in the northern Atlantic and Pacific Oceans. Because of the higher winds and less variability in the chlorophyll-a concentrations in the Southern Hemisphere compared to the Northern Hemisphere, the oceanic organic aerosol source remains significant during the Southern Hemisphere winter months (JJA). The globally averaged surface concentrations for primary marine organic aerosol are 0.16

and 0.12 μ g m⁻³ for DJF and JJA, respectively.

Different aging scenarios and the split between hydrophobic and hydrophilic OC are not shown because their conclusions regarding CCN and mass concentrations are quite similar to the S-ORG and S-BASE simulations. In F-ORG and F-BASE, a much higher fraction of the organic aerosol exists in the hydrophilic OC form, whereas in the N-ORG and N-BASE simulations, no organic aerosol exists in the hydrophilic form. In

every case, surface concentrations of organic aerosol are enhanced in ocean locations by up to $2 \,\mu g \,m^{-3}$.

3.3 Model evaluation against observations

10

- ¹⁵ Recently, several observational data sets of marine aerosols from remote sites with high biological activity have become available. These datasets were taken at Mace Head (53°19.5′ N, 9°54′ W), Amsterdam Island (37°49′ S, 77°33′ E), and the Azores (37°44′ N, 25°40′ W) (Pio et al., 2007; Sciare et al., 2009; Yoon et al., 2007). Model predictions are presented against the Mace Head and Amsterdam Island data sets, be-
- ing representative locations for both the Northern and Southern Hemispheres (Fig. 2). At Mace Head, the model predicts observed concentrations within a factor of two for many of the months. At Amsterdam Island, the model consistently predicts higher concentrations than the observations, but still within a factor of 5. The model comparison to the Amsterdam Island measurements is the best during the austral summer
- ²⁵ months (DJF), where the differences are around 50%. Similarly, the model shows best agreement with measurements at Mace Head in the Northern Hemisphere spring and summer. When biological activity is at a maximum, modelled and measured marine organic aerosol are in good agreement. At both Mace Head and Amsterdam Island,

model predictions are as much as a factor of 5 or 10 higher than observed values during the winter time in each hemisphere, when biological activity is lowest. Errors in the model predictions are likely the result of the simplicity of the marine organic aerosol source function. Nevertheless, in the absence of primary marine organic emissions, the model greatly underestimates organic aerosol concentrations at these sites.

3.4 Impacts of primary OC emissions on CCN concentrations

5

Figure 3a and b show the percent change in CCN(0.2%) concentrations without surface tension depression effects of the organic aerosol for Northern Hemisphere winter (DJF) and summer (JJA) months. CCN(0.2%) concentrations decrease, reflecting the decrease in aerosol solubility. The global change is less than 1% but up to 5% in the areas of high ocean biological activity. In the austral summer (DJF), CCN(0.2%) concentrations decrease by as much as 5% in the Southern Ocean. The locations of the strongest CCN decreases appear in regions containing high primary marine organic aerosol (Fig. 1).

Figure 3c and d shows the percent change of CCN(0.2%) concentrations with inclusion of surface tension depression effects of the organic aerosol for DJF and JJA months. These results follow similar trends as when surface tension effects were ignored, except that the magnitude of the changes is slightly smaller. The surface tension depression of the organic compounds in the internally mixed aerosol enhances CCN concentrations compared to the case without surfactant effects. However, the increase

in CCN due to surfactant effects is outweighed by the decrease in CCN due to lower aerosol solubility.

To put these results in perspective, Fig. 4 shows the activation curves (DJF) for aerosol in the middle of the Southern Ocean (45°0′ S, 0°0′ E) and for pure species NaCl ($\kappa = 0.98$) and hydrophilic organic aerosol ($\kappa = 0.2$). This particular location is an area of high biological production with relatively small continental pollution influence and, therefore, exhibits one of the largest percent decreases in CCN(0.2%) due to marine organic emissions. At this location, an aerosol of dry diamater 92 nm

has a critical supersaturation of 0.2% and is roughly 15% hydrophobic organic, 5% hydrophilic organic, 60% seasalt, and 20% sulfate. As expected, the activation curves for this location follow more closely the behavior of NaCl than organic aerosol, which remains the dominant component even in this area of high biological productivity. The

