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Abstract

A new method is proposed to simplify complex atmospheric chemistry reaction
schemes, while preserving SOA formation properties, using genetic algorithms. The
method is first applied in this study to the gas-phase α-pinene oxidation scheme. The
simple unified volatility-based scheme (SUVS) reflects the multi-generation evolution5

of chemical species from a near-explicit master chemical mechanism (MCM) and, at
the same time, uses the volatility-basis set speciation for condensable products. The
SUVS also unifies reactions between SOA precursors with different oxidants under dif-
ferent atmospheric conditions. A total of 412 unknown parameters (product yields of
parameterized products, reaction rates, etc.) from the SUVS are estimated by using ge-10

netic algorithms operating on the detailed mechanism. The number of organic species
was reduced from 310 in the detailed mechanism to 31 in the SUVS. Output species
profiles, obtained from the original subset of the MCM reaction scheme for α-pinene
oxidation, are reproduced with maximum fractional error at 0.10 for scenarios under
a wide range of ambient HC/NOx conditions. Ultimately, the same SUVS with updated15

parameters could be used to describe the SOA formation from different precursors.

1 Introduction

Aerosols play an important role in atmospheric chemistry, with impacts on local, re-
gional and global air quality and human health exposure. Sulfate has been known to
be a dominant inorganic component, sometimes 50% or more, in particles with aerody-20

namic diameter less than 2.5 µm (PM2.5) in the eastern United States (Seinfeld, 2004).
Recent particle mass spectrum measurements on both aircrafts and at ground level
monitoring sites (Zhang et al., 2007; Jimenez et al., 2009) indicate that organic to sul-
fate ratio is about 1 : 1 in tropospheric fine particles (Hallquist et al., 2009). Organic
aerosols are classified as primary organic aerosols (POA) and secondary organic25

aerosols (SOA). The POA is formed directly from primary emissions, such as fossil
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fuel combustion, biomass burning, and biogenic materials (Sun and Ariya, 2006). The
SOA is formed via gas/particle transfer (Pankow, 1994) or heterogeneous reactions
(Jang et al., 2002; Tolocka et al., 2004; Kalberer et al., 2004; Liggio et al., 2005) of
the organic products from the atmospheric oxidation of biogenic and/or anthropogenic
volatile organic compounds (VOCs). According to the gas/particle partitioning theory5

(Pankow, 1994), the products with low volatility remain in the aerosol phase and they
are also called condensable products.

There are two major approaches used to model SOA formation which have been
summarized in a recent review (Hallquist et al., 2009). The first approach is a two-
product gas/particle partitioning model (Odum et al., 1996), in which two surrogate10

species are used to describe hundreds of oxidation products from each VOC precursor.
In this model, two parameters for mass-based stoichiometric yields (α1 and α2) and two
for partitioning coefficients (Kp,1 and Kp,2) are obtained by least square fitting of smog
chamber measurements. In this empirical model, the two surrogate products in the
gas phase are described by a one-step chemical reaction. This simple model is easy15

to implement in a chemical transport model, and it has been widely used to study
SOA formation in regional (Andersson-Skold and Simpson, 2001; Schell et al., 2001;
Pun et al., 2003; Slowik et al., 2010) and global models (Chung and Seinfeld, 2002;
Tsigaridis and Kanakidou, 2003).

The second approach (Hallquist et al., 2009) is to use chemical mechanisms, such20

as the Master Chemical Mechanism (MCM) (Jenkin et al., 1997; Saunders et al., 2003;
Jenkin et al., 2003) or the self-generating mechanism (Aumont et al., 2005), to describe
the gas phase multi-generational chemical evolutions of condensable organic products.
The total numbers of species and reactions from the explicit chemical mechanisms are
often on the order of thousands. These explicit gas-phase chemical mechanisms are25

coupled with the gas/particle partitioning model (Pankow, 1994) to describe SOA for-
mation (Stroud et al., 2004; Jenkin, 2004; Johnson et al., 2006; Camredon et al., 2007;
Capouet et al., 2008; Xia et al., 2008; Kelly et al., 2010) from the oxidation of a variety
of VOCs, such as toluene, α- and β-pinene, and others. The major difference between
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the simple model and explicit model lies in the number of chemical species and reac-
tions involved. Although some modifications were made for the one-step, two-product
model approach to account for some simple interactions between different products
in both gas and aerosol phases (Tsigaridis and Kanakidou, 2003; Chan et al., 2007),
the explicit mechanism is more precise in describing complex chemistry for the multi-5

generation products in a SOA system. Nevertheless, explicit chemical mechanisms
have been used to study SOA formation using zero-dimensional box models rather
than three-dimensional regional models, due to the computational burden for solving
the set of differential equations for thousands of species and reactions.

The purpose for this work is to develop a methodology for creating new simple chemi-10

cal reaction mechanisms suitable for studying SOA formation in a 3-dimensional chem-
ical transport model. This simplified chemical mechanism should also simulate the
same evolution of chemical species as provided by a more explicit chemical mecha-
nism. Two requirements are needed to meet this goal: (1) the new chemical reaction
mechanism must have a small number of species; and (2) the new chemical mecha-15

nism should mimic a detailed chemical reaction mechanism to describe chemical inter-
actions among different species.

For the first requirement, the volatility-basis set (VBS) approach (Donahue et al.,
2006) provides a good framework to use a few lumped species to represent a large
number of chemicals in the ambient atmosphere. Donahue et al. (2006) first extended20

the simple two-product model into a multiple (up to 9) lumped product model. The ef-
fective saturation concentrations C∗

i for each lumped product is assumed to be fixed,
rather than data-fitted varied values in the two-product model (Odum et al., 1996).
Specifically, the fixed C∗

i of the multiple lumped products are separated by one or-
der of magnitude each. This means a large number of chemical species from smog25

chamber experiments could be represented by multiple lumped products. As an im-
proved method over the two-product model for organic aerosol formation, the VBS ap-
proach unifies condensable products from different oxidation systems under the frame-
work of the same fixed volatility distribution. For example, the same lumped products
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could be used to represent the oxidation products between α-pinene+O3 system and
toluene+OH system (Lane et al., 2008; Donahue et al., 2009).

However, to address the issue regarding the second requirement to obtain a simple
chemical system that mimics a detailed chemical mechanism, the original chemical
reaction scheme (Donahue et al., 2006) via the VBS approach is not sufficient for5

such a purpose. This is because the reaction system in the VBS approach, similar to
those from the two-product approach, is basically a one-step reaction system, although
some simple chemical aging process has been taken into account (Farina et al., 2010)
to improve this method. In this paper, a new chemical reaction scheme using the VBS
concept is proposed. Essentially, the new reaction scheme is constructed by following10

chemical reaction protocols (Atkinson and Arey, 2003; Saunders et al., 2003; Kroll and
Seinfeld, 2008) for the organic compounds in the ambient atmosphere.

Equally important in developing the new reaction scheme, we also need to determine
chemical parameters, such as chemical reaction rate coefficients and product yields.
First, for this purpose, the MCM is used as a benchmark to provide concentration pro-15

files for detailed chemical species under a wide range of conditions. Next, the output
concentrations for the detailed MCM chemical species are grouped, according to their
volatility distributions, into a small number of lumped species in the new chemical re-
action scheme. Finally, the computed profiles for the lumped species are treated as
“experimental data” for data fitting of a large number of unknown chemical parame-20

ters (product yields and reaction rate constants) in the newly derived simple reaction
scheme. This is accomplished here using genetic algorithms, rather than using tradi-
tional least square fitting methods for a small number (less than 12) of unknowns in the
original one-step VBS reaction scheme (Stanier et al., 2008).

This paper is organized as follows. First, we give a brief introduction on the VBS25

approach in Sect. 2. In Sect. 3, we propose a new simple reaction scheme for SOA
formation. In Sect. 4, we run the MCM v3.1 under a wide range of conditions to ob-
tain the “experimental data” for the new reaction scheme. In Sect. 5, we introduce
the genetic algorithms method to derive the fitted chemical parameters for the new
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simple reaction scheme. Finally, we present model results and dicussions on this new
chemical mechanism framework for SOA formation.