- activation curves for both of the organically enriched size distributions are shifted to the right of the base case, in which the composition is 5% hydrophilic organic, 75% seasalt, and 20% sulfate. The critical diameter at 0.2% supersaturation shifts only a small amount (from about 84 to 92 nm) with the marine organic enhancement. When surface tension depression effects are included, the suppression of the Kelvin effect by
- the lowered surface tension shifts the critical diameter back to around 89 nm, partially offsetting the solubility effect of marine organic aerosol on CCN(0.2%) concentrations. This critical diameter decrease from surfactant effects yields less than a 2% change on overall CCN concentrations, consistent with predicted aerosol number size distributions for the region.
- The number size distribution function for this region confirms the small (1 to 5%) changes in overall CCN. The shape of the distribution functions for the S-BASE and S-ORG cases are virtually the same (not shown), which highlights that primary marine organic aerosol does not drastically change the overall microphysics. Instead, the CCN changes result almost entirely from the shift in aerosol activation diameter.

20 4 Conclusions

25

Model simulations were performed with a modified version of the GISS-TOMAS global aerosol model to determine the sensitivity of cloud condensation nuclei to marine organic sea-spray aerosol emissions. The global emission source of primary marine organics was estimated to be 17.7 Tg yr^{-1} or 20% of the total modelled OC emission source. Modelled and measured monthly averaged surface concentrations of marine organic aerosol agree to within a factor of two or better for several months of the year, particularly during periods of biological activity. Surfactant effects were simulated in

order to obtain the complete effect of the emission source. When surfactant effects are not considered, we find that CCN(0.2%) concentrations decrease by about 5% in biologically active regions. Impacts on CCN(0.2%) concentrations are less than 0.5% over most of the ocean surface. The CCN decreases are due to the replacement of

a soluble sea-salt composition with a less soluble hydrophobic organic aerosol. The effect is relatively small due to the small (~15%) compositional changes induced by the primary organic emissions. When surfactant effects are considered, the effect of decreased solute is partially offset by the ability of surfactants to lower surface tension and enable CCN activation. Changes in CCN(0.2%) with surface tension depression
 effects considered are about -1 to -5% regionally and -0.25% globally.

Since our emission source is almost a factor of two larger than several past studies (Gantt et al., 2009; Spracklen et al., 2008; Vignati et al., 2009), our predicted CCN impacts may be correspondingly high. The 5% CCN sensitivity is not likely significant since it falls below the average CCN prediction error of 9% when using Köhler theory with size-resolved aerosol composition measurements (Sotiropoulou et al., 2006). Therefore, our results suggest that it is unlikely that primary marine organic aerosol significantly affects CCN concentrations, both globally and regionally.

15

Acknowledgements. The authors would like to thank Jeffrey Pierce for his knowledge on global sea spray emissions. RHM acknowledges support from a NASA ESS fellowship.

Discussion Pa	ACPD 11, 5757–5784, 2011			
Marine organic aerosol and CCN				
Disc	D. M. Westervelt et a			
Ilssion	Title Page			
Pane	Abstract	Introduction		
	Conclusions	References		
	Tables	Figures		
	14	►I		
	•	•		
ner	Back	Close		
_	Full Screen / Esc			
	Printer-friendly Version			
sion	Interactive Discussion			
Paner	CC O			

References

- Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107, 4370, doi:10.1029/2001jd001010, 2002.
- Adams, P. J. and Seinfeld, J. H.: Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations, Geophys. Res. Lett., 30, 1239, doi:10.1029/2002gl016303, 2003.
 - Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.: Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol, Atmos. Chem. Phys., 9, 1253– 1262, doi:10.5194/acp-9-1253-2009, 2009.
- Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203, doi:10.1029/2003jd003697, 2004.
- Cavalli, F., Facchini, M. C., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon,
- Y. J., O'Dowd, C. D., Putaud, J. P., and Dell'Acqua, A.: Advances in characterization of sizeresolved organic matter in marine aerosol over the North Atlantic, J. Geophys. Res., 109, D24215, doi:10.1029/2004jd005137, 2004.
 - Clarke, A. D., Owens, S. R., and Zhou, J. C.: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere, J. Geophys. Res.-Atmos., 111, D06202, doi:10.1029/2005jd006565, 2006.
 - Dana, M. T. and Hales, J. M.: Statistical Aspects of Washout of Polydisperse Aerosols, Atmos. Environ., 10, 45–50, 1976.
 - Del Genio, A. D., Yao, M.-S., Kovari, W., and Lo, K. K.-W.: A Prognostic Cloud Water Parameterization for Global Climate Models, J. Climate, 9, 270–304, doi:10.1175/1520-0442(1006)000 c0270: A BCWPE> 2.0 CO:2, 1006
- ²⁵ 0442(1996)009<0270:APCWPF>2.0.CO;2, 1996.
 - El-Zanan, H. S., Lowenthal, D. H., Zielinska, B., Chow, J. C., and Kumar, N.: Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples, Chemosphere, 60, 485–496, 2005.

Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257–259, 1999.

Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E. D., de Leeuw, G., Martino, M., Woeltjen, J., and

30

10

20

O'Dowd, C. D.: Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates, Geophys. Res. Lett., 35, doi:10.1029/2008gl034210, 2008.

- Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol -
- ⁵ Part 1: Source fluxes, Atmos. Chem. Phys., 10, 9295–9317, doi:10.5194/acp-10-9295-2010, 2010.

Gantt, B., Meskhidze, N., and Kamykowski, D.: A new physically-based quantification of marine isoprene and primary organic aerosol emissions, Atmos. Chem. Phys., 9, 4915–4927, doi:10.5194/acp-9-4915-2009, 2009.

- Gogou, A. I., Apostolaki, M., and Stephanou, E. G.: Determination of organic molecular markers in marine aerosols and sediments: one-step flash chromatography compound class fractionation and capillary gas chromatographic analysis, J. Chromatogr. A, 799, 215–231, 1998.
 Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochem. Cy., 17, 1097, doi:10.1029/2003gb002079, 2003.
- Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, doi:10.1029/94jd02950, 1995.

Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R., and Travis,

- L.: Efficient 3-Dimensional Global-Models for Climate Studies Model-I and Model-II, Mon. Weather Rev., 111, 609–662, 1983.
 - Koch, D., Jacob, D., Tegen, I., Rind, D., and Chin, M.: Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model, J. Geophys. Res.-Atmos., 104, 23799–23822, 1999.
- Langmuir, I.: The construction and fundamental properties of solids and liquies. II. Liquids, American Chemical Society, 39, 1848–1906, 1917.
 - Lee, Y. H. and Adams, P. J.: Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations, Atmos. Chem. Phys., 10, 2129–2144, doi:10.5194/acp-10-2129-2010, 2010.
- ³⁰ Lee, Y. H. and Adams, P. J.: An efficient global cloud condensation nuclei model based on the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics algorithm, Atmos. Chem. Phys., in preparation, 2011.

Maria, S. F., Russell, L. M., Gilles, M. K., and Myneni, S. C. B.: Organic aerosol

	AC	ACPD				
	11, 5/5/-	11, 5757–5784, 2011				
-	Marine aerosol	Marine organic aerosol and CCN				
7	D. M. Wes	D. M. Westervelt et al.				
2	Title	Title Page				
5	Abstract	Introduction				
_	Conclusions	References				
7	Tables	Figures				
2	14	▶1				
	•	Þ				
5	Back	Close				
_	Full Sci	Full Screen / Esc				
	Printer-friendly Version					
5	Interactive	Interactive Discussion				
5	C	O BY				

e, 306, 1921–1924,
oon, H. C.: Laboratory
duction, J. Geophys.Discussion
PaperDiscussion
duction, J. Geophys.Discussion
PaperJ. Geophys. Res., 73,
d wave disruption, in:
surface tension, and
CN activity, Geophys.Marine organic
aerosol and CCNJ., Mihalopoulos, N.,
N., O'Dowd, C., van
of Organic Aerosols,Discussion
Paper

Discussion Paper

Discussion Paper

Tables

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Figures

growth mechanisms and their climate-forcing implications, Science, 306, 1921–1924, doi:10.1126/Science.1103491, 2004.