2 Volatility-based set (VBS) approach for organic aerosol formation

In this section, we give a brief introduction on the two-product model for SOA formation,
which is followed by a concise description of the volatility-based set approach. Next,5

four issues about the VBS approach will be raised, and these four issues motivate our
work to develop a new chemical scheme in this paper.

Pankow (1994) proposed a theoretical absorptive model to study organic aerosols
phase partitioning, and this absorptive model was applied by Odum et al. (1996) to
describe SOA formation using smog chamber experimental data. According to Odum10

et al. (1996), a chemical oxidation system for SOA formation can be expressed as:

VOC+Ox k−→α1P1+α2P2+ ...+αnPn (R1)

where VOC represents a volatile organic compound precursor, such as α-pinene,
toluene, isoprenen etc. The Ox represents any of the oxidants, such as O3, OH, NO3,
and even Cl (Cai and Griffin, 2006). P1, P2, ..., Pn are n number of condensable prod-15

ucts; α1, α2, ..., αn are mass-based stoichiometric yields for the n products; Kp,1, Kp,2,

..., Kp,n, are the corresponding gas/particle partitoning coefficients (m3/µg) in which

Kp,i =
Cp
i /C

g
i

COA
(1)

where Cp
i and Cg

i are aerosol phase and gas phase concentrations (µg/m3) for the i th

product, COA is the total aerosol mass concentration (µg/m3). By using this framework,20

the SOA yield (Y ) can be expressed as:

Y =
∆MOA

∆HC
=COA

n∑
i=1

αiKp,i

1+COAKp,i
=

n∑
i=1

αi

1+C∗
i /COA

(2)
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In order to fit smog chamber experiemental data, Odum et al. (1996) found that two
surrogate products are enough to describe the shape of the SOA yield curve for one
oxidation system, and a total of four parameters (α1, α2, Kp,1, and Kp,2) are obtained
through a least square fitting method. This is the so called “two-product model” for
SOA formation. But the two-product model has difficulty describing the wide range5

of organic compounds in the ambient atmosphere, especially for those highly volatile
organic compounds (Donahue et al., 2006).

To address this issue, Donahue et al. (2006) proposed the use of the VBS approach
to study organic aerosol formation from Reaction (R1), in which the volatilities C∗

i for
all n (up to 9) lumped products are assumed to be fixed, rather than variables derived10

through the least square fitting method in the two-product model. Still, the mass-based
stochiometric yields (α1, α2, ..., αn) are obtained by using linear least square fitting of
the smog chamber experimental SOA yield curves (Stanier et al., 2008).

The VBS approach can cover the wide range of volatilities for the organic products
found in the atmosphere. In addition, the VBS approach can also be used to map15

all oxidation products from different oxidation systems into one framework because
volatilities for all organic products are lumped into a fixed framework. Chemical trans-
formations between different lumped products, such as aging through OH oxidation,
could be described by this scheme (Donahue et al., 2006). This approach was used to
study organic aerosol formation from both primary and secondary sources (Robinson20

et al., 2007; Lane et al., 2008).
We suggest here four possible improvements to the existing VBS approach. First,

as mentioned earlier in the introduction, the reaction scheme in React. (R1) for the
VBS approach is still a one-step reaction system. The complex chemical reactions for
the products, especially for those multi-generational products, would not be captured25

well by using a one-step reaction scheme in a period longer than the typical duration
(a few hours) for a smog chamber experiement for SOA formation. Second, large
uncertainties still exist for the mass-based stoichiometric yields derived via least square
fitting, especially for those yields corresponding to the high volatile products (Presto

3891

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/3885/2011/acpd-11-3885-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/3885/2011/acpd-11-3885-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 3885–3935, 2011

Development of
a SUVS for SOA
formation using

genetic algorithms

A. G. Xia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and Donahue, 2006; Pathak et al., 2007). The uncertainties are mainly caused by using
total SOA yield as the only one important constraint for the data fitting process. Third,
the set of parameters for a single reaction system change when the driving conditions
change. For example, five different sets of VBS parameterizations were developed for
ozonlysis of α-pinene (Pathak et al., 2007) under five different conditions. Fourth, the5

reaction scheme between a VOC precursor, say α-pinene, with different oxidants, such
as OH, NO3, or O3, are not coupled in the fitting process, while the actual precursor
VOC may react with both O3 and OH during the day and NO3 and O3 at night. The
original least square fitting tries to isolate parameters for each reaction separately but
they are instrinctly coupled and require higher order fitting techniques.10

Motivated by the four points mentioned above, we develop a new approach to write
and parameterize the reaction scheme under which α-pinene oxidation forms condens-
able products. This new VBS scheme is a multi-step reaction system, which is con-
structed by following standard organic reaction protocols. The chemical profiles of the
new reaction scheme mimic those from a detailed chemical mechanism, and demon-15

strate the power of this approach.

3 Development of a simple unified volatility-based scheme (SUVS)

In this section, we give an overview of the general features for ambient atmospheric ox-
idation. Then, based on these general features, we construct a simple unified volatility-
based scheme (SUVS) for organic aerosol formation.20

Oxidation reactions of ambient organic species alter their volatility, either to increase
it through cleavage of carbon-carbon bond, or to decrease it through addition of other
functional groups. In recent years, exploration of particle-phase organic chemical re-
actions, including heterogeneous reaction and multiphase reactions, has been very
active (Jang et al., 2002; Tolocka et al., 2004; Kalberer et al., 2004; Gao et al., 2004;25

Iinuma et al., 2004; Liggio et al., 2005). A review on current understanding of chemical
kinetics and reactions in the gas and aerosol phases for SOA formation is given by Kroll
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and Seinfeld (2008). In this work, as a first step to explore the new chemical reaction
scheme and fitting method, we focus our study on atmospheric gas phase reactions
only.

3.1 Brief review of atmospheric oxidation

Gas phase chemical reaction pathways vary with individual SOA precursors because5

of their unique molecular structures. Only a small fraction of reactions for a few ambient
VOCs have been studied extensively. A number of generic structure-activity relation-
ships derived from the experimental studies are used as protocols to infer chemical
parameters and subsequent products for those larger VOCs during construction of an
explicit chemical mechanism such as the MCM (Jenkin et al., 1997; Saunders et al.,10

2003; Aumont et al., 2005).
An excellent review on atmospheric oxidation of a wide range of VOCs can also

be found in Atkinson and Arey (2003). Here, we only give a brief overview of those
aspects of oxidation mechanisms relevant to SOA formation. First, the initial gas phase
chemical reaction of a VOC species with primary oxidants, such as OH, NO3, and O3,15

leads to the formation of alkyl radicals (R) or Criegee intermediates and then rapidly to
form organic peroxy radicals (RO2). Subsequent reactions for RO2 radicals and alkoxy
radicals (RO) are very important for SOA formation, since these may lead to lower
volatility products. In the troposphere, RO2 radicals react with (1) NO, (2) RO2, (3)
NO3, (4) HO2, and (5) NO2.20

1. RO2+NO: The RO2 radicals react with NO to form an RO radical or an organic
nitrate (RONO2). In the atmosphere, the branching of RO2 with NO competes with
the reaction of RO2+HO2 to form ROOH. For most SOA reaction systems, like
those for light aromatics and monoterpenes (Song et al., 2005), the volatility of
RONO2 is comparitively higher than that of the ROOH. As a result, for α-pinene,25

higher SOA mass is expected to formed under lower NOx condition.

2. RO2+RO2: Under ambient conditions, the self reaction and cross reactions of
3893
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RO2+RO2 form RO and OH via chain propagation or carbonyl, alcohol, or or-
ganic peroxides (ROOR) via chain-termination. The carbonyl and alcohol are
more volatile than the ROOR (Ziemann, 2002) and those formed ROOH from
RO2+HO2.

3. RO2+NO3: The reaction of RO2+NO3 is believed to be an important loss pro-5

cess at night time (Kirchner and Stockwell, 1996). Based on available information
(Lightfoot et al., 1992; Biggs et al., 1994, 1995; Daele et al., 1995), the reaction
of RO2 with NO3 is assumed to produce alkoxy radicals (RO) and NO2 (Saunders
et al., 2003).