- Martensson, E. M., Nilsson, E. D., de Leeuw, G., Cohen, L. H., and Hansson, H. C.: Laboratory simulations and parameterization of the primary marine aerosol production, J. Geophys.
- ⁵ Res., 108, 4297, doi:10.1029/2002jd002263, 2003.

30

- Meskhidze, N. and Nenes, A.: Phytoplankton and cloudiness in the Southern Ocean, Science, 314, 1419–1423, doi:10.1126/Science.1131779, 2006.
- Monahan, E. C.: Sea Spray as a Function of Low Elevation Wind Speed, J. Geophys. Res., 73, 1127–1137, 1968.
- ¹⁰ Monahan, E. C.: A model of marine aerosol generation via whitecaps and wave disruption, in: Oceanic whitecaps, 167–193, 1986.
 - Moore, R. H., Ingall, E. D., Sorooshian, A., and Nenes, A.: Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity, Geophys. Res. Lett., 35, L07801, doi:10.1029/2008gl033350, 2008.
- Myriokefalitakis, S., Vignati, E., Tsigaridis, K., Papadimas, C., Sciare, J., Mihalopoulos, N., Facchini, M., Rinaldi, M., Dentener, F., Ceburnis, D., Hatzianastasiou, N., O'Dowd, C., van Weele, M., and Kanakidou, M.: Global Modeling of the Oceanic Source of Organic Aerosols, Advances in Meteorology, 939171, doi:10.1155/2010/939171, 2010.

O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S.,

- 20 Yoon, Y. J., and Putaud, J. P.: Biogenically driven organic contribution to marine aerosol, Nature, 431, 676–680, doi:10.1038/Nature02959, 2004.
 - O'Dowd, C. D., Langmann, B., Varghese, S., Scannell, C., Ceburnis, D., and Facchini, M. C.: A combined organic-inorganic sea-spray source function, Geophys. Res. Lett., 35, L01801, doi:10.1029/2007gl030331, 2008.
- Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, doi:10.5194/acp-7-1961-2007, 2007.

Pierce, J. R. and Adams, P. J.: Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt, J. Geophys. Res.-Atmos., 111, D06203, doi:10.1029/2005jd006186, 2006.

Pierce, J. R., Chen, K., and Adams, P. J.: Contribution of primary carbonaceous aerosol to cloud condensation nuclei: processes and uncertainties evaluated with a global aerosol microphysics model, Atmos. Chem. Phys., 7, 5447–5466, doi:10.5194/acp-7-5447-2007,

2007.

10

- Pio, C. A., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanchez-Ochoa, A., Kasper-Giebl, A., Gelencser, A., Preunkert, S., and Schock, M.: Climatology of aerosol composition (organic versus inorganic) at nonur-
- ban sites on a west-east transect across Europe, J. Geophys. Res.-Atmos., 112, D23S02, doi:10.1029/2006jd008038, 2007.
 - Prather, M. J.: Numerical Advection by Conservation of 2nd-Order Moments, J. Geophys. Res.-Atmos., 91, 6671–6681, 1986.

Raymond, T. M. and Pandis, S. N.: Formation of cloud droplets by multicomponent organic particles, J. Geophys. Res.-Atmos., 108, 4469, doi:10.1029/2003jd003503, 2003.

- Roelofs, G. J.: A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation, Atmos. Chem. Phys., 8, 709–719, doi:10.5194/acp-8-709-2008, 2008.
 - Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T. S.: Carbohydratelike composition of submicron atmospheric particles and their production from ocean bubble
- ¹⁵ bursting, P. Natal. Acad. Sci. USA, 107, 6652–6657, doi:10.1073/Pnas.0908905107, 2010. Sciare, J., Favez, O., Sarda-Esteve, R., Oikonomou, K., Cachier, H., and Kazan, V.: Longterm observations of carbonaceous aerosols in the Austral Ocean atmosphere: Evidence of a biogenic marine organic source, J. Geophys. Res.-Atmos., 114, D15302, doi:10.1029/2009jd011998, 2009.
- Sotiropoulou, R. E. P., Nenes, A., Adams, P. J., and Seinfeld, J. H.: Cloud condensation nuclei prediction error from application of Köhler theory: Importance for the aerosol indirect effect, J. Geophys. Res., 112, D12202, doi:10.1029/2006JD007834, 2007.