4. RO2+HO2: The RO2 radicals may react with HO2 to form a low-volatility product10

of organic peroxide (ROOH). Organic peroxides have been predicted to be an
important fraction of total SOA formed in the MCM (Bonn et al., 2004; Xia et al.,
2008).

5. RO2+NO2: The reaction of RO2 radicals with NO2 forms peroxynitrates
(ROONO2), which are temporary reservoirs for RO2 and NO2, because of life-15

times on the order of seconds at 298 K.

Meanwhile, the reaction for the RO radical has two major chemical pathways: (1) dis-
sociation through cleavage of carbon-carbon bond or H-abstraction with both pathways
forming a carbonyl and an alkyl radical (R), which is rapidly converted to RO2, or HO2,
(2) isomerization to form another alkyl radical (R′) via a 1,5-hydrogen shift.20

The reaction pathways described above lead to the formation of a wide range of oxy-
genated products, such as carbonyl compounds, organic nitrates (RONO2), hydroper-
oxides (ROOH), alcohols (ROH), carboxylic acid (RC(O)OH). As reviewed in Atkinson
and Arey (2003), the degradation for these newly formed compounds include photolysis
and further reactions with OH and NO3. Specifically, the photolysis of the oxygenated25

compounds leads to the formation of RO, and the reactions of the oxygenated com-
pounds with OH and NO3 generally result in the formation of RO2.
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3.2 A simple unified volatility-based scheme (SUVS)

A wide variety of starting organic compounds and possible complex chemical reaction
pathways outlined in the preceding subsection lead to a myriad of compounds formed
in the ambient atmosphere. As mentioned earlier, “volatility” is an important parameter
to describe organic aerosol formation. Volatility moderates a compound’s existence in5

gas- and aerosol phases. To model evolution of a chemical system, a lumping method
based on volatility is an effeictive way to reduce the number of organic species (Bian
and Bowman, 2005).

In this work, we first lump organic compounds in a chemical system into 10 volatility-
based surrogate condensable products termed volatility bins: S01, S02, ..., S10. The10

volatilities for the 10 compounds span from 10−2 to 107 µg/m3 at the reference tem-
perature of 298 K: S01 is in volatility bin 1 (10−2 to 10−1 µg/m3), S02 is in volatility bin
2 (10−1 to 100 µg/m3), ... and S10 is in volatility bin 10 (106 to 107 µg/m3). Note that
the organic compounds, such as the formaldehyde, acetaldehyde, with volatility higher
than 107 µg/m3 are excluded for the lumping process. Also note that the use of “volatil-15

ity bin” terminology is taken directly from Donahue et al. (2006), and the nomenclature
of the compounds in this paper is similar to the one used in their works, in which up to
9 products were assumed.

As mentioned in Sect. 2, a chemical mechanism without RO2 and RO is insufficient
to describe chemical evolution of a complex chemical system over time lasting longer20

than the few hours duration for a typical smog chamber experiement for SOA formation.
Therefore, we assume that a large number of RO2 in the chemical system are grouped
into 10 surrogates: X01O2, X02O2, ..., X10O2. This same lumping approach is also ap-
plied to the RO for 10 surrogates: X01O, X02O, ..., X10O. For convenience, we use XiiO2
to represent the 10 RO2 surrogates and Xi iO for the 10 RO surrogates. As a result,25

hundreds and/or thousands of chemical species in a detailed chemical mechanism are
reduced to only 30 organic compounds in 10 volatility bins in a simple reaction scheme,
except the starting organics. Next, we will describe the simple unified volatility-based
scheme (SUVS), which is constructed based on the protocols outlined in Sect. 3.1.
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In this work, the SUVS is constructed for one single starting organic compound of
α-pinene which undergoes atmospheric oxidation with three oxidants: OH, O3, and
NO3. We assume the oxidation of the starting organic, represented by XHC, leads to
the formation of 10 surrogate products: X01O2, X02O2, ..., X10O2. The reaction rate
coefficients for the three initial reactions can be obtained from the literature or any5

reliable detailed chemical mechanism. A total of 30 stoichiometric coefficients from
ww(01) to ww(30) for the 10 surrogates are assigned, as shown in reaction scheme
part 1 in Fig. 1.

Next, each XiiO2 radical can react with NO (as outlined in the generic reaction mech-
anism description in Sect. 3.1) to form an alkoxy (RO) radical or an organic nitrate10

(RONO2). As shown in reaction scheme part 2 in Fig. 1, we assume the newly formed
product of RO belongs to the same volatility bin of XiiO2, i.e., XiiO2+NO→XiiO. When
the organic nitrates are formed from the reaction of XiiO2+NO, we assume the volatil-
ity for organic nitrate are distributed into three neighboring volatility bins: (i i −1)th, i i -
th, and (i i +1)-th volatility bins. i.e., XiiO2+NO→w(ii,1)Sii−1+w(ii,2)Sii+w(ii,3)Sii+1,15

where w(ii,1), w(ii,2), and w(ii,3) are the stochiometric coefficients for the corresponding
three products. Note that, information for compounds with different functional groups,
such as hydroperoxy (ROOH), nitrate (RONO2), peroxynitrates (ROONO2), alcohols
(ROH), and carboxylic acid (RC(O)OH), are replaced by volatility indexes. The reac-
tion rate coefficients for the 10 reactions are expressed as k(01), k(02), ..., k(10) in20

Fig. 1. Also note that in this work, for simpility, we use only three neighboring volatility
products, rather than the whole suite of 10 products.

For demonstration purpose, we use compounds in the 5th volatility bin as reac-
tants in the following description. Similarly, X05O2 reacts with RO2. Because the
permutation and cross reactions of the RO2 lead to alkoxy radicals (RO) and car-25

bonyls and alcohols, the products are then represented by X05O radical and three
condensable species: S04, S05, and S06. This is expressed by the 15th reaction in the
SUVS, and reaction coefficient for this reaction is shown as k(15) in part 3 in Fig. 1.
The stochiometric coefficients for the four products are z(15), w(15,1), w(15,2), and
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w(15,3). RO2 represents the total organic peroxide radicals in the chemical system,
i.e., RO2=R01O2+R02O2+ ...+R10O2. Meanwhile, the reaction between X05O2 and
NO3 leads to the formation of the corresponding alkoxy radical of X05O with the reac-
tion coefficient of k(25) listed in part 3 in Fig. 1.

X05O2 could also react with HO2 and NO2 to generate ROOH and RO2NO2, respec-5

tively. Both products (ROOH vs. RO2NO2) are represented by condensable products
of S04, S05, and S06 with different set of stochiometric coefficients: w(35,1), w(35,2),
and w(35,3) for the ROOH; w(45,1), w(45,2), and w(45,3) for the RO2NO2.

Next, we discuss the chemical reactions of the alkoxy radicals (RO) in part 4 in Fig. 1.
As mentioned in Sect. 3.1, the degradation of RO leads to the formation of carbonyl10

and RO2. In our simple chemical reaction scheme, the products of the carbonyls are
represented by three condensable species of S04, S05, and S06, and the corresponding
stochiometric coefficients are w(55,1), w(55,2), and w(55,3). When the RO undergoes
dissociation and isomerization to form peroxy radicals in the 65th reaction, we assume
the corresponding products would be in three volatility bins: X04O2, X05O2, and X06O2.15

This treatment is different from the first 30th reactions in which RO2 reacts with NO,
RO2, and NO3 to form only one RO. This is because the dissocation and isomerization
of the RO leads to significant changes of the chemical structures, which impacts the
corresponding volatility bins.

Finally, we discuss the oxidation of the condensable products in the simple chemical20

reaction scheme. On the one hand, the condensable species, S05, would undergo
thermal decomposition or photolysis (the 75th reaction in the SUVS), and the products
are the X04O, X05O, and X06O. Note that the photolysis reaction rate coefficient (k(75))
for the 75th reaction is constrained by normalized sun intensity of SUN, which is 0
at night time and 1 at noon. On the other hand, when the condensable species S0525

reacts with OH and NO3, the products are organic peroxy radicals. In this case, they
are X04O2, X05O2, and X06O2 in the 85th and 95th reaction in the SUVS.

The above SUVS is constructed to describe the parameterized degradation of gas
phase chemical reactions for a starting organic compound via the VBS speciation. In
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order to apply this simple scheme, equally important, we need to determine the values
for 312(=30(ww)+30(z)+28∗9(w)) stochiometric coefficients and 100 (k(1) to k(100))
reaction rate coefficients.

Now two challenges face us before we apply this newly proposed SUVS in a regional
air quality model. The first challenge is how to obtain time series of different volatility-5

based species under a wide range of experimental conditions for use in parameter
estimation. Here, the detailed chemical mechanism of MCM v3.1 is used to generate
time series of individual organic species. When the condensable organic species in
the MCM v3.1 are lumped into 10 volatility-based compounds, we obtain the concen-
tration profiles for the 10 volatility-based compounds in the SUVS sytem. The resulting10

accuracy of the parameterization is thus limited to that of the MCM.
The second challenge is on how to determine 412 unknown chemical parameters.

Traditionally, a simple linear least square fitting method would be applied to determine
reaction rate coefficients and stochiometric coefficients for a one-step reaction scheme,
like that in Stanier et al. (2008). Part of this requires the construction of a set of test15

conditions sufficiently large in order to span the space of all atmospheric conditions.
For such a large number of unknown parameters in the SUVS, a non-traditional method
of genetic algorithms is utilized in this task (Sect. 5). In Sect. 4, we will introduce the
settings for the MCM v3.1 under a wide range of conditions.

4 Master chemical mechanisms and volatility distribution20

4.1 Settings for the Master Chemical Mechanism: creating a set of conditions
for testing

The near-explicit Master Chemcial Mechanism (MCM) v3.1 describes the degradation
of α-pinene in a very detailed level, and includes the entire reaction sequence from the
initial oxidation step to the final products, CO2 and H2O.25

In this first application of the new SUVS for SOA formation, for simplicity, we focus our
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study on the oxidation of one single SOA precuror, the well-studied α-pinene, rather
than all species in the entire oxidation system. Therfore, a subset of the MCM v3.1
describing α-pinene oxidation is used in a box model to study the chemical evolutions of
331 compounds with 976 reactions. Detailed information regarding the introduction and
settings of the α-pienne oxidation system for a zero-dimensional box-model study can5

also be found in our previous studies (Xia et al., 2008; Slowik et al., 2010). In this work,
the major input parameters for the box model include temperature, relative humidity,
α-pinene emission rate, and initial concentrations of NOx. It should be noted that
photolysis rates for the core reactions in the MCM correspond to clear sky conditions
on equinox at a latitude of 45◦ N and the midday J (NO2) is 0.073 s−1.10

In this study, temperature and relative humidity are constant values. The temper-
ature is assumed to be fixed at a reference temperature of 298 K. The selection of
the reference temperature is consistent with the reference volatilities, as used by Don-
ahue et al. (2006). The relative humidity is also set to be at 10% all the time. This is
considered to be a dry condition (Pathak et al., 2007). The third difference from our15

previous study is the α-pinene emission rate. A total of 21 logarithmly evenly spaced
α-pinene emission rates are set from 0.5×107 to 8×107 molecule cm−3 s−1. Finally,
a total of 27 logarithmly evenly spaced initial mixing ratios of NO are set from 2.5 ppbv
to 1000 ppbv. The initial mixing ratios of NO2 are set to be 1/3 of the NO mixing ratios
for each scenario. Thus, a total of 567 (=21×27) scenarios have been generated for20

the study of α-pinene oxidation. Each scenario is run for 3 days (72 h) starting from
midnight. During the daytime, some compounds undergo photolysis reactions under
natural sunlight. As a result, the concentration profiles for all 331 compounds can be
calculated from the 3-day box model simulation.

Note that only gas phase chemical reactions are considered for this simulation, be-25

cause we focus on the application of our new SUVS system on the formation of lumped
condensable species in the gas phase chemistry. The gas/particle partitioning process
and aerosol heterogenenous reactions are important but not included in this study. To
obtain the concentration profiles for the 10 lumped condensable species from S01 to
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S10 in the SUVS, we first need to know the volatility of each stable organic species.
Then, all stable species are lumped into the 10 species according to their individual
volatilities.

4.2 Volatility distribution

In this subsection, we first briefly introduce the concept of effective saturation con-5

centration and its estimation method via saturation vapor pressure (SVP). Then, we
describe volatility distributions for 10 lumped species from a typical α-pinene oxidation
scenario.

Rather than the traditional term of partitioning coefficient, Donahue et al. (2006)
proposed to use an alternative term C∗

i (µg/m3), effective saturation concentration, to10

study the gas/particle partitioning behavior for the i -th product. The C∗
i can be ex-

pressed theoretically via Pankow’s (1994) partitioning theory as:

C∗
i =

1
Kp,i

=
106Miζ

′
i P

◦
L,i

760RT
(3)

where R (8.206×10−5 m3 atm K−1 mol−1) is the gas constant, T (K) is the temperature,
Mi (g mol−1) is the molecular weight for the i -th compound, P o

L,i (Torr) is the saturation15

vapor pressure (SVP) of the i -th pure compound at temperature T , and ζ ′i is a molality-
based activity coefficient for the i -th compound in the condensed phase.

In general, the activity coefficients of the compounds in the organic aerosols are in
the range of 0.3 to 3.0 (Seinfeld and Pankow, 2003). However, as adopted by many re-
searchers (Kamens et al., 1999; Jenkin, 2004; Xia et al., 2008) as a first approximation,20

the activity coefficients are also assumed to be unity in this work for the calculation of
the C∗

i for each stable species. Once the SVP and Mi from Eq. (3) are known at
a given temperture T , we can determine the C∗

i , an intrinsic property of compound i for
an ideal solution. Next, we will describe the estimation method for the SVP outlined in
Schwarzenbach et al. (2003).25
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By making an assumption of the linear relationship for the vaporization enthalpy at
different temperatures, integrating the Clausius-Clapeyron equation from Tb (normal
boiling point) to T , and using Trouton’s rule, the SVP can be expressed as

ln
P ◦
L

760
=−KF(4.4+ lnTb)[1.8(

Tb

T
−1)−0.8ln(

Tb

T
)] (4)

where Tb (K) denotes the normal boiling point, T (K) designates the temperature of5

interest, KF (no unit) is a Fishtine factor (Fishtine, 1963), and the P ◦
L (Torr) represents

the SVP. The Tb is estimated by using a group contribution method (Joback and Reid’s,
1987) fragmentation method, modified and extended by Stein and Brown (1994), and
the KF factor is estimated by the method given in Fishtine (1963) or Sage and Sage
(2000). Overall, this SVP estimation method by using Eq. (4) is comparable to the10

universal functional activity coefficient (UNIFAC P ◦
L) method (Asher et al., 2002) in esti-

mation of the SVP against measured data (Xia et al., 2008). The Eq. (4) was also used
to estimate the SVP for the condensable species from our previous study (Xia et al.,
2008).

Only 180 out of the 331 compounds in the chemical system are stable organic15

species, the remaining compounds are either inorganic compounds or organic interme-
diates. As mentioned early, the volatility for each stable organic compound is estimated
by Eq. (3) at the reference temperature of 298 K. In this part, our goal is to group the
180 stable organic species into 10 lumped ones.

To represent ambient organic aerosol, the volatilities for the 10 lumped species at20

the reference temperature of 298 K are seperated by one order of magnitude, spanning
from 10−2 to 107 µg/m3. In this work, we have pre-defined 10 volatility bins. The n-
th volatility bin covers the volatility range from 10(n−3)−0.5 ∼10(n−3)+0.5 µg/m3, where
n=2,3,...,10. When n=1, the first volatility bin covers the volatility range no more
than 10−1.5 µg/m3. With the given seting, a linear interpolation within the bin is used to25

determine the volatility bin location for each of the 180 species.
By using the linear interpolation lumping method, all 180 condensable species in the

subset of MCM for α-pinene oxidation are grouped into the 10 lumped species (gas
3901
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phase). Figure 2 shows diurnal profiles for the 10 lumped species from one scenario
lasting for 72 h when there is constant α-pinene emission.