Sorjamaa, R. and Laaksonen, A.: The influence of surfactant properties on critical supersaturations of cloud condensation nuclei, J. Aerosol Sci., 37, 1730–1736, 2006.

- Spracklen, D. V., Arnold, S. R., Sciare, J., Carslaw, K. S., and Pio, C.: Globally significant oceanic source of organic carbon aerosol, Geophys. Res. Lett., 35, L12811, doi:10.1029/2008gl033359, 2008.
 - Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., Decesari, S., Fuzzi, S., Zhou, J., Mønster, J., and Rosenørn, T.: Hygroscopic growth and critical super-
- ³⁰ saturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance, Atmos. Chem. Phys., 6, 1937–1952, doi:10.5194/acp-6-1937-2006, 2006.
 - Tervahattu, H., Hartonen, K., Kerminen, V.-M., Kupiainen, K., Aarnio, P. I., Koskentalo, T., Tuck, A. F., and Vaida, V.: New evidence of an organic layer on marine aerosols, J. Geophys. Res.,

	ACPD				
	11, 5757–5784, 2011				
	Marine organic aerosol and CCN				
	D. M. Westervelt et al.				
	Title Page				
	Abstract	Introduction			
	Conclusions	References			
	Tables	Figures			
	14	۶I			
	•	•			
	Back	Close			
	Full Screen / Esc				
	Printer-friendly Version				
	Interactive Discussion				
CC O					

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

107, 4053, doi:10.1029/2000jd000282, 2002a.

15

20

- Tervahattu, H., Juhanoja, J., and Kupiainen, K.: Identification of an organic coating on marine aerosol particles by TOF-SIMS, J. Geophys. Res.-Atmos., 107, 4319, doi:10.1029/2001jd001403, 2002b.
- ⁵ Twomey, S. A.: Pollution and Cloud Albedo, EOS T.-Am. Geophys. Un., 58, 797–797, 1977. Vignati, E., Facchini, M. C., Rinaldi, M., Scannell, C., Sciare, J., Kanakidou, M., Myriokefalitakis, S., Dentener, F., and O'Dowd, C.: Impact of global emissions of primary marine organic aerosols, Geochim. Cosmochim. Ac., 73, A1383–A1383, 2009.

Yao, M.-S. and Del Genio, A. D.: Effects of Cloud Parameterization on the Simulation

- of Climate Changes in the GISS GCM, J. Climate, 12, 761–779, doi:10.1175/1520-0442(1999)012<0761:EOCPOT>2.0.CO;2, 1999.
 - Yoon, Y. J., Ceburnis, D., Cavalli, F., Jourdan, O., Putaud, J. P., Facchini, M. C., Decesari, S., Fuzzi, S., Sellegri, K., Jennings, S. G., and O'Dowd, C. D.: Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols, J. Geophys. Res.-Atmos., 112, D04206, doi:10.1029/2005id007044, 2007.
- Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H., Canagaratna, M. R., and Jimenez, J. L.: Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry, Environ. Sci. Technol., 39, 4938– 4952, 10.1021/es048568I, 2005.

Discussion Paper **ACPD** 11, 5757–5784, 2011 Marine organic aerosol and CCN **Discussion** Paper D. M. Westervelt et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper **Figures** Back Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

Table 1. Hygroscopicity parameters, κ , used in this study.

Species	К
NaCl	0.98
Sulfate	0.72
Mineral dust	0.03
Elemental carbon	0.02
Hydrophilic OC	0.20
Hydrophobic OC	0.09

Discussion Pa	ACPD 11, 5757–5784, 2011				
iper	Marine aerosol	Marine organic aerosol and CCN			
Discu	D. M. Wes	D. M. Westervelt et al.			
ssion F	Title	Title Page			
aper	Abstract	Introduction			
	Conclusions	References			
Disc	Tables	Figures			
ussior	I	►I			
n Pap	•	•			
ber	Back	Close			
—	Full Scr	Full Screen / Esc			
Discuss	C Printer-friendly Version				
sion I	Interactive	Discussion			
aper	œ	() BY			