Starting from midnight, the number concentrations of 10 lumped compounds start
to accumulate from zero and there are different patterns for the diurnal changes. For
example, in the daytime starting from sunrise at 30th hour, the concentrations for the5

5th, 8th, and 9th lumped species undergo large increases. But the concentrations for
the 6th and 7th lumped species start to decline until sunset at the 42nd hour. This kind
of diurnal change could be different for different scenarios. In Sect. 6, we will examine
these distictive diurnal change patterns mainly due to photolysis changes.

In this section, we have obtained diurnal profiles, termed “experimental data”, for the10

10 lumped species. Next, we will introduce genetic algorithms for estimation of the 412
unknown parameters in the SUVS system.

5 Genetic algorithms (GAs)

5.1 Brief review of genetic algorithms

The underlying ideas of genetic algorithms (GAs) were inspired by the mechanism of15

natural selection. A complete description of GAs techniques can be found in Goldberg
(1989) and Michalewicz (1999). A simple and practical introduction on how to incorpo-
rate these ideas in a computational setting can be found in Haupt and Haupt (2004).
GAs has been applied mostly in mathematics and physics. As a new tool, GAs have
also been recently used in the atmospheric sciences with various applications.20

Specifically, GAs were applied to determine aerosol size distributions (Lienert et al.,
2001, 2003) and aerosol refractive index (Barkey et al., 2007) from polar nephelometer
data. In another study, the GAs were coupled with an atmospheric dispersion model
to characterize pollutant emission locations, times, and quantities (Haupt, 2005; Allen
et al., 2007). GAs were applied to optimize a set of physical and computational param-25

eters in both the 5th-generation PSU/NCAR Mesoscale Model (MM5) and the Regional
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Atmospheric Modeling System (RAMS) for improved agreement between model sim-
ulations and observational or synthetic data (Lee et al., 2006; O’Steen and Werth,
2009). This technique was utilized to calibrate seasonal PM10 emission inventories
in Beijing to improve the Models-3/Community Multiscale Air Quality (CMAQ) model
performance (Li et al., 2010). Similar to our task in this paper, GAs were employed5

in chemical kinetics for determining parameters in various chemical systems (Carroll,
1996; Polifke et al., 1998; Harris et al., 2000; Tsuchiya and Ross, 2001; Elliott et al.,
2004).

Fundamentally, GAs are used to solve an optimization problem by evolving the best
solution from an initial set of completely random guesses. In other word, GAs are an10

adaptive heuristic search method. A typical GAs requires:

1. A fitness function f to reflect the objective optimization problem (minimum or
maximum) at hand. A fitness function includes one or several variables that
a system needs to determine. The variables are called “parameters” in the
GAs. The fitness function is used to distinguish between “bad” and “good” so-15

lutions. We shall use a simple example to explain concepts and methodologies
used in the GAs field. An example could involve finding the maximum value of
f =200− (x−5)2− (y−10)2 and the corresponding two unknown parameters are
(x, y), where 0≤x,y ≤15.

2. An encoding method to represent the solution domain. There are several differ-20

ent encoding methods, such as binary encoding, gray encoding, and float-point
encoding. Each parameter is encoded as a string (or termed a “gene”. For ex-
ample, (8, 12) could be described by two tentative 4-digit binary genes as (1000,
1100). In GAs, one “individual” represents a set of all unknown parameters, and
it is expressed as a chain where bits standing for all parameters are lined up to25

form a binary string. The chain is called genetic sequencing, or “chromosome” in
GAs. As a result, (8, 12) is encoded as (10001100).
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After the fitness function and the encoding method are determined for a GAs. A 7-step
procedure can be used to apply the GAs for a given task.

1. Initialize possible solutions. Individual possible solutions (termed “individuals”)
are given from random guesses to form an initial population. A population is
an array of individuals. The size of the population depends on the number of5

unknown parameters in the problem. In this simple example, the population size
is tentatively set to be four, and four initial randomly generated individuals are: (1,
2), (2, 13), (12, 4), and (15, 15).

2. Evaluate the fitness value of each individual in this population. The fitness values
for the four initial individuals are: f (1,2)=120; f (2,13)=182; f (12,4)=115; and10

f (15,15)=75.

3. Select best-fit individuals for “reproduction” of new individuals. In this example,
two individuals (2, 13) and (1, 2) are singled out as “Parent 1” and “Parent 2” for
mating because of their high fitness values of 182 and 120.

4. Generate new individuals via two genetic operators: crossover and mutation.15

The two operations can be performed only when all individuals are encoded as
“genes”.

a. Crossover: One-point crossover is the simplest crossover method, in which
one same point is selected on both parents and the data beyond that point
are swapped from two parents. In this example, the fifth point is selected20

for crossover, which leads to the generation of two new children (2, 10) and
(1, 5).

3904

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/3885/2011/acpd-11-3885-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/3885/2011/acpd-11-3885-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 3885–3935, 2011

Development of
a SUVS for SOA
formation using

genetic algorithms

A. G. Xia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Parent 1 (2, 13) (00101 | 101)

Parent 2 (1, 2) (00010 | 010)
⇓

Child 1 (2, 10) (00101 | 010)

Child 2 (1, 5) (00010 | 101)

b. Mutation: Mutation is applied to a single parent. Similar to the biogenic mu-
tation, an arbitrary bit in the genetic sequencing will be changed from its
original state. For example, the first bit from “Parent 1” undergoes mutation
and a new child (offspring) (10, 13) is generated.5

Parent 1 (2, 13) (00101101)
⇓

Child 1 (10,13) (10101101)

5. Evaluate the fitness of the new individuals.

6. Replace the least-fit individuals with the new individuals to form a new population.

7. Repeat the procedures from step 2 to 6 until termination.

At each iteration, the GAs perform crossover and mutation operations with two different10

probabilities (Pcrossover and Pmutation) to produce a new population. Each successive
population is called a new generation. The GAs usually uses some of the following
conditions to determine when to stop: (1) maximum number of generation; (2) time
limit; (3) sufficient fitness achieved.

In GAs, elitism is a commonly used technique where one or more of highest fit-15

ness individuals are copied, unchanged, from one generation to the next. Elitism could
rapidly increase the GAs performance, because it prevents losing the best found so-
lution to date. Figure 3 shows a schematic representation of the procedures outlined
above for a basic GAs. Note that the number of parameters for the example shown
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above is only two. It could vary from one to hundreds (412 for our SUVS case), and
even to billions (Goldberg et al., 2007) in actual applications.

As Elliot et al. (2004) summarized that when contrasted with traditional gradient-
based search methods, GAs do not require knowledge of the gradient of the fitness
functions. This makes GAs particular suitable for problems, such as this SUVS reaction5

scheme, where the analytic expression of the fitness function is not known.

5.2 Settings of the GAs for SUVS

5.2.1 Objective functions of the GAs

Fan et al. (2004) demonstrated that the design of the fitness function is instrumental
in performance improvement for the GAs. In our case, 10 ambient-like scenarios were10

selected for testing the SUVS. Each scenario ran for 72 h starting from midnight. The
profiles for 11 species obtained from the SUVS were compared with the profiles for the
11 species from the MCM v3.1. The 11 species included the 10 lumped species (S01,
S02, ..., and S10) and the total RO2 species. To avoid comparison of very low (near
zero) concentrations of the species in the first few hours of model runs, the timing used15

for the comparison are selected from a tentative starting time at 10th hour to the end
time at 72nd hour. The fitness function defined for this study is:

f =
1

10−8+ 1
NSC

1
NSP

NSC∑
i=1

NSP∑
j=1

√
1
Nh

endhour∑
k=starthour

(
xcalc
i ,j,k−x

orig
i ,j,k

)2

1
Nh

endhour∑
k=starthour

xorig
i ,j,k

(5)

where

– xcalc
i ,j,k represents calculated number density of the j -th lumped species from i -th20

scenario at k-th hour by using the SUVS system;
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– xorig
i ,j,k is the corresponding original number density of the lumped j -th species from

i -th scenario at k-th hour by using the full chemical mechanism of the MCM v3.1;

– Nsc (=10) represents total number of selected scenarios for testing; Nsp (=11)
is the total number of species used for comparison; and Nh (=endhour-
starthour+1) denotes the total hours for this comparison, in which the starthour5

is 10 and the endhour is 72.

– The maximum value of the function f is 108, which corresponds to a perfect fit.
The constant is added into the term to avoid numerical overflow.

– The term

√
1
Nh

endhour∑
k=starthour

(
xcalc
i ,j,k−x

orig
i ,j,k

)2

1
Nh

endhour∑
k=starthour

xorig
i ,j,k

in the fitness function (Eq. 6) is conventionally

called the coefficient of variation for the root mean square deviation – CV(RMSD).10

For simplicity, we define this term as ERRORi ,j , i.e.,

ERRORi ,j =

√
1
Nh

endhour∑
k=starthour

(
xcalc
i ,j,k−xorig

i ,j,k

)2

1
Nh

endhour∑
k=starthour

xorig
i ,j,k

(6)

Three additional errors can be formed via ERRORi ,j as:

gsp,j =
1

NSC

NSC∑
i=1

ERRORi ,j (7)

gsc,i =
1

NSP

NSP∑
j=1

ERRORi ,j (8)15
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g=
1

NSC

1
NSP

NSC∑
i=1

NSP∑
j=1

ERRORi ,j =
1
f
−10−8 (9)

where gsp,j is the mean CV(RMSD) for the j -th species from all Nsc scenarios, gsc,i
is the mean CV(RMSD) for all Nsp species in the i -th scenario, and g is the mean
CV(RMSD) for all 10 scenarios and 11 species. The simple relation between the mean
error of g and the fitness function f is also indicated in Eq. (9). We will discuss the5

relationship between gsc,i , gsp,j , and g in more details in Sect. 6.

5.2.2 Parameters for the GAs

As mentioned in Sect. 5.1, the unknown variables could be encoded with a binary
representation or floating point representation. In general, the floating point approach
is better than the binary representation in that the floating point approach is faster and10

it can cover larger domains at a higher resolution than the binary approach (Elliott
et al., 2004). In this work, the floating point approach is applied and each variable
is represented by a 6-digit long number from 0.000000 to 0.999999. Among the total
of 412 unknown variables, 312 of them are the stoichiometric coefficients, which vary
from 0.0 to 1.0. It is straightforward to use the floating point encoding method for them.15

Note that a sensitivity test showed that the computation cost is far too expensive if
the 312 stoichiometric coefficients are assumed to be in the wider range from 0.0 to
10.0. In this work, they are assumed in the range from 0.0 to 1.0. The remaining 100
variables are for reaction rate constants (from k(1) to k(100)). Only k(61)∼k(70) have
fast reaction rate constants in a range of 105 to 107, the remaining 90 reaction rate20

constants vary from 10−16 to 10−10. To effectively represent reaction rate constant by
a 6-digit long number, the reaction rate constant k(i ) has been converted to be kk(i )
as follows,
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kk(i ) =
1

(−10)− (−16)
(log10k(i )− (−16))

=
1
6

(16+ log10k(i )) (i =1,...,60,71,...,100)
(10)

and each converted kk(i ) is in the range between 0.0 to 1.0. Similar conversion can
be performed for the remaining 10 parameters from k(61) to k(70).

The genetic operators and the parameters used in this work were taken to be as
follows:5

– population size Npopulation =5000

– crossover probability Pcrossover =0.80

– mutation probability Pmutation =0.004

– elitism, elitism parameter nelitism =2

The population size affects the GAs performance. The minimum requirement is that10

the population size be set at least the value of the number of variables, so that the
individuals in each population span the space being searched. In general, increasing
the population size enables the GAs to search more points and thereby obtain a better
result. However, the larger the population size, the longer the GAs takes to compute
each generation. In this work, the number of variables is 412; the population size is15

5000, which is more than a factor of 12 larger than the number of variables.
We would like to mention that the computational cost is very expensive by setting the

population size at 5000, because within each generation, or called iteration, there are
5000 different sets of 412 parameters, each set of data running 10 selected scenarios
for 72 h. In particular, the computational cost is especially heavy when some set of 41220

parameters leads to highly singular ordinary differential equations (ODEs) for the gas
phase chemistry of the SUVS system. We will discuss more about computational cost
in Sect. 6.4.
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5.3 Numerical methods

Three numerical methods are involved for this work: (1) the MCM gas phase chemistry
for α-pinene oxidation; (2) the SUVS in Fig. 1; and (3) the implementation of GAs.

The integration method used for the MCM gas phase chemistry is a Gear-type solver
of ODEs via the FACSIMILE 3.0 integrator. A Rosenbrock ODE solver is used for the5

integration of the SUVS via a Kinetic PreProcessor (KPP) package (Damian et al.,
2002; Sandu and Sander, 2006). Finally, to deal with the huge computational burden
for the GAs, a Message Passing Interface (MPI) enabled the parallel genetic algorithm
package (Charbonneau, 1995; Metcalfe and Charbonneau, 2003), named as MPI-
PAKAIA, to be selected and implemented with an IBM power4 supercomputer system10

for solving this heavy computational cost problem.

6 Model results and discussions

As outlined in Fig. 5, the GAs give 5000 different set of randomized initial solutions
to our problem. The fitness function for each of 5000 populations is then evaluated.
Based on the performance, “good” candidates with higher fitness are selected for gen-15

erating new populations for the next generation. The populations in the new generation
undergo the same evaluation. This process is repeated until a termination criterion
is met for a stop. In this work, the calculation is stopped at the 21 549th generation
because no further improvement was found after a huge computational cost. For con-
venience, we call the 21 549th generation as the final generation in this paper.20

6.1 Evolution of the best individual

At each generation, we can find the worst, the median, and the best individuals. Fig-
ure 4a shows the evolutions for the three individuals until the final 21 549th genera-
tion. The best individual increased monotonically from 0.0689 in the first generation
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to 20.5099 in the final generation (larger numbers mean a more successful fitness for
the given generation). Meanwhile, the fitness for the median individual and the worst
individual increased from 0.0660 and 1.0907×10−10 (not shown) in the first generation
to 20.5099 and 20.3247 in the final generation. Generally, Fig. 4a shows that larger fit-
ness differences among the three individuals exist in the first 100 generations. Further,5

Fig. 4b shows the evolutions of two fitness differences: the fitness difference between
the best individual and the worst individual; and the fitness difference between the best
individual and the median individual. As expected, the fitness difference between the
best and the worst individuals is always higher than the fitness difference between the
best and the median individuals. Overall, these differences are small and less than 1.0,10

and all individuals within each generation converge. Note that the fitness function is
defined in Eq. (5) and it is related but still different from the CV(RMSD) in Eq. (9).

Intuitively, it is meaningful to check the errors, rather than the fitness function. Fig-
ure 4c shows the evolution for the mean error of g, which is shown in Eq. (9) as the
mean CV(RMSD) for all 11 species over 10 scenarios, for the best individual from15

14.519 (fraction) in the first generation to 0.0488 (fraction) in the final generation. This
means the average error for the species from all scenarios is less than 5% by using the
best set of data from the final generation.

6.2 Comparison of concentration profiles of individual species

Next, we are going to compare individual species number concentration profiles be-20

tween the full mechanism (the MCM v3.1) and the SUVS. The profiles from the later
one are obtained by using the GAs generated best set of data from the final genera-
tion. Due to the settings outlined in Sect. 4.1 for different constant α-pinene emissions
and different initial concentrations of the NOx, the diurnal changes for the 11 lumped
species from the full mechanism, as shown in Fig. 5, can be grouped into four types:25
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1. Concentrations are always increasing with little fluctuation. These are the low
volatility species from S01 to S04. Black solid lines in Fig. 5a show this pattern for
a representative species of S02 over 10 different scenarios.

2. Strong diurnal fluctuations for species with intermediate volatility. Overall, species
concentrations are increasing on the daily basis. This corresponds to the species5

from S05 to S08. Solid lines in Fig. 5b unfold this kind of diurnal changes for a rep-
resentative species of S07. For example, in scenario 5 and 6, peak concentrations
of S07 on the second day are comparable with those peaks on the third day. Note
that diurnal variations in this work are driven mainly by the photolysis changes.