Table 2.	Model	simulations	performed.
----------	-------	-------------	------------

Description	"Fast"aging (1.5 d)	"Slow" aging (4.5 d)	No Aging
Marine organic emissions	F-ORG	S-ORG	N-ORG
No marine organics	F-BASE	S-BASE	N-BASE
Marine organic emissions with surfactant	Fσ-ORG	Sσ-ORG	Nσ-ORG
No marine organics with surfactant	Fσ-BASE	Sσ-BASE	Nσ-BASE

Discussion Par	ACPD 11, 5757–5784, 2011					
oer	Marine aerosol	Marine organic aerosol and CCN				
Discus	D. M. Wes	D. M. Westervelt et al.				
ssion P	Title	Page				
aper	Abstract	Introduction				
_	Conclusions	References				
Discu	Tables	Figures				
loissi	14	►I				
D Par	•	•				
Der	Back	Close				
_	Full Scr	een / Esc				
Discuss	Printer-frie	ndly Version				
sion	Interactive	Interactive Discussion				
Daper	œ	() BY				

Table 3. Global aerosol budgets for marine organic aerosol simulations.

BURDEN (Tg)	S-ORG	S-BASE	DIFFERENCE
Hydrophobic OC Hydrophilic OC Sea Salt	0.22 0.71 13.39	0.16 0.64 13.52	0.06 0.07 -0.13
LIFETIME (d)	S-ORG	S-BASE	
Hydrophobic OC Hydrophilic OC Sea Salt	1.69 5.31 0.67	1.91 5.33 0.68	- - -
EMISSIONS (Tg yr ⁻¹)	S-ORG	S-BASE	DIFFERENCE
Hydrophobic OC Hydrophilic OC Sea Salt	48.2 30.5 7294	30.5 30.5 7312	17.7 0 –18
AGING (Tg yr ⁻¹)	S-ORG	S-BASE	
Hydrophobic OC	18.3	13.2	5.1
WET DEPOSITION (Tg yr ⁻¹)	S-ORG	S-BASE	DIFFERENCE
Hydrophobic OC Hydrophilic OC Sea Salt	28.7 47.1 2621	16.6 42.3 2638	12.1 4.8 –17
DRY DEPOSITION (Tg yr ⁻¹)	S-ORG	S-BASE	DIFFERENCE
Hydrophobic OC Hydrophilic OC Sea Salt	1.17 1.65 4669	0.661 1.44 4670	0.509 0.21 -1

Fig. 1. Total sea salt (panels **A** and **B**) and marine organic aerosol (panels **C** and **D**) mass concentrations (in μ g m⁻³) at the surface for a three-month seasonal average over December, January, and February (panels **A** and **C**), and June, July, and August (panels **B** and **D**). Concentrations are calculated at a standard a temperature of 273 K and pressure of 1000 hPa.

Fig. 2. Model and measurement comparison of total organic aerosol concentrations at two locations. Solid lines represent observations at Mace Head (black) and Amsterdam Island (red), and long dashed lines represent modelled values with marine organic enhancement at Mace Head (black) and Amsterdam Island (red). Short dashed lines represent model predictions at Mace Head (black) and Amsterdam Island (red). Short dashed lines represent model predictions at Mace Head (black) and Amsterdam Island (red) for simulations without the marine organic source function. Model values are reported for total organic aerosol, both hydrophobic and hydrophilic. Measured data is in the form of WIOC + WSOC.

Fig. 3. Relative change (in percent) in CCN(0.2%) concentrations ignoring surfactant effects (panels A and B) and with surfactant effects (panels C and D) of marine organic aerosols for a three-month seasonal average over December, January, and February (panels A and C), and June, July, and August (panels B and D).

Fig. 4. S_c (critical supersaturation) versus D_{dry} (dry aerosol diameter) plot for modeled marine aerosols in the Southern Ocean (45°0′ S, 0°0′ E). The black line represents model results for base case marine aerosols (no marine organic emissions). The green and red lines represent model output for organically enhanced marine aerosols with and without surface tension depression effects included. The magenta and blue lines represent pure species of hydrophilic OC and NaCl, respectively, and provide a frame of reference for our model simulations.