3. Concentrations are always increasing, but the increment is more intense at day-10

time than that at night time. S09 and S10 are the two species following this pattern.
Figure 5c shows the profiles for S09.

4. Strong diurnal changes with high concentrations at daytime and very low con-
centrations at nighttime. This pattern is slightly different from type 2, in which
species concentrations are increasing on the daily basis. This pattern, as shown15

in Fig. 5d, is only for the total RO2, and the concentrations are extremely low (near
zero) at night time.

Figure 5a–d also shows the comparison of the diurnal profiles for the four types of
representative species between the full mechanism and the final generation SUVS.
In order to qualitatively describe the differences between the two mechanisms, the20

CV(RMSD), i.e. the gsp,j in Eq. (7), for the j -th species are calculated over 10 sce-
narios. For example, the gsp,2, a measure of the fractional error for the S02, is 0.017.
This suggested that the SUVS is able to accurately describe the diurnal changes and
concentration profiles for the S02 over 10 different scenarios with an average error of
1.7%. Figure 5a displays the S02 hourly profiles from the two mechanisms, full mech-25

anism versus the SUVS, over the 10 scenarios. There is very good agreement with
each other because of a low error at 1.7%. Furthermore, the SUVS is also capable
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of capturing the strong diurnal changes for the second type of representative species
of the S07. The calculated error of gsp,7 is 0.046. Although Fig. 5b shows that the
calculated small error at 4.6% stems mainly from the peaks and troughs of the diurnal
cycles for a few scenarios, the timings of the turning points for the diurnal changes
are very accurate. Likewise, the error of gsp,9 for the S09 is 0.049. Figure 5c illus-5

trates that the SUVS is able to describe big increases at daytime for the S09, and the
timings for the small errors are coming from night time. Finally, the total RO2 from
10 different scenarios are compared. In the SUVS, we have a relationship of total
RO2=X01O2+X02O2+ ...+X09O2+X10O2. Each XiiO2 corresponds to a summation of
several individual organic peroxy radicals from the full chemical mechanism of the MCM10

v3.1. One straightforward method is to compare the individual XiiO2 between the full
mechanism and the SUVS. But in this work by using GAs, we simply compare the total
RO2 only, rather than 10 individual XiiO2, (ii=1,...,10), from the two mechanisms. The
GAs is able to find a good solution for the SUVS to describe the strong diurnal changes
of the total RO2 shown in Fig. 5d.15

The errors for each of 11 species from 10 scenarios are summarized in Table 1. Be-
cause the fitness function in Eq. (5) includes the errors contributed from all 11 species
and 10 scenarios, to achieve an overall good performance at the error of 0.0488, the
errors for some species are higher than the average values. For example, the maxi-
mum error of 0.092 is for the S08. An examination of the model performance for this20

species (not shown here) indicates that improvement for the GAs is still needed, al-
though the SUVS is able to capture diurnal changes and peak values for S08 among
the 10 different scenarios. On the whole, the fractional errors for the 6 out of the 11
species are less than 0.05, in particular, the errors for the three species (S02,S06, and
S10) are less than 0.03.25
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Overall, the new SUVS with the best set of 412 parameters from the final generation
of GAs is able to describe the evolution of the 10 lumped species and the total RO2.
Figure 6a presents the distribution of a total of 7920 (=72 h×11 species×10 scenar-
ios) point-to-point errors (xcalc

i ,j,k−xorig
i ,j,k)/xorig

i ,j,k from all 11 species over the 10 scenarios.
The x-axis in Fig. 6a is the normalized number density, which is calculated via nor-5

malization of one species concentration against the maximum concentration for the
same species from the same scenario within the 72-h period. Figure 6a shows that the
point-to-point errors are higher at lower normalized number density. Most of the point-
to-point errors lie within the ±0.10 (fraction) lines. The pattern for the point-to-point
errors against the normalized number density looks like an overall shape (.). Larger10

errors occur for low concentrations and smaller errors for higher concentrations. This is
consistent with the use of the CV(RMSD) in the fitness function, because CM(RMSD)
is computed through normalization of RMSD against the mean concentration of the
same species from one entire scenario.

In order to qualitatively describe the point-to-point distributions, we first sum the num-15

ber of points located within each grid cell in Fig. 6a. Here, the grid cells are defined
with 0.1×0.1 grid configuration. Next, when the number for the points in each grid cell
is normalized by the total number of points (7920), a point density is obtained. Fig-
ure 6b exhibits the distributions of the point density for the point-to-point errors in each
grid cell. For example, it shows that 80.4% of the errors are bounded within the ±0.1020

(fraction). Furthermore, it demonstrates that the majority of the normalized number
densities lie in the range between 0.2 and 0.3.

A sensitivity test demonstrated that when a point-to-point error (xcalc
i ,j,k−xorig

i ,j,k)/xorig
i ,j,k ,

rather than the CV(RMSD), is directly included in the design of fitness function, the
performance for the derived SUVS can’t be comparable with the CV(RMSD). During25

the test, a large computational cost is associated with the excessive time the GAs
require in fine-tuning the parameters, in order for the point-to-point error to be reduced
even when the number density is already very low. The point-to-point error design
method thus treats low concentrations and high concentrations equally. In this work,
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however, we focus heavily on accurate prediction of higher concentrations, rather than
low concentrations. Our objective in this work favors the selection of CV(RMSD) over
the point-to-point error. This reinforces the importance of a good design of the fitness
function, which sometimes is considered more of “an art than a science”.

6.3 Performance of the SUVS for additional tested scenarios5

It is a common practice to check the validity of the new system or mechanism against
a wider range of conditions. For example, Asher et al. (2002) first exercised 10% of
observational data to determine parameters in their new formula to calculate vapor
pressure of organic compounds. Later on, the dataset from the remaining 90% were
evaluated against this new formula. Similarly, Xia et al. (2009) derived a reduced chem-10

ical mechanism for α-pinene oxidation system via five traditional mechanism reduction
techniques with data from 108 selected scenarios. This reduced mechanism was later
evaluated against an additional 135 scenarios from a wider range of conditions.

Likewise, the SUVS is evaluated against an additional 557 scenarios. In the previous
section, we focused our analysis on the individual species via gsp,j from Eq. (7). In this15

part, another metric, gsc,i from Eq. (8), is employed to evaluate model performance for
each individual scenario.

Figure 7a shows the performance of gsc,i from a total of 567 scenarios. Although
a maximum of one is set for the color scale in Fig. 7a, the maximum and minimum frac-
tional errors among all 567 scenarios are 4.5951 and 0.0399, respectively. The large20

errors are caused when the SUVS is run under atmospherically unrealistic conditions.
For example, the maximum error of 4.5951 corresponds to an extremely high NOx con-
dition, in which the average NOx concentration is as high as 1,322.7 ppbv. Meanwhile,
the calculated error of gsc,i would be larger than 1.00 when the average α-pinene con-
centrations are at least 200 ppbv and the average NOx is less than 0.7 ppbv. These25

large errors contrast to smaller errors for 10 selected scenarios highlighted with larger
black circles. In general, fractional errors decrease gradually towards small values with
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more blue colors around 0.10 when the corresponding average concentrations of the
α-pinene and NOx come to close to those of the 10 selected scenarios.

In order to identify SUVS’s range of influence, Fig. 7b shows the additional 165 sce-
narios with fractional errors at most 0.10. Although the 10 selected scenarios represent
only limited range of conditions, Fig. 7b indicates that the SUVS is still valid over a wider5

range of ambient conditions. For example, when the average α-pinene is 10 ppbv and
the average NOx is 20 ppbv, the calculated fractional error for this scenario is 0.084.
Overall, the colors for the errors in Fig. 7b change gradually when the errors increase
from the smallest 0.0399 to 0.10.

In summary, 10 randomly selected ambient-like scenarios are used for the GAs anal-10

ysis so that the SUVS could reproduce the full mechanism of MCM v3.1. By using the
best parameters obtained from the GAs, the fractional errors for not only the original
10 selected scenarios, but also an additional 165 scenarios are at most 0.10. Here,
a threshold of 0.10 is tentatively used as a criterion for judging whether the error is
acceptable. If a different set of 10 scenarios are selected for the GAs, the pattern for15

the error map shown in Fig. 7a might be different. This suggests that the SUVS’s range
of influence depends strongly on the scenarios chosen for the GAs.

6.4 Computational cost

Finally, we will discuss the computational cost for implementing the GAs for this work.
The computational cost is expensive due to three reasons.20

1. First, the chemical mechanism (SUVS) is run over 3 days for 10 different scenar-
ios. The method is not a simple computation, rather we need to solve the ODEs
when a chemical system is integrated over three days for 10 scenarios. It is equiv-
alent to integrate a chemical system for 30 days when only one set of parameters
are used. Sometimes, when a set of parameters is unrealistic, the ODEs for the25

SUVS become singular and that tremendously increases the computational bur-
den.
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2. The second factor is due to as large as 412 unknown variables for determination.
When the number of variables is large, a high value of population size is required
for the GAs. The rule of thumb is that the population size should be at least 10
times of the number of variables. In our case, we choose 5000, and we used an
IBM power4 supercomputer to perform the calculation.5

3. The third reason is related to the second one in that the GAs would not be able
to find a convergent solution with a good fit within 1000 generations because of
the 412 unknown variables. In our case, the GAs was terminated at the 21 549th
generation when little improvement was found with additional computational cost.

As mentioned in Sect. 5.2, the total computation for this work is equivalent to an inte-10

gration of 7.7576×10+10 h (=21 549 generations×5000 sets×10 scenarios×72 h) for
a chemical system. This is equivalent to simulating 30 years gas phase chemistry for
a typical air quality model with a grid configuration of 100 (grids in x-axis)×100 (grids
in y-axis)×30 (vertical layers).

Due to the facts outlined above, we performed this task via MPI parallel computation15

in an IBM power4 supercomputer with the use of 64 nodes. For comparison purpose,
the computational cost is converted to equivalent time if the calculation is performed
by using one node only. Two conclusions can be drawn from the analysis of the com-
putation cost. First, the tracking of computational cost indicates that it would take 369
days to obtain the results demonstrated above if one single node from the same IBM20

supercomputer machine (with a clock speed of 1.9 GHz) is used. Second, average
computational cost for each generation is equivalent to 5.6 h in the first 18 generations,
and the computational cost drops to an average 0.403 h per generation. The high cost
in the first 18 generation is caused by singular chemical ODEs from some randomized
unrealistic initial populations and their offspring.25
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7 Summary and conclusions

Based on protocols for a detailed chemical mechanism, a simple unified volatility-based
scheme (SUVS) is proposed for describing the gas phase chemistry of secondary or-
ganic aerosol formation. This SUVS have three distinctive features.

First, this new SUVS is able to unify chemical reactions for the SOA precursors with5

different oxidants. This coupled feature is an improvement over previous commonly
used methods, in which different sets of parameters are used when oxidation conditions
are changed.

Second, the SUVS is able to describe multi-generation reactions. This is also an
improvement over the simple one-step reaction scheme, because the multi-generation10

method would be able to describe chemical evolutions which last longer than a smog
chamber experiments that typically last no more than 5 h.

Third, aside from the initial organic species, the species in the SUVS is volatility
based and the number of organic species in the chemical system is only 30, which is
a factor of 10 smaller than a detailed chemical mechanism. Moreover, the SUVS is15

suitable for describing oxidation of a general organic species. In this work, the SUVS
was used for describing α-pinene oxidation, and it has been compared with a detailed
chemical mechanism of MCM v3.1 for α-pinene oxidation. In order to derive the 412
unknown parameters in the SUVS, we resolved two issues: experimental data and
fitting method.20

To get experimental data, the MCM v3.1 was run with 10 selected scenarios. Then,
the hourly profiles from a total of 180 condensable organic species in the MCM v3.1
were then grouped into 10 lumped species. The resulting profiles for 11 species (the
10 lumped species and a species for the total RO2) are used as “experimental data”
for the SUVS.25

A genetic algorithms method was used to determine the 412 unknown parameters
from the SUVS. A CV(RMSD) was included in the design of a fitness function for the
GAs. This is an essential part in the application of GAs. Meanwhile, a MPI-version
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parallel genetic algorithm package, named as MPI-PIKAIA, was used to speed up the
calculation. The GAs method used a 6-digit-long floating point encoding method with
a population size of 5000. The size of the population was thus more than 12 times
larger than the number of unknown variables. In the GAs, the fitness value for the
best solution of the SUVS is always monotonically increasing and the corresponding5

CV(RMSD) is decreasing to 0.0488 (fraction) in the final 21 549th generation. The best
solution from the 21 549th generation was used to evaluate the SUVS.

The SUVS combined with the best set of parameters is evaluated by using profiles
of the “experimental data” for 11 species from 10 different scenarios. We evaluated the
errors based on species and scenario, respectively.10

In term of species, the patterns of the diurnal changes for the 11 species can be
grouped into four types, and the SUVS is able to capture the diurnal changes for each
type. The errors for some species are as low as 0.017, but large error at 0.092 for
a species still exists. This highlights the importance for further model improvement by
using various GAs techniques. For example, multi-objective genetic algorithms could15

be applied to avoid early convergence to a local maximum, rather than global maxi-
mum. In addition, the island model or the cellular genetic algorithms (Alba and Dor-
ronsoro, 2008) could be used to explore the solutions from a global prospective. In the
future, we also will investigate the SUVS coupled with a gas/particle partitioning model
when smog chamber observational data for SOA formation are used.20

We evaluated the performance of the SUVS over a wide range of conditions. The
evaluation indicates that the SUVS is able to reproduce the full mechanism with frac-
tional error at most 0.10 for not only the 10 selected scenarios, but also the additional
165 scenarios under a wider range of conditions.

Overall, compared with traditional mechanism reduction method (Xia et al., 2009;25

Utembe et al., 2009) for SOA formation, the SUVS is able to reduce the number of
species and reactions by a factor of 10 and reproduce the species profiles from a de-
tailed chemical mechanism. Moreover, the framework of this simple chemical mecha-
nism can be applied to different SOA precursor oxidation systems.
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Table 1. The CV(RMSD) (gsp,j (j =1,...,11)) for the 11 species from 10 different scenarios.

Species S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 RO2

gsp,j 0.066 0.017 0.063 0.056 0.059 0.022 0.046 0.092 0.049 0.029 0.049
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Fig. 1. A simple unified volatility-based scheme (SUVS) for SOA formation.
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Fig. 2. Diurnal profiles for the 10 lumped species from one α-pinene oxidation scenario lasting
for 72 h. The shaded areas indicate night time.
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Fig. 3. Schematic representation of procedures used for a simple GAs application.
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Fig. 4. (A) Evolution of the worst, median, and the best individuals from the 1st generation
to the final 21 549th generation; (B) The fitness differences between the best and the worst
individuals, and between the best and median individuals; (C) Evolution of the best CV(RMSD)
from 14.514 at the 1st generation to 0.0488 in the final 21 549th generation.
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Fig. 5. Comparison of number density profiles for four representative species (S02, S07, S09,
and RO2) between the full mechanism of the MCM v3.1 and the simplified chemical mechanism
(SUVS), which is obtained by using the genetic algorithms generated best set of data from the
21 549th generation. The calculated CV(RMSD) for the four species are 0.017, 0.046, 0.049,
and 0.049.
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Fig. 6. (A) The distribution of the 7920 point-to-point errors between the SUVS (Pi ) and the full
mechanism (Oi ) against the normalized number density for the 11 species over 10 scenarios.
The dashed lines correspond to the fractional errors at 0.00 (black), ±0.10 (red). (B) The point
density of the error distribution in each grid cell. The point density is defined as a ratio between
the number of points located in each grid cell and the total number of points.
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Fig. 7. (A) Errors for each of 567 scenarios under a wide range of conditions. The 10 randomly
selected ambient scenarios are used in the GAs to derive a best set of parameters for the
SUVS; (B) a total of 175 scenarios are identified with the fractional error at most 0.10. Note
that color scales for the fractional errors differ between the two panels, and the smaller numbers
(more blue colors) correspond to more accurate simulations.
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